JPH06172998A - Method for forming thin film and device therefor - Google Patents

Method for forming thin film and device therefor

Info

Publication number
JPH06172998A
JPH06172998A JP35178392A JP35178392A JPH06172998A JP H06172998 A JPH06172998 A JP H06172998A JP 35178392 A JP35178392 A JP 35178392A JP 35178392 A JP35178392 A JP 35178392A JP H06172998 A JPH06172998 A JP H06172998A
Authority
JP
Japan
Prior art keywords
vapor deposition
film thickness
thickness distribution
vacuum
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35178392A
Other languages
Japanese (ja)
Inventor
Minoru Otani
実 大谷
Atsumichi Ishikura
淳理 石倉
Hidehiko Fujimura
秀彦 藤村
Mitsuharu Sawamura
光治 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Japan Science and Technology Agency
Original Assignee
Canon Inc
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Research Development Corp of Japan filed Critical Canon Inc
Priority to JP35178392A priority Critical patent/JPH06172998A/en
Publication of JPH06172998A publication Critical patent/JPH06172998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformize the thickness distribution of the thin films of vapor- deposition materials at the time of producing the respective thin films of these plural different materials on a formed film of a substrate. CONSTITUTION:A film thickness correcting plate 3 in a shape to uniformize the distribution when ZrO2 is vapor-deposited at 1X10<-4>Torr is prepared. The plate 3 is fixed to the wall surface of the vessel 1, substrates are held at the regions on the lower surface of a substrate holder 2 shifted from a center hole 2A and radially arranged, the vessel is evacuated to f 1X10<-6>Torr from an outlet 6, then gaseous oxygen is introduced into the vesseel 1 from an inlet 7 the holder 2 is rotated and SiO2 is vapor-deposited in an oxygen atmosphere at 5X10<-5>Torr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の異種材料をそれ
ぞれ基板の成膜面に蒸着する方法および装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for depositing a plurality of different materials on a film-forming surface of a substrate.

【0002】[0002]

【従来の技術】従来、大面積基板用の蒸着装置は、その
真空槽のサイズが大きいために蒸発源と基板間の距離も
長くなり、小型の真空槽と同様の真空度で蒸着を行う
と、蒸発分子と残留ガスとの衝突確率が増大して散乱が
生じ、膜厚分布が不均一になる。特に、複数の異種蒸着
材料を蒸着する場合、同一の真空度で各蒸着材料を蒸着
すると、蒸着材料の種類によって前記散乱の状態が異な
るため、膜厚分布が各蒸着材料毎に異なってしまうとい
う問題点があった。
2. Description of the Related Art Conventionally, in a vapor deposition apparatus for a large area substrate, since the size of the vacuum chamber is large, the distance between the evaporation source and the substrate is long, and the vapor deposition is performed at the same degree of vacuum as a small vacuum chamber. The probability of collision between the vaporized molecules and the residual gas increases, scattering occurs, and the film thickness distribution becomes non-uniform. In particular, when a plurality of different vapor deposition materials are vapor-deposited, if each vapor deposition material is vapor-deposited at the same degree of vacuum, the scattering state varies depending on the type of vapor deposition material, and thus the film thickness distribution will differ for each vapor deposition material. There was a problem.

【0003】さらに、小面積基板用の小型の真空槽で蒸
着を行う場合においても、低い真空度で蒸着を行うと前
記と同様の散乱が生じ、膜厚分布が不均一になるという
問題点があった。
Further, even when vapor deposition is carried out in a small vacuum tank for a small area substrate, when vapor deposition is carried out at a low degree of vacuum, the same scattering as described above occurs and the film thickness distribution becomes uneven. there were.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来の
技術の有する問題点に鑑みてなされたものであって、複
数の異種蒸着材料をそれぞれ基板の成膜面に蒸着して各
蒸着材料の薄膜をそれぞれ製造する場合において、各蒸
着材料の薄膜それぞれの膜厚分布を均一にすることがで
きる薄膜製造方法および装置を実現することを目的とす
るものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the problems of the above-mentioned prior art, in which a plurality of different kinds of vapor deposition materials are vapor-deposited on the film-forming surface of a substrate. It is an object of the present invention to realize a thin film manufacturing method and apparatus capable of making the film thickness distribution of each thin film of each vapor deposition material uniform in the case of manufacturing each thin film.

【0005】また、複数の異種蒸着材料を基板の成膜面
に順次蒸着することにより多層の薄膜を製造する場合に
おいて、膜厚分布を均一にすることができる薄膜製造方
法および装置を実現することを第2の目的とするもので
ある。
Further, to realize a thin film manufacturing method and apparatus capable of making the film thickness distribution uniform when a multi-layered thin film is manufactured by sequentially depositing a plurality of different kinds of evaporation materials on the film formation surface of a substrate. Is the second purpose.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の薄膜製造方法は、複数の異種蒸着材料をそ
れぞれ基板の成膜面に蒸着することにより各蒸着材料の
薄膜をそれぞれ製造する方法において、前記異種蒸着材
料の内の一つの蒸着材料について、その固有の真空度に
おいて膜厚分布が均一となるように形状を設定した膜厚
分布補正板を蒸発源と前記基板との間に配設し、各蒸着
材料毎の固有の真空度でそれぞれ蒸着することを特徴と
するものである。
In order to achieve the above object, the thin film manufacturing method of the present invention manufactures a thin film of each vapor deposition material by vapor depositing a plurality of different vapor deposition materials on the deposition surface of a substrate. In the method, a film thickness distribution correction plate having a shape set so that the film thickness distribution is uniform at a specific degree of vacuum is formed between the evaporation source and the substrate for one of the different kinds of evaporation materials. It is characterized in that it is arranged and vapor-deposited at a specific vacuum degree for each vapor-deposition material.

【0007】また、複数の異種蒸着材料を基板の成膜面
に順次蒸着することにより多層の薄膜を製造する方法に
おいて、各蒸着材料毎にそれぞれ膜厚分布が均一となる
ように形状を設定した固有の膜厚分布補正板を準備して
おき、各蒸着材料毎にその固有の膜厚分布補正板を蒸発
源と前記基板との間に配設し、同一の真空度で順次蒸着
することもできる。
Further, in a method for producing a multilayer thin film by sequentially depositing a plurality of different kinds of vapor deposition materials on the film formation surface of a substrate, the shape is set so that the film thickness distribution is uniform for each vapor deposition material. It is also possible to prepare a peculiar film thickness distribution correction plate in advance, dispose the peculiar film thickness distribution correction plate for each vapor deposition material between the evaporation source and the substrate, and perform sequential vapor deposition at the same vacuum degree. it can.

【0008】さらに、本発明の薄膜製造装置は、真空槽
と、真空槽に配設された基板ホルダーおよび蒸発源とを
備えた複数の異種蒸着材料を順次蒸着するための蒸着装
置において、前記蒸発源と基板ホルダーとの間に、各蒸
着材料毎にそれぞれ膜厚分布が均一となるように形状を
設定した固有の膜厚分布補正板の内の一つを配置するた
めの膜厚分布補正板選択手段が設けられたことを特徴と
するものである。
Further, the thin film manufacturing apparatus of the present invention is a vapor deposition apparatus for sequentially vaporizing a plurality of different vapor deposition materials, which comprises a vacuum chamber, a substrate holder arranged in the vacuum chamber, and an evaporation source. A film thickness distribution correction plate for arranging one of the peculiar film thickness distribution correction plates whose shape is set so that the film thickness distribution is uniform for each vapor deposition material between the source and the substrate holder. It is characterized in that selection means is provided.

【0009】[0009]

【作用】異種蒸着材料の内の一つの蒸着材料について固
有の真空度において膜厚分布が均一となるように形状を
設定した膜厚分布補正板と、各蒸着材料毎の固有の真空
度との相互作用によって、各蒸着材料毎に散乱の影響が
解消されて膜厚分布が均一なものとなる。
[Function] A film thickness distribution correction plate having a shape set so that the film thickness distribution is uniform at a vacuum degree peculiar to one of different kinds of vapor deposition materials, and a vacuum degree peculiar to each vapor deposition material. Due to the interaction, the influence of scattering is eliminated for each vapor deposition material, and the film thickness distribution becomes uniform.

【0010】また、請求項2に係る発明では、各蒸着材
料毎にそれぞれ設定した固有の形状の膜厚分布補正板を
蒸発源と基板ホルダーとの間に配設し、同一の真空度で
順次蒸着することによって、各蒸着材料毎に散乱の影響
が解消されて膜厚分布が均一なものとなる。
Further, in the invention according to claim 2, a film thickness distribution correcting plate having a unique shape set for each vapor deposition material is arranged between the evaporation source and the substrate holder, and the plates are sequentially arranged at the same degree of vacuum. By vapor deposition, the influence of scattering is eliminated for each vapor deposition material, and the film thickness distribution becomes uniform.

【0011】[0011]

【実施例】本発明の実施例を図面を参照しつつ説明す
る。
Embodiments of the present invention will be described with reference to the drawings.

【0012】先ず、本発明の第1実施例について説明す
る。
First, a first embodiment of the present invention will be described.

【0013】図1は、第1実施例の実施に用いる第1の
真空蒸着装置の説明図である。
FIG. 1 is an explanatory view of a first vacuum vapor deposition apparatus used for carrying out the first embodiment.

【0014】第1の真空蒸着装置は、図1に示すよう
に、図示しない真空発生源に接続される排気口6および
図示しないガス供給源に接続される給気口7をもつ真空
槽1と、真空槽1の上部に配設された図示しない回転駆
動手段により回転されるドーム状の基板ホルダー2と、
基板ホルダー2の中央孔2Aに位置するように配設され
た膜厚制御用の光学式膜厚モニター5と、真空槽1の下
部に配設された蒸発源である電子ビーム源4と、基板ホ
ルダー2と電子ビーム源4の間に配設された膜厚分布補
正板3とを備えている。
As shown in FIG. 1, the first vacuum vapor deposition apparatus includes a vacuum chamber 1 having an exhaust port 6 connected to a vacuum generation source (not shown) and an air supply port 7 connected to a gas supply source (not shown). A dome-shaped substrate holder 2 which is rotated by a rotation driving means (not shown) arranged above the vacuum chamber 1,
An optical film thickness monitor 5 for film thickness control arranged so as to be located in the central hole 2A of the substrate holder 2, an electron beam source 4 as an evaporation source arranged under the vacuum chamber 1, and a substrate. A film thickness distribution correction plate 3 is provided between the holder 2 and the electron beam source 4.

【0015】ちなみに、基板ホルダー2は、直径100
0mm、電子ビーム源4と基板ホルダー2の間の距離1
500mm、膜厚分布補正板3は真空槽1の底面から1
000mmの高さの部位に固定されている。真空槽1の
壁面に固定された膜厚分布補正板3と基板ホルダー2、
光学式膜厚モニター5の配置関係は、図2に示すよう
に、基板ホルダー2の中央孔2Aに配置されている光学
式膜厚モニター5が、膜厚分布補正板3からの影響を受
けないように、膜厚分布補正板3は、基板ホルダー2の
中心から半径方向50〜600mmの間で有効となるよ
うに配置されている。 膜厚分布補正板3の平面形状
は、基板ホルダー2の中心から半径方向へ50〜500
mmの範囲で、蒸着された薄膜の膜厚分布が均一となる
ように、蒸発材料の蒸発分布と電子ビーム源4と、基板
ホルダー2の下面に保持された基板間の幾何学的配置に
より決定するが、本実施例では、ZrO2 を真空度1×
10-4torrで蒸着するときに膜厚分布が均一となる
形状に設定した。
Incidentally, the substrate holder 2 has a diameter of 100.
0 mm, distance 1 between electron beam source 4 and substrate holder 2
500 mm, the film thickness distribution correction plate 3 is 1 from the bottom of the vacuum chamber 1.
It is fixed at a site with a height of 000 mm. A film thickness distribution correction plate 3 and a substrate holder 2 fixed to the wall surface of the vacuum chamber 1,
As for the arrangement relationship of the optical film thickness monitor 5, as shown in FIG. 2, the optical film thickness monitor 5 arranged in the central hole 2A of the substrate holder 2 is not affected by the film thickness distribution correction plate 3. As described above, the film thickness distribution correction plate 3 is arranged so as to be effective within the radial direction of 50 to 600 mm from the center of the substrate holder 2. The planar shape of the film thickness distribution correction plate 3 is 50 to 500 in the radial direction from the center of the substrate holder 2.
Determined by the evaporation distribution of the evaporation material, the electron beam source 4, and the geometrical arrangement between the substrates held on the lower surface of the substrate holder 2 so that the thickness distribution of the evaporated thin film becomes uniform in the range of mm. However, in this embodiment, the vacuum degree of ZrO 2 is set to 1 ×.
The film thickness was set to be uniform when vapor deposition was performed at 10 −4 torr.

【0016】上述の如く形状を設定した膜厚分布補正板
3を真空槽1の壁面に固定し、直径30mmの基板を基
板ホルダー2の下面の中央孔2Aからずらした部位に保
持し、半径方向に並べたのち、排気口6より真空吸引し
て1×10-6torr以下の真空度とした真空槽1内へ
給気口7より酸素ガスを導入し、基板ホルダー2を12
rpmで回転させながら5×10-5torrの真空度の
酸素ガス雰囲気中でSiO2 を基板の成膜面に蒸着し、
第1実施例のサンプルを製造した。
The film thickness distribution correction plate 3 having the shape set as described above is fixed to the wall surface of the vacuum chamber 1, and a substrate having a diameter of 30 mm is held on the lower surface of the substrate holder 2 at a position displaced from the central hole 2A, and the radial direction is maintained. After that, oxygen gas is introduced from the air supply port 7 into the vacuum chamber 1 having a vacuum degree of 1 × 10 −6 torr or less by vacuum suction from the exhaust port 6, and the substrate holder 2 is placed at 12
While rotating at rpm, SiO 2 is vapor-deposited on the film formation surface of the substrate in an oxygen gas atmosphere with a vacuum degree of 5 × 10 −5 torr.
A sample of the first example was manufactured.

【0017】本実施例のサンプルに対し、比較例として
1.5×10-4torrの酸素ガス雰囲気とした以外は
第1実施例と同様に製造した比較例1のサンプル、2.
5×10-4torrの酸素ガス雰囲気とした以外は第1
実施例と同様に製造した比較例2のサンプルについてそ
れぞれ膜厚分布を測定し、設計膜厚分布と比較した結果
を図3に示す。
1. The sample of Comparative Example 1 manufactured in the same manner as in Example 1 except that an oxygen gas atmosphere of 1.5 × 10 −4 torr was used as a Comparative Example for the sample of this Example.
No. 1 except that an oxygen gas atmosphere of 5 × 10 -4 torr was used
FIG. 3 shows the result of measuring the film thickness distribution of each of the samples of Comparative Example 2 manufactured in the same manner as in the example and comparing it with the designed film thickness distribution.

【0018】図3から明らかなように、基板ホルダー2
の中心から半径方向に100〜500mmの位置におけ
る膜厚分布は、第1実施例のサンプルでは設計膜厚分布
に対し±1%以内の分布であるのに対し、比較例1およ
び2の各サンプルは基板ホルダー2の中心部から外周部
へ行くにかけて設計膜厚分布とは大きく異なってしまっ
ている。
As is apparent from FIG. 3, the substrate holder 2
The film thickness distribution at a position of 100 to 500 mm in the radial direction from the center of the sample is within ± 1% of the design film thickness distribution in the sample of the first embodiment, whereas each sample of Comparative Examples 1 and 2 Is much different from the designed film thickness distribution from the central part of the substrate holder 2 to the outer peripheral part.

【0019】同様にして、ZrO2 ,SiO2 ,Al2
3 ,MgF2 それぞれの薄膜を製造し、基板ホルダー
2の半径方向50〜500mmの位置の膜厚分布を測定
し、±2%以内となる固有の真空度を求めた結果を表1
に示す。
Similarly, ZrO 2 , SiO 2 , Al 2
The thin film of each of O 3 and MgF 2 was manufactured, the film thickness distribution at a position of 50 to 500 mm in the radial direction of the substrate holder 2 was measured, and the inherent vacuum degree within ± 2% was obtained.
Shown in.

【0020】[0020]

【表1】 比較例として、1.5×10-4torrの酸素ガス雰囲
気とした以外は上記と同様に、ZrO2 ,SiO2 ,A
23 それぞれの薄膜を製造し、膜厚分布を測定した
結果を図4に示す。図4から明らかなように、この比較
例の場合同一真空度の酸素ガス雰囲気で蒸着したにもか
かわらず、膜厚分布が蒸着材料の種類によって異なるこ
とがわかる。
[Table 1] As a comparative example, ZrO 2 , SiO 2 , and A were prepared in the same manner as above except that the oxygen gas atmosphere was 1.5 × 10 −4 torr.
FIG. 4 shows the results of measuring the film thickness distribution of each thin film of l 2 O 3 produced. As is clear from FIG. 4, in the case of this comparative example, the film thickness distribution varies depending on the type of vapor deposition material, even though vapor deposition was performed in an oxygen gas atmosphere with the same degree of vacuum.

【0021】本実施例において、膜厚分布補正板の形状
を設定するのにZrO2 を選択したのは、次の理由によ
る。
In the present embodiment, ZrO 2 is selected to set the shape of the film thickness distribution correction plate for the following reason.

【0022】一般に、酸化物からなる膜はその光吸収量
を下げるため酸素ガス雰囲気中で反応蒸着を行うことが
知られており、上記蒸着材料の中で、ZrO2 が光吸収
量を下げるために必要酸素量が最も多いからである。
It is generally known that a film made of an oxide is subjected to reactive vapor deposition in an oxygen gas atmosphere in order to reduce its light absorption amount. Among the above vapor deposition materials, ZrO 2 is used for reducing the light absorption amount. This is because the amount of oxygen required is highest.

【0023】次に、大型基板用の蒸着装置についても実
験したので、その結果について説明する。
Next, an experiment was conducted on a vapor deposition apparatus for a large substrate, and the results will be described.

【0024】図5は、本実験に用いた第2の真空蒸着装
置の説明図である。
FIG. 5 is an explanatory view of the second vacuum vapor deposition apparatus used in this experiment.

【0025】図5に示すように、第2の真空蒸着装置
は、図示しない真空発生源に接続される排気口16およ
び図示しないガス供給源に接続される給気口17をもつ
真空槽11と、真空槽11の上部に配設された回転駆動
部12Aによって回転される基板ホルダー12と、真空
槽11の下部に配設された蒸発源である電子ビーム源1
4と、回転駆動部13Aによって回転される膜厚分布補
正板13と前記基板ホルダー12の近傍に配設された光
学式膜厚モニター15とを備えている。ちなみに、基板
ホルダー12は最大直径1300mmの基板W2 を保持
可能であり、電子ビーム源14と基板W2 の間の距離は
1700mm、電子ビーム源14と膜厚分布補正板13
の間の距離は500mmである。
As shown in FIG. 5, the second vacuum vapor deposition apparatus includes a vacuum chamber 11 having an exhaust port 16 connected to a vacuum generation source (not shown) and an air supply port 17 connected to a gas supply source (not shown). , A substrate holder 12 rotated by a rotation drive unit 12A arranged in the upper part of the vacuum chamber 11, and an electron beam source 1 as an evaporation source arranged in the lower part of the vacuum chamber 11.
4, a film thickness distribution correction plate 13 rotated by a rotation driving unit 13A, and an optical film thickness monitor 15 arranged near the substrate holder 12. By the way, the substrate holder 12 can hold the substrate W 2 having a maximum diameter of 1300 mm, the distance between the electron beam source 14 and the substrate W 2 is 1700 mm, and the electron beam source 14 and the film thickness distribution correction plate 13
The distance between them is 500 mm.

【0026】また、膜厚分布補正板13は、その平面形
状は図6に示すとおりのもので、同形状の補正板要素1
3aを中心部から放射状に突設し、中心部を回転駆動部
13Aに固定して回転させるように構成されたものであ
る。
The thickness distribution correction plate 13 has a planar shape as shown in FIG. 6, and the correction plate element 1 having the same shape.
3a is provided so as to project radially from the central portion, and the central portion is fixed to the rotation driving portion 13A so as to rotate.

【0027】上記第2の真空蒸着装置により、直径13
00mmの基板W2 を基板ホルダー12の下面に保持さ
せ、回転駆動部12Aにより基板ホルダー12を10r
pmで回転させると同時に回転駆動部13Aにより膜厚
分布補正板13を13rpmで回転させながら、表2に
示す各蒸着材料毎にそれぞれ薄膜を製造した。
With the second vacuum vapor deposition apparatus, a diameter of 13
The 00 mm substrate W 2 is held on the lower surface of the substrate holder 12, and the substrate holder 12 is moved to 10 r by the rotation driving unit 12A.
A thin film was manufactured for each vapor deposition material shown in Table 2 while rotating the film thickness distribution correction plate 13 at 13 rpm by the rotation driving unit 13A while rotating the film at each pm.

【0028】排気口16より真空吸引して5×10-7
orr以下の真空度とした真空槽11内へ、給気口17
より酸化物の場合は酸素ガス、フッ化物の場合は不活性
ガスであるアルゴンガスを導入し、これらのガス圧を変
えて各蒸着材料毎に蒸着を行い、それぞれ薄膜を製造
し、各サンプルを得た。
5 × 10 -7 t after vacuum suction from the exhaust port 16
Into the vacuum chamber 11 with a vacuum degree of orr or less, the air supply port 17
In the case of oxide, oxygen gas is introduced, and in the case of fluoride, argon gas which is an inert gas is introduced, vapor pressure is changed for each vapor deposition material, and a thin film is produced for each sample. Obtained.

【0029】この各サンプルについてその膜厚分布を測
定し、膜厚分布が±2%以内となったときの真空度を表
2に示す。
The film thickness distribution of each sample was measured, and the degree of vacuum when the film thickness distribution is within ± 2% is shown in Table 2.

【0030】[0030]

【表2】 次に、本発明の第2実施例について説明する。[Table 2] Next, a second embodiment of the present invention will be described.

【0031】図7は、第2実施例の実施に使用した第3
の真空蒸着装置の説明図である。
FIG. 7 shows a third embodiment used for carrying out the second embodiment.
FIG. 3 is an explanatory view of the vacuum vapor deposition device of FIG.

【0032】第7に示すように、第3の真空蒸着装置
は、図示しない真空発生源に接続される排気口26およ
び図示しないガス供給源に接続される給気口27をもつ
真空槽21と、真空槽21の上部に配設された基板ホル
ダー22と、基板ホルダー22の中央孔22Aに位置す
るように配設された膜厚制御用の光学式膜厚モニター2
5と、真空槽21の下部に配設された蒸発源である電子
ビーム源24と、基板ホルダー22と電子ビーム源24
の間にあって、回転軸28を介して回転自在に支持され
た形状の異なる4個の膜厚分布補正板23A〜23Dを
備えた膜厚分布補正板選択手段23と、膜厚分布補正板
選択手段23を覆い、真空槽21の真空状態を保持する
ための補助槽21Aとを備えている。
As shown in the seventh example, the third vacuum vapor deposition apparatus includes a vacuum chamber 21 having an exhaust port 26 connected to a vacuum generation source (not shown) and an air supply port 27 connected to a gas supply source (not shown). , A substrate holder 22 disposed above the vacuum chamber 21, and an optical film thickness monitor 2 for controlling the film thickness, which is disposed so as to be located in the central hole 22A of the substrate holder 22.
5, an electron beam source 24, which is an evaporation source disposed below the vacuum chamber 21, a substrate holder 22, and an electron beam source 24.
And a film thickness distribution correction plate selecting means 23 provided with four film thickness distribution correction plates 23A to 23D having different shapes, which are rotatably supported via a rotation shaft 28, and a film thickness distribution correction plate selecting means. And an auxiliary tank 21A for holding the vacuum state of the vacuum vessel 21.

【0033】ここで、4個の膜厚分布補正板23A〜2
3Dは、4種類の蒸発材料のそれぞれについて膜厚分布
が均一となるように形状を設定した。この第3の真空蒸
着装置では、回転軸28を介して回転自在に支持された
形状の異なる4個の膜厚分布補正板23A〜23Dを備
えた膜厚分布補正板選択手段23により、各蒸着材料毎
にそれぞれ形状を設定した固有の膜厚分布補正板の内の
一つを選択配置するように構成した。
Here, the four film thickness distribution correction plates 23A-2
In 3D, the shape was set so that the film thickness distribution was uniform for each of the four kinds of evaporation materials. In this third vacuum vapor deposition apparatus, each vapor deposition is performed by the film thickness distribution correction plate selecting means 23 provided with four film thickness distribution correction plates 23A to 23D having different shapes rotatably supported via the rotary shaft 28. One of the peculiar film thickness distribution correction plates whose shape is set for each material is selectively arranged.

【0034】前記膜厚分布補正板の数は4個に限らず蒸
着材料の種類の数に対応して適宜増減することができ
る。また、本実施例に限らず、真空槽の側壁に各膜厚分
布補正板を着脱自在に取付けることができる支持手段を
設けておき、前記膜厚分布補正板を交換して支持するよ
うに構成することもできる。
The number of the film thickness distribution correction plates is not limited to four, and can be appropriately increased or decreased according to the number of kinds of vapor deposition materials. Further, the present invention is not limited to this embodiment, and a support means is provided on the side wall of the vacuum chamber to which each film thickness distribution correction plate can be removably attached, and the film thickness distribution correction plate is exchanged and supported. You can also do it.

【0035】図7に示す第3の真空蒸着装置により、直
径30mmの基板を基板ホルダー22の下面に並べて保
持させ、排気口26より真空吸引して、1×10-6to
rrの真空度とした真空槽21へ給気口27より酸素ガ
スを導入し、1×10-4torrの酸素ガス雰囲気中で
TiO2 ,ZrO2 ,Al23 ,SiO2 の4種類の
蒸着材料について順次蒸着を行った。このとき、前記4
種類の蒸着材料毎にその固有の膜厚分布補正板を選択配
置してそれぞれ蒸着を行った。
By means of the third vacuum vapor deposition apparatus shown in FIG. 7, substrates having a diameter of 30 mm are arranged and held on the lower surface of the substrate holder 22, and vacuum suction is carried out from the exhaust port 26 to 1 × 10 −6 to.
Oxygen gas was introduced into the vacuum chamber 21 having a vacuum degree of rr from the air supply port 27, and four kinds of TiO 2 , ZrO 2 , Al 2 O 3 and SiO 2 were added in an oxygen gas atmosphere of 1 × 10 −4 torr. The vapor deposition materials were sequentially vapor deposited. At this time, 4
The peculiar film thickness distribution correction plate was selectively arranged for each kind of vapor deposition material, and vapor deposition was performed respectively.

【0036】前記高反射膜の膜構成は中心波長1064
nm、1/4波長光学膜厚の交互層で基板/(SiO2
/TiO25 (SiO2 /ZrO23 (SiO2
Al233 /空気である。
The film structure of the high reflection film has a center wavelength of 1064
Substrate / (SiO 2
/ TiO 2 ) 5 (SiO 2 / ZrO 2 ) 3 (SiO 2 /
Al 2 O 3 ) 3 / air.

【0037】本実施例の高反射膜の膜厚分布を測定した
ところ基板ホルダーの中心から半径方向へ1000mm
内の位置において±1%以内であり、各材料毎の薄膜の
膜厚分布とほぼ同一となった。
When the film thickness distribution of the high reflection film of this embodiment was measured, it was 1000 mm in the radial direction from the center of the substrate holder.
It was within ± 1% at the inside position, which was almost the same as the film thickness distribution of the thin film for each material.

【0038】[0038]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0039】複数の異種蒸着材料をそれぞれ基板の成膜
面に蒸着して製造した薄膜それぞれの膜厚分布が均一と
なる。
The film thickness distribution of each thin film produced by vapor deposition of a plurality of different kinds of vapor deposition materials on the film formation surface of the substrate becomes uniform.

【0040】また、請求項2に係る発明では、膜厚分布
が均一な複数の異種蒸着材料からなる多層の薄膜を簡単
に製造することができる。
According to the second aspect of the invention, it is possible to easily manufacture a multi-layered thin film made of a plurality of different kinds of vapor deposition materials having a uniform film thickness distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いる第1の真空蒸着装置の説
明図である。
FIG. 1 is an explanatory diagram of a first vacuum vapor deposition apparatus used for carrying out the present invention.

【図2】図1に示す第1の真空蒸着装置における膜厚分
布補正板と基板ホルダー等の配置関係を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a positional relationship between a film thickness distribution correction plate, a substrate holder and the like in the first vacuum vapor deposition apparatus shown in FIG.

【図3】第1実施例のサンプルと、これに対する比較例
のサンプルそれぞれの半径方向の膜厚分布を示すグラフ
である。
FIG. 3 is a graph showing a radial film thickness distribution of each of the sample of the first example and the sample of the comparative example.

【図4】異なる蒸着材料を同一の真空度および同一の膜
厚分布補正板を用いて蒸着した場合の各蒸着材料毎の半
径方向の膜厚分布を示すグラフである。
FIG. 4 is a graph showing a radial film thickness distribution of each vapor deposition material when different vapor deposition materials are vapor-deposited using the same degree of vacuum and the same film thickness distribution correction plate.

【図5】本発明の実施に用いる第2の真空蒸着装置の説
明図である。
FIG. 5 is an explanatory diagram of a second vacuum vapor deposition device used for carrying out the present invention.

【図6】図5に示す第2の真空蒸着装置における膜厚分
布補正板と基板ホルダー等との配置関係を示す説明図で
ある。
6 is an explanatory diagram showing a positional relationship between a film thickness distribution correction plate, a substrate holder and the like in the second vacuum vapor deposition apparatus shown in FIG.

【図7】本発明の実施に用いる第3の真空蒸着装置の説
明図である。
FIG. 7 is an explanatory diagram of a third vacuum vapor deposition device used for carrying out the present invention.

【図8】図7に示す第3の真空蒸着装置における膜厚分
布補正板と基板ホルダーとの配置関係を示す説明図であ
る。
8 is an explanatory diagram showing a positional relationship between a film thickness distribution correction plate and a substrate holder in the third vacuum vapor deposition device shown in FIG.

【符号の説明】[Explanation of symbols]

1,11,21 真空槽 2,12,22 基板ホルダー 3,13,23A〜23D 膜厚分布補正板 4,14,24 電子ビーム源 5,15,25 光学式膜厚モニター 6,16,26 排気口 7,17,27 給気口 23 膜厚分布補正板選択手段 1,11,21 Vacuum tank 2,12,22 Substrate holder 3,13,23A-23D Film thickness distribution correction plate 4,14,24 Electron beam source 5,15,25 Optical film thickness monitor 6,16,26 Exhaust Mouth 7, 17, 27 Air supply port 23 Film thickness distribution correction plate selecting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤村 秀彦 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 沢村 光治 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hidehiko Fujimura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Koji Sawamura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Within the corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の異種蒸着材料をそれぞれ基板の成
膜面に蒸着することにより各蒸着材料の薄膜をそれぞれ
製造する方法において、 前記異種蒸着材料の内の一つの蒸着材料について、その
固有の真空度において膜厚分布が均一となるように形状
を設定した膜厚分布補正板を蒸発源と前記基板との間に
配設し、各蒸着材料毎の固有の真空度でそれぞれ蒸着す
ることを特徴とする薄膜製造方法。
1. A method for producing a thin film of each vapor deposition material by vapor depositing a plurality of heterogeneous vapor deposition materials respectively on a film formation surface of a substrate, wherein one vapor deposition material of the heterogeneous vapor deposition materials is A film thickness distribution correction plate, whose shape is set so that the film thickness distribution is uniform at the degree of vacuum, is disposed between the evaporation source and the substrate, and vapor deposition is performed at a unique degree of vacuum for each vapor deposition material. Characteristic thin film manufacturing method.
【請求項2】 複数の異種蒸着材料を基板の成膜面に順
次蒸着することにより多層の薄膜を製造する方法におい
て、 各蒸着材料毎にそれぞれ膜厚分布が均一となるように形
状を設定した固有の膜厚分布補正板を準備しておき、各
蒸着材料毎にその固有の膜厚分布補正板を蒸発源と前記
基板との間に配設し、同一の真空度で順次蒸着すること
を特徴とする薄膜製造方法。
2. A method for producing a multi-layered thin film by sequentially depositing a plurality of different vapor deposition materials on a film formation surface of a substrate, wherein each vapor deposition material is set to have a uniform film thickness distribution. Prepare a peculiar film thickness distribution correction plate, arrange the peculiar film thickness distribution correction plate for each vapor deposition material between the evaporation source and the substrate, and perform sequential vapor deposition at the same vacuum degree. Characteristic thin film manufacturing method.
【請求項3】 蒸着材料が酸化物であるときには、酸素
ガス雰囲気中で蒸着することを特徴とする請求項1また
は2記載の薄膜製造方法。
3. The method for producing a thin film according to claim 1, wherein when the vapor deposition material is an oxide, the vapor deposition is performed in an oxygen gas atmosphere.
【請求項4】 蒸着材料がフッ化物であるときには、不
活性ガス雰囲気中で蒸着することを特徴とする請求項1
または2記載の薄膜製造方法。
4. The vapor deposition material is a fluoride, the vapor deposition is carried out in an inert gas atmosphere.
Alternatively, the thin film manufacturing method described in 2.
【請求項5】 真空槽と、真空槽に配設された基板ホル
ダーおよび蒸発源とを備えた複数の異種蒸着材料を順次
蒸着するための蒸着装置において、前記蒸発源と基板ホ
ルダーとの間に、各蒸着材料毎にそれぞれ膜厚分布が均
一となるように形状を設定した固有の膜厚分布補正板の
内の一つを配置するための膜厚分布補正板選択手段が設
けられたことを特徴とする薄膜製造装置。
5. A vapor deposition apparatus for sequentially vaporizing a plurality of different vapor deposition materials, which comprises a vacuum chamber, a substrate holder and an evaporation source arranged in the vacuum chamber, and between the evaporation source and the substrate holder. , A film thickness distribution correction plate selecting means for arranging one of the peculiar film thickness distribution correction plates whose shape is set to be uniform for each vapor deposition material is provided. Characteristic thin film manufacturing equipment.
JP35178392A 1992-12-08 1992-12-08 Method for forming thin film and device therefor Pending JPH06172998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35178392A JPH06172998A (en) 1992-12-08 1992-12-08 Method for forming thin film and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35178392A JPH06172998A (en) 1992-12-08 1992-12-08 Method for forming thin film and device therefor

Publications (1)

Publication Number Publication Date
JPH06172998A true JPH06172998A (en) 1994-06-21

Family

ID=18419580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35178392A Pending JPH06172998A (en) 1992-12-08 1992-12-08 Method for forming thin film and device therefor

Country Status (1)

Country Link
JP (1) JPH06172998A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079276A (en) * 2007-09-27 2009-04-16 Showa Shinku:Kk Vacuum vapor deposition apparatus
JP2016169424A (en) * 2015-03-13 2016-09-23 コニカミノルタ株式会社 Manufacturing apparatus of film of inclined film thickness and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079276A (en) * 2007-09-27 2009-04-16 Showa Shinku:Kk Vacuum vapor deposition apparatus
JP2016169424A (en) * 2015-03-13 2016-09-23 コニカミノルタ株式会社 Manufacturing apparatus of film of inclined film thickness and manufacturing method of the same

Similar Documents

Publication Publication Date Title
KR20100084655A (en) Optical thin film deposition device and optical thin film fabrication method
JPH11200017A (en) Optical thin film deposition apparatus and optical element deposited by the optical thin film deposition apparatus
JP4072570B2 (en) Material deposition system by vapor deposition on large area substrate
JPH06172998A (en) Method for forming thin film and device therefor
JP3892525B2 (en) Film thickness monitoring apparatus, vacuum deposition method and vacuum deposition apparatus
US20050115823A1 (en) Apparatus
JP4555638B2 (en) Thin film deposition equipment
JP2752409B2 (en) Vacuum deposition equipment
JPH09296265A (en) Production of oblique vapor-deposited coating film
JP2825918B2 (en) Vacuum deposition equipment
JPH06337310A (en) Optical multilayer film, film forming method, and film forming device therefore
JP3979745B2 (en) Film forming apparatus and thin film forming method
JP2009007651A (en) Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
JPH1171671A (en) Vacuum deposition device
JPH10317128A (en) Coating thickness uniformizing device, vacuum deposition method and vacuum deposition device
JP2004232006A (en) Vapor deposition system and method
JP4138938B2 (en) Sputtering apparatus for forming multilayer film and method of using the same
JP2002088470A (en) Sputtering system
JPH11229135A (en) Sputtering device and formation of film
JPH10273777A (en) Inductively coupled plasma cvd system and uniform deposition method using the same
JP2607144Y2 (en) Film thickness monitor board changer
JPH04202773A (en) Film forming method and corrector used therefor
JP4193951B2 (en) Method of depositing an antireflection film on an optical substrate
JPH11106902A (en) Optical thin film forming device
JP2010285647A (en) Film deposition apparatus and film deposition method