JPH06173135A - Shrinkproof woven fabric composed of regenerated cellulosic fiber and its production - Google Patents

Shrinkproof woven fabric composed of regenerated cellulosic fiber and its production

Info

Publication number
JPH06173135A
JPH06173135A JP5210550A JP21055093A JPH06173135A JP H06173135 A JPH06173135 A JP H06173135A JP 5210550 A JP5210550 A JP 5210550A JP 21055093 A JP21055093 A JP 21055093A JP H06173135 A JPH06173135 A JP H06173135A
Authority
JP
Japan
Prior art keywords
woven fabric
swelling
sectional area
cross
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5210550A
Other languages
Japanese (ja)
Inventor
Sachiyo Odai
幸代 小田井
Takashi Yamanishi
崇 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5210550A priority Critical patent/JPH06173135A/en
Publication of JPH06173135A publication Critical patent/JPH06173135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

PURPOSE:To obtain a shrinkproof woven fabric, having shrinkage suppressed by a structural change in the woven fabric in washing and composed of regenerated cellulosic fiber. CONSTITUTION:Interstices among single fibers corresponding to an increasing ratio of cross-sectional area by swelling of single fiber with water are formed by passing a woven fabric composed of regenerated cellulosic fiber through the first step for immersing the woven fabric in a liquid (a swelling agent) having the high swelling ability for cellulosic fiber, the second step for promoting the swelling by heating, etc., and the third step for carrying out treatment for removing the swelling agent from the woven fabric. Thereby, the woven fabric structure can be controlled to afford the objective shrinkproof woven fabric capable of holding the strength comparable to that before the shrinkproof processing without generating formalin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、防縮性に優れた再生セ
ルロース系繊維織物とその製造方法に関し、更に詳しく
は洗濯した場合の、織物の構造変化による収縮を抑制し
た再生セルロース系防縮性織物とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerated cellulosic fiber woven fabric excellent in shrink resistance and a method for producing the same, and more particularly to a regenerated cellulose based shrink proof fabric which suppresses shrinkage due to structural change of the woven fabric when washed. And its manufacturing method.

【0002】[0002]

【従来の技術】再生セルロース系繊維は吸水性や吸湿性
に優れ、また合成繊維では得られない独特の風合いを有
していることから、肌着や裏地、外衣等の衣料分野にお
いて高く評価されている。しかしながら洗濯によって収
縮するので、その防止方法について多数提案されてい
る。例えばセルロース系繊維を液体アンモニアで処理す
る方法が提案されている(例えば特開昭61−1793
65号公報参照)。この方法はセルロース繊維からなる
織物を液体アンモニア中に浸漬したのち実際的には緊張
下で脱アンモニア処理する方法であるが、再生セルロー
ス系繊維の場合には織物が極度に収縮するため、実際に
は高張力下で処理される。しかし、この方法には、−8
0℃〜−30℃という極低温で処理する必要があるた
め、設備費およびランニングコストが高いという問題が
あり、また単繊維同士が接着が起こるため、織物の風合
が粗硬になるとともにスケが生じるという問題もある。
2. Description of the Related Art Regenerated cellulosic fibers are highly evaluated in the field of clothing such as underwear, linings and outer garments because they have excellent water absorbency and hygroscopicity and have a unique texture that cannot be obtained with synthetic fibers. There is. However, since it shrinks due to washing, many methods for preventing it have been proposed. For example, a method of treating cellulosic fibers with liquid ammonia has been proposed (for example, JP-A-61-1793).
65 publication). This method is a method in which a woven fabric made of cellulose fibers is immersed in liquid ammonia and then subjected to deammonia treatment under tension.However, in the case of regenerated cellulosic fibers, the woven fabric contracts extremely, so Is processed under high tension. However, this method requires -8
Since there is a problem that equipment cost and running cost are high because it is necessary to perform treatment at an extremely low temperature of 0 ° C to -30 ° C, and because single fibers adhere to each other, the texture of the fabric becomes coarse and hard and the scale There is also a problem that occurs.

【0003】織物の洗濯収縮を防止する方法の中でも最
も一般的に行なわれているのは樹脂加工であり、主に樹
脂加工剤と触媒とを含む処理浴に再生セルロース系繊維
からなる織物を浸漬させた後、均一に絞液し、80℃〜
130℃で予備乾燥後、更に130℃〜170℃で加熱
処理を施す。この加工に供される代表的な加工剤は、
「加工技術Vol.24 No.2(1986)」に記
載されているように、N,N′−ジメチロールエチレン
尿素、N,N′−ジメチロール−ジヒドロキシエチレン
尿素、N,N′−ジメトキシメチル−ジヒドロキシエチ
レン尿素のような樹脂加工剤等である。
The most commonly used method of preventing the fabric from shrinking by washing is resin processing, in which a woven fabric composed of regenerated cellulosic fibers is immersed in a treatment bath mainly containing a resin-treating agent and a catalyst. After making it squeeze evenly,
After preliminary drying at 130 ° C, heat treatment is further performed at 130 ° C to 170 ° C. A typical processing agent used for this processing is
As described in “Processing Technology Vol. 24 No. 2 (1986)”, N, N′-dimethylolethylene urea, N, N′-dimethylol-dihydroxyethyleneurea, N, N′-dimethoxymethyl- It is a resin processing agent such as dihydroxyethylene urea.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の樹脂加工剤で加工した織物は、防縮効果は得られるも
のの、保存中または着用時に遊離するホルマリンによっ
て、縫製作業場において異臭が発生したり、着用中に皮
膚障害をおこすというような問題がある。また、樹脂加
工によって織物の強度が大きく低下したり、再生セルロ
ース系繊維特有の風合いが損なわれるという問題もあ
る。
However, although fabrics processed with these resin finishing agents have a shrink-proof effect, formalin released during storage or during wearing causes a strange odor in the sewing workshop or during wearing. There are problems such as skin disorders. Further, there is a problem that the strength of the woven fabric is greatly reduced by the resin processing and the texture peculiar to the regenerated cellulose fiber is impaired.

【0005】このような問題を解決するため、ノンホル
マリン系樹脂と称される樹脂加工剤が開発され、例えば
特開平01−75471号公報や特開平01−2358
58号公報に開示されている。しかしながら、これらの
ノンホルマリン系樹脂加工剤を用いて加工した場合に
は、確かにホルマリンの発生はないが、充分な防縮性を
得るためには多量の樹脂を織物に付着させる必要があ
り、その結果、大きな強度低下を引き起こさざるを得な
いのが現状であり、防縮性、織物強度とも良好でかつ遊
離ホルマリン量が極く少量であるものは得られていな
い。従って、本発明はホルマリンの発生か極めて少な
く、防縮加工前と同程度の強度を保持する防縮性織物を
提供することを目的とする。
In order to solve such a problem, a resin processing agent called a non-formalin resin has been developed. For example, JP-A-01-75471 and JP-A-01-2358 are disclosed.
No. 58 is disclosed. However, when processed with these non-formalin resin processing agents, formalin is certainly not generated, it is necessary to attach a large amount of resin to the fabric in order to obtain sufficient shrink resistance, As a result, at present, there is no choice but to cause a large reduction in strength, and no one having good shrink resistance and fabric strength and an extremely small amount of free formalin has not been obtained. Therefore, it is an object of the present invention to provide a shrink-proof woven fabric in which the generation of formalin is extremely small and the same strength as that before the shrink-proof processing is maintained.

【0006】[0006]

【課題を解決するための手段】本発明者は、従来の技
術、即ち樹脂加工による再生セルロース系繊維よりなる
織物の防縮加工方法とは異なった観点から防縮加工方法
を鋭意研究するうちに、織物の構造変化が織物の収縮に
大きく寄与していることを見いだした。そこで織物の構
造変化を支配する、単繊維の膨潤挙動と単繊維間の空隙
とに着目し、さらに詳細に研究した結果、本発明の完成
に至ったものである。すなわち、本発明は織物の経糸お
よび緯糸中の単繊維の水膨潤による横断面積の増大率に
対応させて単繊維間空隙率を特定することにより、洗濯
等の水膨潤、乾燥による織物の構造変化を抑制し、防縮
性を有する織物とするものである。
Means for Solving the Problems The present inventor has been earnestly researching a shrink-proofing method from a viewpoint different from the conventional technology, that is, the shrink-proofing method for a woven fabric made of regenerated cellulosic fibers by resin processing, and the It was found that the structural change of the ply greatly contributes to the shrinkage of the fabric. Therefore, the present invention has been completed as a result of further detailed study focusing on the swelling behavior of single fibers and voids between single fibers, which govern the structural change of the woven fabric. That is, the present invention specifies the inter-single fiber porosity in accordance with the rate of increase in the cross-sectional area due to the water swelling of the single fibers in the warp and weft of the woven fabric, thereby swelling in water such as washing and the structural change of the fabric due to drying. And a woven fabric having shrink resistance.

【0007】本発明による再生セルロース系繊維よりな
る防縮性織物は織物の経糸および緯糸中の単繊維間の空
隙率Aおよび下記式(3)で規定される水膨潤時の単繊
維の横断面積増大率xが下記式(1)及び式(2)で規
定する範囲にある糸で構成されることを特徴とする。 A≧{1−0.94/(1+x)}×100(%)…(1) 0.1<x<1.6 …(2) x=(Sw −S0 )/S0 …(3) 但しS0 は20℃・65%RH雰囲気中に一昼夜放置さ
せた場合、即ち平衡水分率を保持した状態での単繊維横
断面積、またSw は20℃の水中に1時間浸漬し、充分
に膨潤させた時の単繊維の横断面積である。織物の経糸
および緯糸に水膨潤時の単繊維の横断面積増大率が異な
る繊維が混繊されている場合には、xは単繊維の横断面
積増大率の数平均値で代用できる。単繊維の横断面積
は、単繊維が円形断面の場合には光学顕微鏡で単繊維の
直径を測定し、断面積に換算すればよい。非円形断面の
場合には、単繊維の薄切片の断面顕微鏡写真から、画像
処理等で断面積を算出すればよい。
The shrinkproof fabric comprising regenerated cellulosic fibers according to the present invention has a porosity A between the monofilaments in the warp and weft of the fabric and an increase in the cross-sectional area of the monofilaments when swollen in water as defined by the following formula (3). The yarn is characterized in that the rate x is within the range defined by the following formulas (1) and (2). A ≧ {1-0.94 / (1 + x)} × 100 (%) (1) 0.1 <x <1.6 (2) x = (S w −S 0 ) / S 0 (3) ) However, S 0 is when left to stand in an atmosphere of 20 ° C. and 65% RH for one day, that is, the single fiber cross-sectional area in a state where the equilibrium moisture content is maintained, and S w is sufficiently immersed in water of 20 ° C. for 1 hour. It is the cross-sectional area of the single fiber when swollen to. When the warp and weft of the woven fabric are mixed with fibers having different cross-sectional area increase rates of the single fibers when swollen in water, x can be substituted by the number average value of the single-fiber cross-sectional area increase rates. When the single fiber has a circular cross section, the cross-sectional area of the single fiber may be converted into a cross-sectional area by measuring the diameter of the single fiber with an optical microscope. In the case of a non-circular cross section, the cross-sectional area may be calculated by image processing or the like from a micrograph of a cross section of a thin section of single fiber.

【0008】本発明の再生セルロース系繊維よりなる防
縮性織物の製造は再生セルロース系繊維よりなる織物
(生機)から防縮性織物を製造するに際して、該織物を
膨潤液中に浸漬して膨潤させ、次いで脱膨潤剤処理する
工程を含めしめることにより達成される。その際、下記
式(9)で規定される単繊維の水による膨潤と膨潤剤に
よる膨潤との膨潤比率yが下記式(8)の範囲にあるよ
うに選択された加工条件で処理されるとより好ましい。 0.1<y<4.0 …(8) y=(Ss −Sw )/Sw …(9) 但しSs は膨潤剤中に1時間浸漬した場合の単繊維横断
面積、またSw は20℃の水中に1時間浸漬した場合の
単繊維の横断面積である。
The production of the shrink-proof woven fabric comprising the regenerated cellulosic fiber of the present invention is carried out by immersing the woven fabric in a swelling liquid to swell the shrink-resistant woven fabric when producing the shrink-resistant woven fabric from the woven fabric comprising the regenerated cellulosic fiber (green). This is then achieved by including a step of treating with a deswelling agent. At that time, if the swelling ratio y between the swelling of the single fiber defined by the following formula (9) with water and the swelling with the swelling agent is treated under processing conditions selected so as to fall within the range of the following formula (8). More preferable. 0.1 <y <4.0 (8) y = (S s −S w ) / S w (9) where S s is the single fiber cross-sectional area when immersed in the swelling agent for 1 hour, or S w is the cross-sectional area of the single fiber when immersed in water at 20 ° C. for 1 hour.

【0009】以下、本発明を詳細に説明する。本発明に
おいて、再生セルロース系繊維とは、ビスコースレーヨ
ン、キュプラアンモニウムレーヨン、重合度400〜5
00の高強力レーヨンおよび有機溶媒系再生セルロース
繊維をいう。
The present invention will be described in detail below. In the present invention, the regenerated cellulosic fiber means viscose rayon, cupra ammonium rayon, and a polymerization degree of 400-5.
00 high strength rayon and organic solvent based regenerated cellulose fiber.

【0010】本発明でいう単繊維間空隙率Aとは、経糸
または緯糸の断面積に対する単繊維間の空隙が占める比
率をいう。ここで糸の断面積とは、単繊維集合体である
糸の最外層部の外輪郭で囲まれた部分の面積をいう。単
繊維間空隙率Aは、例えば経方向および緯方向の織物の
断面構造を電子顕微鏡写真を画像処理することによっ
て、糸の断面積及び単繊維断面積の和を画素粒子数に換
算し、その値を次式に代入して得ることができる。 A=(糸の断面積−単繊維断面積の和)/糸の断面積×
100(%) ただしこの測定方法に限定されるものではなく、断面の
顕微鏡写真を複写した紙等の重量から算出しても同様の
結果が得られる。
The porosity A between single fibers in the present invention means the ratio of the voids between single fibers to the cross-sectional area of the warp or weft. Here, the cross-sectional area of the yarn means the area of a portion surrounded by the outer contour of the outermost layer portion of the yarn which is a single fiber aggregate. The porosity A between single fibers is obtained by converting the sum of the cross-sectional area of the yarn and the single-fiber cross-sectional area into the number of pixel particles by image-processing an electron micrograph of the cross-sectional structure of the fabric in the warp direction and the weft direction. It can be obtained by substituting the value into the following formula. A = (cross-sectional area of yarn-sum of single fiber cross-sectional area) / cross-sectional area of yarn x
100 (%) However, the measurement method is not limited to this, and the same result can be obtained by calculating from the weight of paper or the like in which a micrograph of a cross section is copied.

【0011】本発明において、水膨潤時の単繊維断面積
の増大率をxとしたとき、単繊維間空隙率Aは、経糸、
緯糸とも A≧{1−0.94/(1+x)}×100(%) であれば良いが、 A≧{1.13−0.94/(1+x)}×100
(%) であるとより好ましい。また、通常織物の単位長さ当り
の糸本数は経糸の方が多いことから、経糸の水膨潤が織
物の構造変化に及ぼす影響が大きいため、経糸の単繊維
間空隙率は、 A≧{1.28−0.94/(1+x)}×100
(%) であることがより好ましい。単繊維間空隙率Aが A<{1−0.94/(1+x)}×100(%) の場合には、洗濯時の単繊維膨潤によって織物の構造変
化が生じ、充分な防縮性を得ることができない。なお織
物には経糸間、緯糸間および経糸・緯糸間に空隙が見ら
れることがあるが、この糸間の空隙は前記単繊維間空隙
とは異るものである。ここで、xが0.1以下の場合に
は、繊維はほとんど水で膨潤しないため、単繊維間空隙
率が式(1)を満たさなくても、実質的に織物は洗濯収
縮しない。xが1.6以上の場合には、単繊維が非常に
水に膨潤しやすいため、単繊維間空隙率が(数1)を満
たしていても洗濯によって織物の形態変化を生ずる。
In the present invention, the porosity A between single fibers is the warp, where x is the increase rate of the single fiber cross-sectional area during swelling with water.
It is sufficient that both wefts have A ≧ {1-0.94 / (1 + x)} × 100 (%), but A ≧ {1.13-0.94 / (1 + x)} × 100
(%) Is more preferable. In addition, since the number of yarns per unit length of the woven fabric is usually larger than that of the warp yarn, the water swelling of the warp yarn has a great influence on the structural change of the woven fabric. Therefore, the inter-fiber void ratio of the warp yarn is A ≧ {1 .28-0.94 / (1 + x)} * 100
(%) Is more preferable. When the porosity A between single fibers is A <{1-0.94 / (1 + x)} × 100 (%), the structural change of the woven fabric occurs due to the single fiber swelling during washing, and sufficient shrinkage resistance is obtained. I can't. It should be noted that voids may be seen between the warp yarns, between the weft yarns, and between the warp yarns and the weft yarns in the woven fabric, but the voids between these yarns are different from the above-mentioned inter-single fiber voids. Here, when x is 0.1 or less, the fibers are hardly swollen with water, and therefore the woven fabric is not substantially washed and shrunk even if the inter-single fiber porosity does not satisfy the formula (1). When x is 1.6 or more, the single fibers are very easily swelled in water, so that the morphology of the woven fabric is changed by washing even if the porosity between the single fibers satisfies (Equation 1).

【0012】本発明の防縮性織物は一般衣料系の織物を
対象としている。具体的にはカバーファクターf1 、f
2 は、下記式(4)、(5)を満たすことが必要であ
る。 1000<(f1 +f2 )<2500 …(4) 0.5<(f1 /f2 )<2.0 …(5) ここにf1 =D1 ×√d1 …(6) f2 =D2 ×√d2 …(7) ただしD1 ,D2 は織物の経、緯密度(本/インチ)
を、d1 ,d2 は織物を構成する糸の繊度(デニール)
を示す。f1 とf2 の和が1000以下の場合には、水
膨潤による糸の横断面積の増大の織物の収縮に対する寄
与が小さいため、単繊維間空隙率Aが式(1)を満たさ
なくても織物の構造収縮は起こりにくい。f1 とf2
和が2500以上の場合には、織物組織が非常に蜜であ
るため、実質的には単繊維の水膨潤は抑制され、その結
果単繊維間空隙率Aが式(1)を満たさなくても織物の
収縮も抑制される。
The shrinkproof fabric of the present invention is intended for general clothing fabrics. Specifically, the cover factors f 1 and f
2 must satisfy the following formulas (4) and (5). 1000 <(f 1 + f 2 ) <2500 (4) 0.5 <(f 1 / f 2 ) <2.0 (5) where f 1 = D 1 × √d 1 (6) f 2 = D 2 × √d 2 (7) where D 1 and D 2 are the warp and weft density of the fabric (pieces / inch)
Where d 1 and d 2 are the fineness (denier) of the yarns that make up the fabric
Indicates. When the sum of f 1 and f 2 is 1000 or less, the increase in the cross-sectional area of the yarn due to water swelling contributes little to the shrinkage of the woven fabric, so that the inter-single fiber porosity A does not satisfy the formula (1). Structural shrinkage of the fabric is unlikely to occur. When the sum of f 1 and f 2 is 2,500 or more, the woven structure is very honey, so that the water swelling of the single fiber is substantially suppressed, and as a result, the inter-single fiber porosity A is expressed by the formula (1 ), The shrinkage of the fabric is suppressed.

【0013】単繊維間空隙率Aが紡毛糸のように90%
以上の場合には、織物の構造は非常に不安定であり、チ
ョークマーク等の欠点が生じるため、商品価値を著しく
損なうので、単繊維間空隙率Aは90%未満であること
が好ましい。
Porosity A between single fibers is 90% like woolen yarn.
In the above cases, the structure of the woven fabric is very unstable, and defects such as chalk marks occur, which significantly impairs the commercial value. Therefore, the inter-single fiber porosity A is preferably less than 90%.

【0014】本発明による防縮性織物の製造方法は、基
本的には再生セルロース系繊維に対して膨潤能の高い液
体(膨潤剤)に織物を浸漬する第1工程と、膨潤時の織
物の応力−歪曲線の第1変曲点歪以下の低伸張率下で加
熱等によって膨潤を促進させる第2工程、織物から脱膨
潤剤処理する第3工程からなる。第1工程で使用する膨
潤剤としては、水酸化ナトリウム、水酸化カリウム等の
アルカリ金属水酸化物の水溶液、テトラメチルアンモニ
ウム水酸化物、エチルトリメチルアンモニウム水酸化物
等の4級アンモニウム水酸化物の水溶液、エチレングリ
コール、ジメチルスルホキシド(DMSO)、ジメチル
ホルムアミド(DMF)、塩化亜鉛水溶液、水等が挙げ
られる。膨潤を促進させるための第2工程は、第1工程
で使用した膨潤剤が再生セルロースを膨潤させるのに充
分な温度・時間で処理すればよく、室温で急速かつ充分
に膨潤する場合には省略してもよい。第2工程で、過度
に高温とすると、脱膨潤剤作用が起こり、充分な膨潤効
果を得ることができない。
The method for producing a shrink-proof fabric according to the present invention basically comprises a first step of immersing the fabric in a liquid (swelling agent) having a high swelling ability for the regenerated cellulosic fibers, and a stress of the fabric during the swelling. A second step of promoting swelling by heating or the like under a low elongation ratio equal to or lower than the first inflection point strain of the strain curve, and a third step of treating the fabric with a deswelling agent. Examples of the swelling agent used in the first step include aqueous solutions of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, quaternary ammonium hydroxides such as tetramethylammonium hydroxide and ethyltrimethylammonium hydroxide. Examples thereof include an aqueous solution, ethylene glycol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), an aqueous zinc chloride solution, and water. The second step for promoting swelling may be carried out at a temperature and for a time sufficient for the swelling agent used in the first step to swell the regenerated cellulose, and is omitted when the swelling is rapid and sufficient at room temperature. You may. If the temperature is excessively high in the second step, the action of a deswelling agent occurs and a sufficient swelling effect cannot be obtained.

【0015】例えば、第1工程で、膨潤剤としてDMS
Oを用いた場合には、80℃〜130℃での処理が適当
で、短時間で処理しうることから100℃〜130℃で
の処理がより好ましい。80℃未満の場合にはDMFに
よる再生セルロースの膨潤は充分に起こらず、また13
0℃以上の場合には脱膨潤剤作用が起こりやすく、充分
な膨潤効果を得ることができない。第3工程は例えば加
熱あるいは減圧等によって、あるいは膨潤剤の飽和蒸気
圧以下の雰囲気中に放置することにより、織物から脱膨
潤剤処理する工程であるが、生産性の面から加熱による
脱膨潤剤処理が好ましい。第1工程で使用した膨潤剤が
加熱あるいは減圧によって除去困難な場合には、膨潤剤
を除去が容易な他の液体に置換し、この液体を除去して
もよい。
For example, in the first step, DMS is used as a swelling agent.
When O is used, the treatment at 80 ° C. to 130 ° C. is suitable, and the treatment at 100 ° C. to 130 ° C. is more preferable because the treatment can be performed in a short time. When the temperature is lower than 80 ° C, the swelling of regenerated cellulose by DMF does not occur sufficiently, and
When the temperature is 0 ° C. or higher, the action of the deswelling agent is likely to occur and a sufficient swelling effect cannot be obtained. The third step is a step of treating the swelling agent from the woven fabric by heating, depressurizing or the like, or leaving it in an atmosphere having a saturated vapor pressure of the swelling agent or less. Treatment is preferred. If the swelling agent used in the first step is difficult to remove by heating or depressurizing, the swelling agent may be replaced with another liquid that is easy to remove, and this liquid may be removed.

【0016】本発明のより好ましい防縮織物の製造方法
で前述の式(4)を満たすように加工条件(使用する膨
潤剤の種類および温度等の条件)を選定する。その際膨
潤比率yが0.1以下の場合には、膨潤剤の膨潤能が小
さく、処理後の織物に防縮性を付与しうるような単繊維
間空隙を形成できない。4.0以上の場合には、極度の
膨潤によって、単繊維表面の溶解などが起こり、織物強
度が低下したり、風合いが粗硬になるので好ましくな
い。
In the more preferred method for producing a shrink-proof fabric of the present invention, processing conditions (conditions such as type and temperature of swelling agent to be used) are selected so as to satisfy the above formula (4). At that time, when the swelling ratio y is 0.1 or less, the swelling ability of the swelling agent is small, and voids between single fibers which can impart shrinkage resistance to the treated woven fabric cannot be formed. When it is 4.0 or more, extreme swelling causes dissolution of the surface of the monofilament, which lowers the woven fabric strength and the texture becomes coarse and hard, which is not preferable.

【0017】本発明では全工程にわたって、低伸張条件
下で行なうことが望ましく、具体的には、膨潤時の織物
の応力−歪曲線の第1変曲点歪、即ち、膨潤時の織物の
応力−歪曲線において、応力が急激に増大する部分の接
線が歪軸と交わる点の歪以下の伸張率で行うことが好ま
しい。第2工程、あるいは第3工程においては、低伸張
条件下で行なうことはいうまでもなく、かつ揉布作用を
施すことが望ましく、例えばマイクロ波乾燥機や、熱風
によるビーティング乾燥機、気流(エアフロー)乾燥
機、衝撃式乾燥機を用いることによって特に良好な結果
が得られる。
In the present invention, it is desirable to carry out all the steps under low elongation conditions. Specifically, the first inflection point strain of the stress-strain curve of the woven fabric, that is, the stress of the woven fabric during swelling -In the strain curve, it is preferable to perform the stretching at a stretch ratio equal to or lower than the strain at the point where the tangent of the portion where the stress sharply increases intersects with the strain axis. In the second step or the third step, it is needless to say that it is carried out under a low elongation condition and it is desirable to apply a kneading action, for example, a microwave dryer, a beating dryer using hot air, an air flow (air flow). ) Particularly good results can be obtained by using a dryer or an impact dryer.

【0018】このような一連の処理の例として、水酸化
ナトリウム水溶液を膨潤剤として使用した場合について
詳細に説明する。まず第1工程として、1wt%〜10wt
%の水酸化ナトリウム水溶液に5秒以上浸漬させる。1
wt%未満の水酸化ナトリウム水溶液の場合には、短時間
では充分な膨潤効果を得られず、生産性の面から不利で
ある。10wt%を超える水酸化ナトリウム水溶液の場合
には過度の膨潤が起こるため、処理後の織物が不安定と
なる。第一工程は低伸張条件下で行なうことが望まし
く、処理機としてはヒネッケンタイプの処理機、バイブ
レーション作用のある処理機、あるいはテンションレス
の液流染色機などを用いる。1wt%〜10wt%の水酸化
ナトリウム水溶液の再生セルロースに対する膨潤能は常
温で急速かつ充分なので、第2工程は省略することがで
きる。次に充分に水洗することにより、膨潤剤である水
酸化ナトリウム水溶液を加熱除去の容易な水に置換し、
第3工程では60℃〜180℃、好ましくは80℃〜1
20℃で乾燥させることによって防縮性の良好な織物を
得ることができる。60℃以下では乾燥速度が遅いた
め、生産性の面から不利であり、また、180℃以上の
高温で処理すると、セルロース分子鎖の切断が起こり、
織物の強度か低下する。
As an example of such a series of treatments, the case where an aqueous sodium hydroxide solution is used as a swelling agent will be described in detail. First, as the first step, 1 wt% to 10 wt
% Sodium hydroxide aqueous solution for 5 seconds or more. 1
If the aqueous solution of sodium hydroxide is less than wt%, a sufficient swelling effect cannot be obtained in a short time, which is disadvantageous in terms of productivity. In the case of an aqueous solution of sodium hydroxide exceeding 10 wt%, excessive swelling occurs, and the treated fabric becomes unstable. The first step is preferably carried out under a low elongation condition, and a processing machine such as a Hineken type processing machine, a processing machine having a vibration effect, or a tensionless jet dyeing machine is used. Since the swelling ability of the 1 wt% to 10 wt% sodium hydroxide aqueous solution against regenerated cellulose is rapid and sufficient at room temperature, the second step can be omitted. Then, by thoroughly washing with water, the aqueous sodium hydroxide solution as a swelling agent is replaced with water that is easily removed by heating,
In the third step, 60 ° C to 180 ° C, preferably 80 ° C to 1
By drying at 20 ° C., a woven fabric having good shrink resistance can be obtained. If the temperature is lower than 60 ° C, the drying speed is slow, which is disadvantageous from the viewpoint of productivity. Further, if the treatment is performed at a high temperature of 180 ° C or higher, the cellulose molecular chain is broken,
The strength of the fabric is reduced.

【0019】なお、水酸化ナトリウム水溶液でセルロー
ス系織物を処理する加工方法としては、シルケット加工
が広く知られている。しかしながらシルケット加工と
は、「加工織物の実際知識(全国繊維工業技術協会編纂
繊維新聞社出版部 1961124頁)」に記載され
ているように、おもに綿織物について、24°Be(18
%)以上、好ましくは31〜35°Be(25〜30%)
の水酸化ナトリウム水溶液を付与し、膨潤時の織物の応
力−歪曲線の第1変曲点歪以上に充分に伸張した後水洗
する方法で、充分に緊張することにより織物に光沢を付
与し、また染色性の向上をはかる加工方法であり、本発
明とは目的・構成・効果が全く異なるものである。ま
た、織物の糊抜き促進として精練前に苛性処理が施され
ることがある。この方法は、織物を緊張下にて行なうた
め糊抜き促進効果や染色性の向上は計れるが、本発明の
目的とする低伸張処理によって得られる防縮性は得られ
ない。
As a processing method for treating a cellulosic fabric with an aqueous sodium hydroxide solution, mercerizing is widely known. However, as described in “Practical knowledge of processed textiles (edited by the National Textile Industry and Technology Association, published by the Textile Newspaper Publishing, page 1961124)”, mercerizing is mainly applied to cotton fabrics at 24 ° Be (18
%) Or more, preferably 31 to 35 ° Be (25 to 30%)
The aqueous solution of sodium hydroxide is applied to the woven fabric, and the fabric is glossed by sufficient tension by a method of sufficiently stretching after stretching at least the first inflection point strain of the stress-strain curve of the woven fabric, and then imparting gloss to the fabric. Further, it is a processing method for improving the dyeability, and its purpose, constitution and effect are completely different from those of the present invention. In addition, caustic treatment may be performed before scouring to accelerate desizing of the woven fabric. In this method, since the woven fabric is tensioned, the desizing promotion effect and the dyeability can be improved, but the shrinkproof property obtained by the low elongation treatment, which is the object of the present invention, cannot be obtained.

【0020】また、本発明においては、膨潤剤による処
理と水膨潤時の単繊維の横断面積増大率を低下させる処
理とを併用した場合に特に良好な結果が得られる。この
場合には、膨潤剤による処理を行なった後に水膨潤時の
単繊維の横断面積増大率を低下させる処理を行なうと、
より良好な結果が得られる。水膨潤による横断面積増大
率を低下させる方法としては、セルロース系繊維の分子
鎖間を樹脂で架橋したり分子間に樹脂を充填する樹脂加
工法が最も実用的である。この場合は樹脂加工単独で防
縮性を付与する場合と比較して、低樹脂量でも充分な防
縮性を付与しうる。この場合には、N,N′−ジメチル
−ジヒドロキシエチレン尿素の様なノンホルマリン系樹
脂加工剤や柔軟性、平滑性とともにアミノ基によって繊
維に吸着し、防縮・防皺効果を示すアミノ変性シリコー
ン等を用いることが望ましい。またN,N′−ジメトキ
シメチル−ジヒドロキシエチレン尿素のような低ホルマ
リン系樹脂加工剤を使用してもよい。その場合でも樹脂
加工剤の使用が少量で済むため、従来の防縮加工と比較
して、ホルマリンの発生量が極めて少なく、また大きな
強度低下や、風合いの変化を起こすことがない。
Further, in the present invention, particularly good results are obtained when the treatment with the swelling agent and the treatment for reducing the cross-sectional area increase rate of the single fiber at the time of water swelling are used together. In this case, after the treatment with the swelling agent, the treatment for reducing the cross-sectional area increase rate of the single fiber at the time of water swelling is performed,
Better results are obtained. The most practical method for reducing the cross-sectional area increase rate due to water swelling is a resin processing method in which the intermolecular chains of the cellulosic fiber are crosslinked with a resin or the intermolecular resin is filled with a resin. In this case, compared with the case where the resin processing alone imparts the shrink resistance, a sufficient amount of the shrink resistance can be imparted even with a low resin amount. In this case, a non-formalin-based resin finishing agent such as N, N'-dimethyl-dihydroxyethyleneurea or an amino-modified silicone showing flexibility and smoothness, which is adsorbed to the fiber by an amino group and exhibits a shrink-proof / wrinkle-proof effect. Is preferred. A low formalin-based resin finishing agent such as N, N'-dimethoxymethyl-dihydroxyethyleneurea may be used. Even in that case, since a small amount of resin processing agent is used, the amount of formalin generated is extremely small compared to the conventional shrink-proofing treatment, and the strength is not significantly reduced and the texture is not changed.

【0021】[0021]

【実施例】以下に実施例によって本発明を更に詳しく説
明するが、本発明をこれらの実施例に限定するものでな
いことはいうまでもない。なお、物性評価は下記の方法
で行った。 (1)洗濯収縮率;JIS−L−1042 家庭用洗濯
機法(G法)に従って、5分間洗濯を1回した後2分間
のすすぎと30秒間の脱水とを2回行い、収縮率を求め
た。 (2)遊離ホルマリン量;JIS−L−1041 アセ
チルアセトン法(B法)によって求めた。 (3)織物の強度;実施例1,6,7及び比較例1,
2,5で得られた織物が主にアウター向けの中厚地織物
であるためJIS−L−1018 ペンジュラム法によ
って引裂強度を求めた。 実施例2〜5および比較例3,4,6で得られた織物が
主に裏地向けの薄地織物であるため、マーチンデール摩
耗法を採用した。摩耗強度の評価は、基布に梳毛布を用
い、20000回摩擦した場合の外観変化を、リング及
び1〜5級の6段階で級判定した。級数が大きいほど摩
耗強度が大きいことを示す。
The present invention will be described in more detail with reference to the following examples, but it goes without saying that the present invention is not limited to these examples. The physical properties were evaluated by the following methods. (1) Washing shrinkage rate: According to JIS-L-1042 household washing machine method (G method), after washing once for 5 minutes, rinsing for 2 minutes and dehydration for 30 seconds were performed twice to obtain the shrinkage rate. It was (2) Amount of free formalin: It was determined by JIS-L-1041 acetylacetone method (method B). (3) Strength of woven fabric; Examples 1, 6, 7 and Comparative Example 1,
Since the woven fabrics obtained in Nos. 2 and 5 were medium-weight fabrics mainly for outerwear, the tear strength was determined by the JIS-L-1018 pendulum method. Since the woven fabrics obtained in Examples 2 to 5 and Comparative Examples 3, 4 and 6 are thin fabrics mainly for lining, the Martindale abrasion method was adopted. To evaluate the abrasion strength, a carded cloth was used as the base cloth, and the change in appearance when rubbed 20000 times was graded in 6 stages of ring and 1 to 5. The larger the series, the greater the wear strength.

【0022】実施例1 実施例1は、経ビスコースレーヨンヒィラメント糸(1
20d)/緯ビスコースレーヨンスパン糸(30綿番
手)を用いて、常法に従い糊抜き・精練・染色を行って
試料とした。これに長さ方向に1%、巾方向に4%の伸
張がかかった状態で50℃の3%水酸化ナトリウム水溶
液中に30秒間浸漬し、pH3の酢酸水溶液で中和した
後、50℃で充分水洗し、ピンテンターを用いて乾燥し
た。これをノンホルマリン系の樹脂加工剤(BASF社
製 Fixapret NF)10%、触媒(BASF
社製 Condensol 2451)3%を含有する
処理浴に浸漬し、圧力5Kg/cm2 のマングルで絞り、ア
ルカリ処理後を原寸として長さ方向に6%、巾方向に1
%の伸張がかかった状態でピンテンターを用いて100
℃で1分間予備乾燥し、さらに160℃で3分間熱処理
した。
Example 1 In Example 1, the warp viscose rayon filament yarn (1
Using 20d) / weft viscose rayon spun yarn (30 cotton count), desizing, scouring and dyeing were performed according to a conventional method to obtain a sample. It was dipped in a 3% sodium hydroxide aqueous solution at 50 ° C for 30 seconds while being stretched by 1% in the length direction and 4% in the width direction, neutralized with an acetic acid aqueous solution of pH 3, and then at 50 ° C. It was thoroughly washed with water and dried using a pin tenter. This is a non-formalin resin processing agent (Fixapret NF manufactured by BASF) 10%, a catalyst (BASF
Condensol 2451) (manufactured by Condensol Co., Ltd.) is dipped in a treatment bath containing 3%, squeezed with a mangle having a pressure of 5 kg / cm 2 , and 6% in the lengthwise direction and 1% in the widthwise direction after the alkali treatment.
Using a pin tenter with 100% stretch applied,
It was pre-dried at 1 ° C for 1 minute and further heat-treated at 160 ° C for 3 minutes.

【0023】比較例1 比較例1は、実施例1に供したものと同じ織物を、ノン
ホルマリン系の樹脂加工剤(BASF社製 Fixap
ret NF)10%、触媒(BASF社製Conde
nsol 2451)3%を含有する処理浴に浸漬し、
圧力5Kg/cm 2 のマングルで絞り、アルカリ処理後を原
寸として長さ方向に14%、巾方向に4%の伸張がかか
った状態でピンテンターを用いて100℃で1分間予備
乾燥し、さらに160℃で3分間熱処理した。
[0023]Comparative Example 1 In Comparative Example 1, the same fabric as that used in Example 1 was
Formalin-based resin finishing agent (Fixap manufactured by BASF)
ret NF) 10%, catalyst (BASF Conde Conde
nsol 2451) immersed in a treatment bath containing 3%,
Pressure 5Kg / cm 2After squeezing with the mangle of
As a dimension, it stretches 14% in the length direction and 4% in the width direction.
1 minute at 100 ℃ using a pin tenter
It was dried and further heat-treated at 160 ° C for 3 minutes.

【0024】比較例2 比較例2は、実施例1に供したものと同じの織物に、低
ホルマリン系の樹脂加工剤(ユニカ技研製ユニカレジン
GS−15)10%、触媒(ユニカ技研製カタリストM
C−109)3%を用いて比較例1と同じ方法で樹脂加
工を行なった。
Comparative Example 2 In Comparative Example 2, the same woven fabric as that used in Example 1 was prepared by adding 10% of a low formalin type resin processing agent (Unicale Resin GS-15 manufactured by Unica Giken) and a catalyst (Catalyst M manufactured by Unica Giken).
C-109) 3% was used for resin processing in the same manner as in Comparative Example 1.

【0025】実施例2 実施例2は、糊抜き・精練・染色後のキュプラアンモニ
ウムレーヨン経75d/緯100dのタフタを用意し、
長さ方向に1%、巾方向に6%の伸張がかかった状態
で、20℃、5%の水酸化ナトリウム水溶液中に30秒
間浸漬し、pH3の酢酸水溶液で中和した後、50℃で充
分水洗し、ピンテンターを用いてアルカリ処理後を原寸
として長さ方向に1%、巾方向に1%の伸張がかかった
状態で100℃で2分間乾燥した。
Example 2 In Example 2, a taffeta of cupraammonium rayon 75d / weft 100d after desizing, scouring and dyeing was prepared,
After being stretched by 1% in the length direction and 6% in the width direction, it was immersed in a 5% aqueous sodium hydroxide solution at 20 ° C for 30 seconds, neutralized with an aqueous acetic acid solution at pH 3, and then at 50 ° C. After thoroughly washing with water and alkali treatment using a pin tenter, the product was dried at 100 ° C. for 2 minutes in a state in which it was stretched by 1% in the lengthwise direction and 1% in the widthwise direction with the original size.

【0026】実施例3 実施例3は、実施例2で得られた織物に樹脂加工を行な
った。樹脂加工は加工時の伸張をアルカリ処理後を原寸
として長さ方向に1%、巾方向に1%とする以外は比較
例1と同じ方法で行なった。
Example 3 In Example 3, the woven fabric obtained in Example 2 was resin-processed. The resin processing was performed in the same manner as in Comparative Example 1 except that the elongation during processing was 1% in the length direction and 1% in the width direction with the original size after alkali treatment.

【0027】実施例4 実施例4も、実施例2で得られた織物に樹脂加工を行な
った。樹脂加工は低ホルマリン系の樹脂加工剤(ユニカ
技研製ユニカレジンGS−15)5%、触媒(ユニカ技
研製カタリストMC−109)1.5%を用い、加工時
の伸張をアルカリ処理後を原寸として長さ方向に1%、
巾方向に1%とする以外は比較例1と同じ方法で行なっ
た。
Example 4 In Example 4 as well, the fabric obtained in Example 2 was resin-processed. For resin processing, 5% of low formalin type resin processing agent (Unical resin GS-15 made by UNIKA GIKEN) and 1.5% of catalyst (catalyst MC-109 made by UNIKA GIKEN) are used. 1% in the length direction,
The same method as in Comparative Example 1 was used except that the width was 1%.

【0028】比較例3 比較例3は、実施例2に供したものと同じ織物につい
て、加工時の伸張を長さ方向に2%、巾方向に6%とす
る以外は、比較例1と同様に樹脂加工を行なった。
Comparative Example 3 Comparative Example 3 is the same as Comparative Example 1 except that the same woven fabric as that used in Example 2 is stretched by 2% in the length direction and 6% in the width direction. Was processed with resin.

【0029】比較例4 比較例4は、実施例2に供したものと同じ織物につい
て、加工時の伸張を長さ方向に2%、巾方向に6%とす
る以外は、比較例2と同様に樹脂加工を行なった。
Comparative Example 4 Comparative Example 4 was the same as Comparative Example 2 except that the same woven fabric as that used in Example 2 was stretched during processing by 2% in the length direction and 6% in the width direction. Was processed with resin.

【0030】実施例5 実施例5は、実施例2に供したものと同じ織物を用意
し、これに長さ方向に2%、巾方向に6%の伸張がかか
った状態で、ジメチルスルホキシドに3分間浸漬した
後、ピンテンターを用いて80℃で5分間加熱し、更に
10mmHg,90℃で3分間減圧加熱処理した。
Example 5 In Example 5, the same woven fabric as that used in Example 2 was prepared and stretched with 2% in the length direction and 6% in the width direction to give dimethyl sulfoxide. After soaking for 3 minutes, it was heated at 80 ° C. for 5 minutes using a pin tenter, and further heat-treated under reduced pressure at 10 mmHg and 90 ° C. for 3 minutes.

【0031】実施例6,7 実施例6は、ビスコースレーヨン(経フィラメント糸、
緯スパン糸使い、102d/30綿番手)を用意し、積
極的駆動型オープンソーパーを用い、50℃の4%水酸
化ナトリウム水溶液中に30秒間浸漬した後、pH3の酢
酸水溶液で中和し、さらに水洗したものを常法に従って
糊抜き・精練した。これを通常のコールドパッドバッチ
法で染色した後、積極駆動型オープンソーパーを用いて
洗浄し、ピンテンターで乾燥した。これをノンホルマリ
ン系の樹脂加工剤(BASF社製 Fixapret
NF)10%、触媒(BASF社製 Condenso
l 2451)3%を含有する処理浴に浸漬し、圧力5
Kg/cm2 のマングルで絞った後、ヒラノテクシード製シ
ュリンクサーファーを用いて100℃で1分間乾燥し、
さらに160℃で3分間シリンダー加熱した。実施例7
は、染色を常圧液流染色法とする以外は実施例6と同様
に行なった。
Examples 6 and 7 In Example 6, viscose rayon (warp filament yarn,
Weft-spun yarn, 102d / 30 cotton count) was prepared, and was positively driven open soap, dipped in 4% sodium hydroxide aqueous solution at 50 ° C. for 30 seconds, and then neutralized with pH 3 acetic acid aqueous solution. Further, the product washed with water was desized and refined according to a conventional method. This was dyed by an ordinary cold pad batch method, washed with a positive drive type open soaper, and dried with a pin tenter. This is a non-formalin resin processing agent (Fixapret manufactured by BASF).
NF) 10%, catalyst (BASF Condenso
1 2451) immersed in a treatment bath containing 3%, pressure 5
After squeezing with a Kg / cm 2 mangle, it is dried for 1 minute at 100 ° C. using a shrink surfer made by Hirano Techseed,
Cylinder heating was further performed at 160 ° C. for 3 minutes. Example 7
Was carried out in the same manner as in Example 6 except that the dyeing was carried out by the atmospheric pressure jet dyeing method.

【0032】比較例5,6 比較例5,6は樹脂加工処理液を水とする以外は比較例
1、3と同様に処理した。得られた織物の物性測定結果
は、実施例1、6、7および比較例1、2、5を表1
に、実施例2〜5および比較例3、4、6を表2に示し
た。これらの表から明らかなように、本発明方法によっ
て実用防縮性能を付与しうるとともに樹脂加工に代表さ
れる水膨潤時の単繊維の横断面積増大率を低下させる処
理とを併用することによって高度な防縮性を付与しう
る。このように本発明は顕著な効果を持つものである。
Comparative Examples 5 and 6 Comparative Examples 5 and 6 were treated in the same manner as Comparative Examples 1 and 3 except that the resin processing solution was water. The results of measuring the physical properties of the obtained woven fabrics are shown in Tables 1 and 2 of Examples 1, 6, and 7 and Comparative Examples 1, 2, and 5.
Table 2 shows Examples 2 to 5 and Comparative Examples 3, 4, and 6. As is clear from these tables, it is possible to impart a practical shrink-proof property by the method of the present invention, and by using in combination with a treatment for reducing the cross-sectional area increase rate of the single fiber at the time of water swelling represented by resin processing, It may be provided with shrink resistance. Thus, the present invention has a remarkable effect.

【0033】得られた織物の物性測定結果は、実施例
1、6及び7並びに比較例1,2及び5を表1に、実施
例2〜5並びに比較例3,4及び6を表2に示した。
The results of measuring the physical properties of the obtained woven fabrics are shown in Tables 1 and 6 for Examples 1, 6 and 7 and Comparative Examples 1, 2 and 5, and Table 2 for Examples 2-5 and Comparative Examples 3, 4 and 6. Indicated.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】本発明による再生セルロース系繊維防縮
織物は、再生セルロース系繊維に対して膨潤能の高い液
体(膨潤剤)に織物を浸漬させ、次いで加熱等によって
特定の膨潤率比まで膨潤を促進させ、次いで織物を脱膨
潤剤処理することにより、特定の単繊維間空隙を織物に
形成させる。このように織物構造を制御することで、ホ
ルマリンの発生がなく、防縮加工前と同程度の強度を保
持する防縮性織物を得ることができる。本発明による再
生セルロース系繊維防縮織物はまた、樹脂加工等、水膨
張時の単繊維の直径増大率を低下させる加工を併用する
と、特に良好な収縮性を付与しうる。
INDUSTRIAL APPLICABILITY The regenerated cellulosic fiber shrink-proof fabric according to the present invention is dipped in a liquid (swelling agent) having a high swelling ability for regenerated cellulosic fibers, and then swelled to a specific swelling ratio by heating or the like. Specific interfiber voids are formed in the fabric by promoting and then treating the fabric with a deswelling agent. By controlling the woven structure in this way, it is possible to obtain a shrink-proof woven fabric that does not generate formalin and retains the same strength as that before the shrink-proofing process. The regenerated cellulose-based fiber shrink-proof woven fabric according to the present invention can also be imparted with particularly good shrinkability when used in combination with a process such as a resin process for reducing the diameter increase rate of the single fiber upon water expansion.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 織物の経糸および緯糸中の単繊維間の空
隙率Aおよび下記式(3)で規定される水膨潤時の単繊
維の横断面積増大率xが下記式(1)及び式(2)で規
定する範囲にあり、単繊維同士が接着していない糸で構
成されており、かつ織物の経糸・緯糸のカバーファクタ
ーf1 ,f2 が下記式(4)および(5)の範囲にある
ことを特徴とする再生セルロース系繊維よりなる防縮性
織物。 A≧{1−0.94/(1+x)}×100(%)…(1) 0.1<x<1.6 …(2) x=(Sw −S0 )/S0 …(3) 1000<(f1 +f2 )<2500 …(4) 0.5<(f1 /f2 )<2.0 …(5) ここにf1 =D1 ×√d1 …(6) f2 =D2 ×√d2 …(7) 但しS0 は20℃・65%RH雰囲気中に一昼夜放置さ
せた場合、即ち平衡水分率を保持した状態での単繊維横
断面積、またSw は20℃の水中に1時間浸漬し、充分
に膨潤させた時の単繊維の横断面積である。またD1
2 は織物の経、緯密度(本/インチ)を、d1 、d2
は織物を構成する糸の繊度(デニール)である。
1. A porosity A between monofilaments in a warp and a weft of a woven fabric and a cross-sectional area increase rate x of the monofilaments when swollen in water defined by the following formula (3) are expressed by the following formulas (1) and ( Within the range specified in 2), the single fibers are composed of threads that are not bonded to each other, and the cover factors f 1 and f 2 of the warp and weft of the woven fabric are within the ranges of the following formulas (4) and (5). A shrink-proof woven fabric comprising regenerated cellulosic fibers. A ≧ {1-0.94 / (1 + x)} × 100 (%) (1) 0.1 <x <1.6 (2) x = (S w −S 0 ) / S 0 (3) ) 1000 <(f 1 + f 2 ) <2500 (4) 0.5 <(f 1 / f 2 ) <2.0 (5) where f 1 = D 1 × √d 1 (6) f 2 = D 2 × √d 2 (7) However, S 0 is the value obtained when left in an atmosphere of 20 ° C. and 65% RH for one day, that is, the cross-sectional area of single fiber in the state of maintaining the equilibrium moisture content, and Sw is It is the cross-sectional area of a single fiber when immersed in water at 20 ° C. for 1 hour and sufficiently swollen. Also D 1 ,
D 2 is the warp and weft density (books / inch) of the fabric, d 1 and d 2
Is the fineness (denier) of the yarns that make up the fabric.
【請求項2】 再生セルロース系繊維よりなる織物から
防縮性織物を製造するに際して、該織物を下記式(9)
で規定される単繊維の水による膨潤と膨潤剤による膨潤
との膨潤比率yが下記式(8)の範囲にあるように選択
された加工条件で膨潤剤中に浸漬し、再生セルロース系
繊維を膨潤させた後、脱膨潤剤処理する工程を含むこと
を特徴とする再生セルロース系繊維よりなる防縮性織物
の製造方法。 0.1<y<4.0 …(8) y=(Ss −Sw )/Sw …(9) 但しSs 膨潤剤中に1時間浸漬した場合の単繊維横断面
積、またSw は20℃の水中に1時間浸漬した場合の単
繊維の横断面積である。
2. When producing a shrink-proof woven fabric from a woven fabric composed of regenerated cellulosic fibers, the woven fabric is represented by the following formula (9):
The swelling ratio y between the swelling of the monofilament with water and the swelling agent by the swelling agent is soaked in the swelling agent under the selected processing condition that the swelling ratio y is within the range of the following formula (8), and the regenerated cellulose fiber is A method for producing a shrinkproof woven fabric comprising regenerated cellulosic fibers, which comprises a step of treating after swelling with a deswelling agent. 0.1 <y <4.0 (8) y = (S s −S w ) / S w (9) However, the single fiber cross-sectional area when immersed in the S s swelling agent for 1 hour, or S w Is the cross-sectional area of a single fiber when immersed in water at 20 ° C. for 1 hour.
JP5210550A 1992-08-28 1993-08-25 Shrinkproof woven fabric composed of regenerated cellulosic fiber and its production Pending JPH06173135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5210550A JPH06173135A (en) 1992-08-28 1993-08-25 Shrinkproof woven fabric composed of regenerated cellulosic fiber and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-230539 1992-08-28
JP23053992 1992-08-28
JP5210550A JPH06173135A (en) 1992-08-28 1993-08-25 Shrinkproof woven fabric composed of regenerated cellulosic fiber and its production

Publications (1)

Publication Number Publication Date
JPH06173135A true JPH06173135A (en) 1994-06-21

Family

ID=26518120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210550A Pending JPH06173135A (en) 1992-08-28 1993-08-25 Shrinkproof woven fabric composed of regenerated cellulosic fiber and its production

Country Status (1)

Country Link
JP (1) JPH06173135A (en)

Similar Documents

Publication Publication Date Title
JP3205962B2 (en) Cellulose multifilament yarn and fabric comprising the same
JP3529089B2 (en) Processing method of refined cellulose fiber woven or knitted fabric
JP5600270B2 (en) Cellulosic fabric with excellent washing durability
KR100338235B1 (en) Method of production of woven/knitted fabrics using sericin fixation yarn and woven/knitted fabric produced by the method
JP3304934B2 (en) Hemp yarn processing method and hemp knitted fabric using the processed hemp yarn
JPH06173135A (en) Shrinkproof woven fabric composed of regenerated cellulosic fiber and its production
JPS58501043A (en) Dyeing of textile materials
US3932124A (en) Process for setting textiles
JPH08291461A (en) Cellulosic fiber and treatment of fabric comprising the same with alkali
JP3730733B2 (en) Elongated animal hair fiber and production method thereof
JP5425452B2 (en) Method for producing cellulose composite fiber fabric
JP2780747B2 (en) Cotton fiber-containing fiber product and method for producing the same
JPH09158054A (en) Fiber structure and its production
US3498737A (en) Process of producing sculptured lace from flat lace
JPH0711575A (en) Cellulosic yarn-containing fiber product and its production
JPS5846142A (en) Production of cellulose fiber structure
JP3229307B2 (en) Modification method of artificial cellulosic fiber
JP3724600B2 (en) Cotton fiber-containing fiber products
JPH0835175A (en) Production of fiber structure having wrinkle resistance
JPH08291470A (en) Cellulose fiber and method for preventing wearing of cloth made of the fiber
JP2571721B2 (en) Knit shrink-proofing method
JPH08269872A (en) Production of fiber structural material having shape stability
JP3874518B2 (en) Wrinkle fabric and method for producing the same
KR100490256B1 (en) Durable press finish for cellulose fabrics
JPH10158975A (en) Shrink resistant finish of cellulose fiber-containing fabric

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020319