JPH09296265A - Production of oblique vapor-deposited coating film - Google Patents

Production of oblique vapor-deposited coating film

Info

Publication number
JPH09296265A
JPH09296265A JP8113444A JP11344496A JPH09296265A JP H09296265 A JPH09296265 A JP H09296265A JP 8113444 A JP8113444 A JP 8113444A JP 11344496 A JP11344496 A JP 11344496A JP H09296265 A JPH09296265 A JP H09296265A
Authority
JP
Japan
Prior art keywords
vapor
deposited
film
coating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8113444A
Other languages
Japanese (ja)
Inventor
Kenji Otani
健二 大谷
Seijiro Okada
誠治郎 岡田
Hiroshi Shiraiwa
弘 白岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8113444A priority Critical patent/JPH09296265A/en
Publication of JPH09296265A publication Critical patent/JPH09296265A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously realize the uniformization of the distribution of coating film thickness, the stabilization of coating film characteristics and vapor deposition at a low temp. by forming vapor-deposited coating film from >= two layers, vapor- depositing substrates arranged at a distance equal to each other from a vapor depositing source, uniformly forming coating film so as to regulate the total thickness of the vapor deposition to be thick one, and thereafter regulating its coating film thickness to desired one by a dry etching method. SOLUTION: A vapor depositing source and a substrate are arranged in a vacuum tank, and the material flown from the vapor depositing source is obliquely vapor- deposited on the surface of the substrate to produce a double refraction sheet. In this method, the substrate 1 is coated with a matching coat 2 increasing its adhesion, which is next vapor-deposited with vapor-deposited coating film 3 having double refraction by the 1/2 of the desired phase angle, and after that, vapor-deposited coating film 4 having double refraction is vapor-deposited in such a manner that it is made approximately larger than the desired phase angle. Since, in the vapor-deposited coating film, the coating thickness and the phase angle lie in proportional relation, the surface of the vapor-deposited coating film 4 is subjected to dry etching 20 to the desired coating thickness. Then, it is coated with antireflection coating film 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は斜め蒸着膜の形成方
法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for forming an obliquely deposited film.

【0002】[0002]

【従来の技術】従来、斜め蒸着膜の製造方法は特開昭6
3−132203号公報に記載されたものが知られてい
る。
2. Description of the Related Art Conventionally, a method for producing an obliquely vapor-deposited film is disclosed in Japanese Patent Laid-Open No.
The thing described in the 3-132203 publication is known.

【0003】図2は従来の斜め蒸着膜の製造プロセスの
模式的断面図を示すものである。図2において、基板7
に蒸着されたマッチングコ−ト8に蒸着材料(誘電体材
料)の飛来方向に対して基板表面を傾斜させて配置し、
基板表面から斜め方向に成長する柱状組織として形成さ
れた第1層目の蒸着膜9と基材を180゜反転後形成さ
れた第2層目の蒸着膜10と反射防止膜11で構成され
ている。該蒸着膜は入射光に対する複屈折作用を有し、
例えば1/4波長(λ)板等の光学機能素子素子として
利用されている。
FIG. 2 shows a schematic sectional view of a conventional process for manufacturing an obliquely evaporated film. In FIG. 2, the substrate 7
The matching coat 8 vapor-deposited on the substrate is arranged with the substrate surface inclined with respect to the flying direction of the vapor deposition material (dielectric material),
The first layer of vapor-deposited film 9 formed as a columnar structure that grows obliquely from the substrate surface, the second layer of vapor-deposited film 10 formed after reversing the substrate by 180 °, and the antireflection film 11 are formed. There is. The vapor deposition film has a birefringence effect on incident light,
For example, it is used as an optical functional element element such as a quarter wavelength (λ) plate.

【0004】図6は従来の斜め蒸着膜の製造装置の例
で、基板ホルダ−18によってホ−ルドされた基板12
に電子銃13を蒸発源14にあて蒸着材料を蒸着角θで
蒸着し複屈折膜を得る。
FIG. 6 shows an example of a conventional apparatus for manufacturing an obliquely vapor-deposited film, which is a substrate 12 held by a substrate holder 18.
Then, the electron gun 13 is placed on the evaporation source 14 and the vapor deposition material is vapor deposited at the vapor deposition angle θ to obtain a birefringent film.

【0005】図7は従来の連続蒸着装置で回転ドラム1
9に基板を装着し所望の膜厚を得る度に回転送りで蒸着
を行う。図8は図7の装置の側方側より見た図で基板1
2が所望の膜厚に達したときドラム19が回転し次の基
材の蒸着を開始する状態をしめしている。
FIG. 7 shows a rotary drum 1 of a conventional continuous vapor deposition apparatus.
The substrate is attached to 9 and vapor deposition is carried out by rotary feeding every time a desired film thickness is obtained. 8 is a side view of the device of FIG.
When 2 reaches the desired film thickness, the drum 19 rotates to indicate the state of starting the vapor deposition of the next substrate.

【0006】[0006]

【発明が解決しようとする課題】このような斜め蒸着膜
の製造方法においては、特にCD(コンパクトディス
ク)やDVD(デジタルビデオディスク)等では、一定
波長のレ−ザ−を用い複屈折膜の微小の変化が特性の劣
化につながるため、湿度特性、温度特性、寿命で変化の
ない性能が要求される。
In the method for manufacturing the obliquely vapor-deposited film as described above, particularly in a CD (compact disc), a DVD (digital video disc), etc., a laser having a constant wavelength is used to form a birefringent film. Since minute changes lead to deterioration of characteristics, humidity characteristics, temperature characteristics, and performance with no change in life are required.

【0007】上記した従来の方法は真空装置の大型化が
困難であること、作業時間が長時間化し膜厚が均一化し
ない、膜特性がロット毎に安定しない、基材の特性が損
なわれるため低温での蒸着には向かないという欠点を有
する。
In the above-mentioned conventional method, it is difficult to increase the size of the vacuum apparatus, the working time is long, the film thickness is not uniform, the film properties are not stable from lot to lot, and the properties of the substrate are impaired. It has a drawback that it is not suitable for vapor deposition at low temperatures.

【0008】すなわち、該方法では成膜厚は蒸着源に近
いほうが厚く、遠いほうが薄くなる対策として膜厚を均
一化するために成膜時に所望膜厚の半ばで各基板を反転
させることにより蒸着膜厚を均一化することがおこなわ
れる。
That is, in this method, the film thickness is thicker near the vapor deposition source and thinner at the distant source, and the vapor deposition is performed by reversing each substrate at the midpoint of the desired film thickness in order to make the film thickness uniform. The film thickness is made uniform.

【0009】斜め蒸着膜は蒸着源、基材表面状態、基材
温度、真空度等様々な要因で膜厚と性能が必ずしも一致
しない。
The oblique vapor deposition film does not always have the same film thickness and performance due to various factors such as vapor deposition source, substrate surface condition, substrate temperature, and degree of vacuum.

【0010】蒸着源の特性が安定しないため成膜途中で
膜特性の測定を行いその値によって残り膜厚を決定して
いたが膜厚不均一と膜特性の不安定性から基板内の特性
バラツキが大きかった。そのため成膜度毎に特性が安定
しないという問題があった。
Since the characteristics of the vapor deposition source are not stable, the film characteristics were measured during film formation and the remaining film thickness was determined based on the measured values. However, due to the nonuniformity of the film thickness and the instability of the film characteristics, there was variation in the characteristics within the substrate. It was great. Therefore, there is a problem that the characteristics are not stable depending on the degree of film formation.

【0011】Ta2O5等の酸化物の蒸着では成膜後空気
中暴露によって表面に化学結合した水分吸着膜ができ反
射防止膜等の他の膜を重ねて形成していく時に膜の特性
が不安定になり時間経過とともに変化する問題があっ
た。
In the vapor deposition of oxides such as Ta2O5, a moisture adsorbing film chemically bonded to the surface is formed by exposing the film to air in the formed film, and the characteristics of the film are unstable when another film such as an antireflection film is overlaid. There was a problem that changed with the passage of time.

【0012】また斜め蒸着膜は基板内の膜厚と特性を均
一にする成膜条件に制約が有るため同時に多数枚の基板
を蒸着処理する事が困難であった。
Further, since the obliquely vapor-deposited film has restrictions on the film forming conditions for making the film thickness and the characteristics in the substrate uniform, it is difficult to vapor-deposit a large number of substrates at the same time.

【0013】本発明は、斜め蒸着膜の膜厚分布の均一
化、膜特性の安定化と低温での蒸着を同時に実現できる
斜め蒸着膜の製造方法を提供し且つ同時に多数枚を蒸着
することを目的としてなされたものである。
The present invention provides a method for producing an obliquely vapor-deposited film, which can realize uniform film thickness distribution of the obliquely vapor-deposited film, stabilization of film characteristics, and vapor deposition at a low temperature at the same time. It was done for the purpose.

【0014】[0014]

【課題を解決するための手段】この課題を解決するため
に本発明の斜め蒸着膜の製造方法は真空槽内に蒸発源と
基板とを配置して、蒸発源から飛来する材料を基板表面
に斜めに蒸着せしめ、複屈折板を製造する方法に置い
て、前記蒸着膜は少なくとも2層よりなり、蒸着中蒸着
源に対し等距離に配置された基板とで構成し、蒸着総厚
を所望の膜厚より厚く均等に成膜した後、ドライエッチ
ング法によって所望の膜厚に除去せしめる様に構成した
ものである。
In order to solve this problem, in the method for manufacturing an obliquely evaporated film of the present invention, an evaporation source and a substrate are arranged in a vacuum chamber, and the material flying from the evaporation source is placed on the substrate surface. According to a method of manufacturing a birefringent plate by obliquely vapor depositing, the vapor deposition film is composed of at least two layers and is composed of a substrate arranged at an equal distance from a vapor deposition source during vapor deposition, and a total vapor deposition thickness is desired. After the film is uniformly formed thicker than the film thickness, the film is removed to a desired film thickness by a dry etching method.

【0015】これにより、斜め蒸着膜の膜厚分布の均一
化と表面に形成される不安定な表層膜を除去でき膜特性
の安定化が同時に得られる。
As a result, the film thickness distribution of the obliquely evaporated film can be made uniform, and the unstable surface film formed on the surface can be removed, and the film characteristics can be stabilized at the same time.

【0016】また蒸着中蒸着源に対し蒸着角θを一定に
し蒸着源から等距離に配置された多数枚の基板を蒸着源
の垂線方向軸に公転せしめて常時蒸着を行うことにより
同時に多数枚処理を行い斜め蒸着膜の製造の効率化を図
るように構成したものである。
During deposition, the deposition angle θ is kept constant with respect to the deposition source, and a large number of substrates arranged equidistantly from the deposition source are revolved around the axis of the normal line of the deposition source to perform continuous deposition, thereby simultaneously processing a large number of substrates. Is performed to improve the efficiency of the production of the obliquely deposited film.

【0017】[0017]

【発明の実施の形態】本発明の請求項1に記載の発明
は、真空槽に蒸発源と基板とを配置して、蒸発源から飛
来する材料を基板表面に斜めに蒸着せしめ、複屈折板を
製造する方法に於いて、前記蒸着膜は少なくとも2層よ
りなり、蒸着中蒸着源に対し等距離に配置された基板を
蒸着し、蒸着総厚を所望の膜厚より厚く均等に成膜した
後、ドライエッチング法によって所望の膜厚に除去せし
めることとしたものであり、蒸着中の基板表面温度は1
80゜C以下が好ましい。これにより、ウェハ−内での
膜厚バラツキをおさえるだけでなく成膜時に発生する不
安定層や汚れ等を除去し、且つ光学膜の特性を正確に微
調整出来るという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, an evaporation source and a substrate are arranged in a vacuum chamber, and a material flying from the evaporation source is obliquely vapor-deposited on the surface of the substrate to form a birefringent plate. In the above method, the vapor-deposited film is composed of at least two layers, and a substrate placed at an equal distance from the vapor deposition source during vapor deposition is vapor-deposited so that the total vapor deposition thickness is thicker than a desired film thickness and uniformly formed. After that, the film is removed to a desired film thickness by a dry etching method, and the substrate surface temperature during vapor deposition is 1
It is preferably 80 ° C or lower. This not only suppresses the film thickness variation within the wafer, but also removes the unstable layer and stains generated during the film formation, and can precisely fine-tune the characteristics of the optical film.

【0018】請求項2に記載の発明は、真空槽内に蒸発
源と基板とを配置して、蒸発源から飛来する材料を基板
表面に斜めに蒸着せしめ、複屈折板を製造する方法に置
いて、前記蒸着膜は少なくとも2層よりなり、蒸着中蒸
着源に対し等距離に配置された基板を蒸着源の垂線方向
軸に公転せしめて常時蒸着を行うことを特徴とする斜め
蒸着膜の製造方法であり、周速度は30m/分以下が好
ましい。これにより、蒸着層内のタ−ゲットからの飛翔
粒子の装置内分布の不均一さを解消するという作用を有
する。
According to a second aspect of the present invention, the evaporation source and the substrate are arranged in a vacuum chamber, and the material flying from the evaporation source is obliquely vapor-deposited on the surface of the substrate to produce a birefringent plate. The vapor-deposited film is composed of at least two layers, and the substrate disposed equidistant from the vapor-deposition source during vapor-deposition is revolved around the axis of the normal line of the vapor-deposition source to perform the vapor-deposition at all times. Method, and the peripheral speed is preferably 30 m / min or less. This has the effect of eliminating non-uniformity of the distribution of flying particles from the target in the vapor deposition layer within the device.

【0019】以下本発明の実施の形態について、図を用
いて説明する。 (実施の形態1)図1は本発明の請求項1の実施の形態
における蒸着膜の製造プロセスを示し、図1において、
1は基板、2はマッチングコ−ト、3は第1層目の蒸着
膜、4は第2層目の蒸着膜、5はドライエッチングによ
り除去される部分、6は反射防止膜である。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 shows a manufacturing process of a vapor deposition film according to an embodiment of claim 1 of the present invention.
Reference numeral 1 is a substrate, 2 is a matching coat, 3 is a first layer vapor deposition film, 4 is a second layer vapor deposition film, 5 is a portion to be removed by dry etching, and 6 is an antireflection film.

【0020】以上のように構成された斜め蒸着膜の形成
方法の改良について、以下そのプロセスについて説明す
る。
Regarding the improvement of the method for forming the obliquely vapor-deposited film configured as described above, the process thereof will be described below.

【0021】まず透過型の光学用の基板1に密着性を上
げるマッチングコ−ト2をコ−ティングし、次に複屈折
を有する第1層目の蒸着膜3(一般にはTa2O5、Ti
O2等を斜め蒸着することによって複屈折特性を有する
事が知られている)を蒸着し所望の位相角の1/2を蒸
着した後、複屈折を有する第2層目の蒸着膜4を蒸着し
所望の位相角より概ね大きくなるように蒸着する。2層
の斜め蒸着膜の位相角を測定すると所望の位相角より大
きく成膜されているため、所望の値より大きな位相角を
得る事が出来る。蒸着膜は膜厚と位相角が比例関係にあ
るので、蒸着膜4の表面を所望の膜厚までドライエッチ
ング20を施す。後に反射防止膜6をコ−ティングす
る。
First, a transmissive optical substrate 1 is coated with a matching coat 2 for improving adhesion, and then a first-layer vapor-deposited film 3 having birefringence (generally Ta2O5, Ti is used).
It is known that the birefringence characteristic is obtained by obliquely evaporating O2 or the like), and 1/2 of a desired phase angle is vapor-deposited, and then the second vapor deposition film 4 having the birefringence is vapor-deposited. Then, vapor deposition is performed so as to be substantially larger than the desired phase angle. When the phase angle of the two-layer oblique vapor deposition film is measured, since the film is formed larger than the desired phase angle, the phase angle larger than the desired value can be obtained. Since the vapor deposition film has a proportional relationship between the film thickness and the phase angle, the surface of the vapor deposition film 4 is dry-etched 20 to a desired film thickness. After that, the antireflection film 6 is coated.

【0022】(実施の形態2)図3は請求項2の実施の
形態の真空装置内の配置図を示し、図3において、基板
保持部材15によって基板12を蒸着源14に対し蒸着
角を概略70゜に保持し、蒸着中蒸着源に対し等距離に
配置された基板を蒸着源の垂線方向軸に公転せしめて常
時蒸着を行う。図4は基板を蒸着源の垂線方向軸に公転
した時としない時の装置内膜厚ばらつきを示す図で公転
をしないときの膜厚ばらつき16が7%あったものが、
公転をした場合は膜厚ばらつき17が1%以下となって
いる。この場合公転スピ−ドは15m/分で、蒸着レ−
ト0.12μm/分であった。図5は公転をする場合の
基板配置図で図7の配置を蒸着源側から見た図であり蒸
着源より基材を等距離に配置されている。
(Embodiment 2) FIG. 3 is a layout view of a vacuum apparatus according to an embodiment of claim 2. In FIG. During the vapor deposition, the substrate kept at 70 ° and equidistant to the vapor deposition source is revolved around the axis of the vapor deposition source in the direction perpendicular to the vapor deposition source to perform the vapor deposition at all times. FIG. 4 is a diagram showing the variation in the film thickness inside the apparatus when the substrate is revolved around the axis of the vapor deposition source in the direction perpendicular to the axis, and the variation 16 is 7% when the substrate is not revolved.
When orbiting, the film thickness variation 17 is 1% or less. In this case, the revolution speed is 15 m / min, and the deposition rate is
0.12 μm / min. FIG. 5 is a diagram showing the arrangement of substrates in the case of revolving, and is a view of the arrangement of FIG. 7 viewed from the vapor deposition source side, in which the base material is arranged at an equal distance from the vapor deposition source.

【0023】以上のように第2の実施形態によれば、斜
め蒸着膜であっても一定の条件下で公転動作を行う事に
よって装置内位置の不均一をなくし、装置内に大量に配
置が可能となり同時連続成膜できることとなる。
As described above, according to the second embodiment, even if the obliquely vapor-deposited film is revolved under a certain condition, the non-uniformity of the position in the device is eliminated, and a large number of devices can be arranged in the device. It becomes possible and simultaneous continuous film formation will be possible.

【0024】又、上記実施例においては蒸着材料として
酸化タンタル、酸化チタンを用いたが、蒸着材料として
は従来と同様にCe02、Al2O3、WO3、等の酸化物
を用いる事が出来る。上記実施例における斜め蒸着膜の
除去のドライエッチング法はイオンミリング、反応性ミ
リング、逆スパッタ等を指す。
Further, although tantalum oxide and titanium oxide are used as the vapor deposition material in the above-mentioned embodiment, as the vapor deposition material, oxides such as Ce02, Al2O3 and WO3 can be used as in the conventional case. The dry etching method for removing the obliquely vapor-deposited film in the above embodiment refers to ion milling, reactive milling, reverse sputtering, and the like.

【0025】[0025]

【発明の効果】以上のように本発明の、第1の実施形態
によれば、複屈折を有する斜め蒸着膜の膜厚分布の均一
化と膜特性の安定化が同時に得られ所望の位相角に精度
よく成膜できることとなる。
As described above, according to the first embodiment of the present invention, the uniform film thickness distribution and the stable film characteristics of the obliquely evaporated film having birefringence can be obtained at the same time, and the desired phase angle can be obtained. Therefore, the film can be formed with high accuracy.

【0026】CD(コンパクトディスク)やDVD(デ
ジタルビデオディスク)のように、一定波長のレ−ザ−
を用い複屈折膜の微小の変化が特性の劣化につながるよ
うな光学部品の場合には、湿度特性、温度特性、寿命で
変化のない性能が要求されるが、本発明の蒸着型の複屈
折板はCD、DVDで充分な特性をもちピックアップの
小型化に寄与できる。
A laser with a constant wavelength, such as a CD (compact disc) or a DVD (digital video disc).
In the case of an optical component in which a minute change in the birefringent film leads to deterioration of characteristics, performance that does not change with humidity characteristics, temperature characteristics, and life is required. The plate has sufficient characteristics for CD and DVD and can contribute to downsizing of the pickup.

【0027】また第2の実施形態によれば装置内に多数
の基板を配置出来、複屈折を有する斜め蒸着膜を大量に
製造する事が可能となるという有利な効果が得られる。
Further, according to the second embodiment, it is possible to arrange a large number of substrates in the apparatus, and it is possible to obtain an advantageous effect that it is possible to manufacture a large amount of oblique vapor deposition films having birefringence.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(f)は本発明の実施の形態1におけ
る斜め蒸着膜の製造プロセスを示す模式的断面図
1A to 1F are schematic cross-sectional views showing a manufacturing process of an obliquely evaporated film according to a first embodiment of the present invention.

【図2】(a)〜(e)は従来の蒸着膜の製造プロセス
2 (a) to (e) are manufacturing process diagrams of a conventional vapor deposition film.

【図3】本発明の実施の形態2における真空装置内の配
置図
FIG. 3 is a layout diagram of a vacuum device according to a second embodiment of the present invention.

【図4】本発明の公転時の装置内膜厚分布図FIG. 4 is a film thickness distribution diagram in the apparatus during revolution of the present invention.

【図5】図3の真空装置内の蒸発源側より見た基板配置
FIG. 5 is a substrate layout view seen from the evaporation source side in the vacuum device of FIG.

【図6】従来の斜め蒸着膜の製造装置の例を示す図FIG. 6 is a diagram showing an example of a conventional apparatus for manufacturing a diagonally evaporated film.

【図7】従来の連続蒸着装置の例を示す図FIG. 7 is a diagram showing an example of a conventional continuous vapor deposition apparatus.

【図8】図7の装置を側方側より見た図FIG. 8 is a side view of the device of FIG.

【符号の説明】[Explanation of symbols]

1,7 基板 2,8 マッチングコ−ト 3,9 1層目の斜め蒸着膜 4,10 2層目の斜め蒸着膜 5 除去部分 6,11 反射防止膜 12 基板 13 電子銃 14 蒸発源 15 基板保持部材 16 公転をしない場合の膜厚分布 17 公転をした場合の膜厚分布 18 基板ホルダ− 19 回転ドラム 20 ドライエッチング 21 排気ポンプ 1,7 Substrate 2,8 Matching coat 3,9 First layer of oblique vapor deposition film 4,10 Second layer of oblique vapor deposition film 5 Removal portion 6,11 Antireflection film 12 Substrate 13 Electron gun 14 Evaporation source 15 Substrate Holding member 16 Film thickness distribution when not revolving 17 Film thickness distribution when revolving 18 Substrate holder-19 Rotary drum 20 Dry etching 21 Exhaust pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空槽に蒸発源と基板とを配置して、蒸
発源から飛来する材料を基板表面に斜めに蒸着せしめ、
複屈折板を製造する方法に於いて、前記蒸着膜は少なく
とも2層よりなり、蒸着中蒸着源に対し等距離に配置さ
れた基板を蒸着し、蒸着総厚を所望の膜厚より厚く均等
に成膜した後、ドライエッチング法によって所望の膜厚
に除去せしめることを特徴とする斜め蒸着膜の製造方
法。
1. An evaporation source and a substrate are arranged in a vacuum chamber, and a material flying from the evaporation source is obliquely deposited on the surface of the substrate,
In the method of manufacturing a birefringent plate, the vapor deposition film is composed of at least two layers, and a substrate placed at an equal distance from the vapor deposition source during vapor deposition is vapor-deposited to make the total vapor deposition thickness thicker than a desired film thickness. A method for manufacturing an obliquely vapor-deposited film, characterized in that after the film is formed, it is removed to a desired film thickness by a dry etching method.
【請求項2】 真空槽内に蒸発源と基板とを配置して、
蒸発源から飛来する材料を基板表面に斜めに蒸着せし
め、複屈折板を製造する方法に於いて、前記蒸着膜は少
なくとも2層よりなり、蒸着中蒸着源に対し等距離に配
置された基板を蒸着源の垂線方向軸に公転せしめて連続
蒸着を行うことを特徴とする斜め蒸着膜の製造方法。
2. An evaporation source and a substrate are arranged in a vacuum chamber,
In a method for manufacturing a birefringent plate by obliquely vapor-depositing a material coming from an evaporation source on a substrate surface, the vapor-deposited film is composed of at least two layers, and a substrate placed at an equal distance from the vapor-deposition source during vapor deposition is used. A method for producing an obliquely vapor-deposited film, which is characterized in that continuous vapor deposition is performed by revolving around a vertical axis of a vapor deposition source.
JP8113444A 1996-05-08 1996-05-08 Production of oblique vapor-deposited coating film Pending JPH09296265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8113444A JPH09296265A (en) 1996-05-08 1996-05-08 Production of oblique vapor-deposited coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8113444A JPH09296265A (en) 1996-05-08 1996-05-08 Production of oblique vapor-deposited coating film

Publications (1)

Publication Number Publication Date
JPH09296265A true JPH09296265A (en) 1997-11-18

Family

ID=14612391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8113444A Pending JPH09296265A (en) 1996-05-08 1996-05-08 Production of oblique vapor-deposited coating film

Country Status (1)

Country Link
JP (1) JPH09296265A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187445B1 (en) 1998-05-29 2001-02-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Birefringent plate
KR100784338B1 (en) * 2005-08-04 2007-12-13 인하대학교 산학협력단 Manufacturing method for low refractive index thin film and antireflection coating method using it
JP2009161843A (en) * 2008-01-10 2009-07-23 Fujinon Corp Work supporting member, optical element, phase difference element, and polarization beam splitter
JP2011059715A (en) * 2010-12-08 2011-03-24 Fujifilm Corp Method of manufacturing biaxial birefringent material
US8605241B2 (en) 2007-09-21 2013-12-10 Fujifilm Corporation Biaxial birefringent component, liquid crystal projector, and method for manufacturing biaxial birefringent component
CN114318239A (en) * 2021-12-30 2022-04-12 中国科学院西安光学精密机械研究所 Multi-angle adjustable coating workpiece frame for optical oblique vapor deposition coating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187445B1 (en) 1998-05-29 2001-02-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Birefringent plate
KR100784338B1 (en) * 2005-08-04 2007-12-13 인하대학교 산학협력단 Manufacturing method for low refractive index thin film and antireflection coating method using it
US8605241B2 (en) 2007-09-21 2013-12-10 Fujifilm Corporation Biaxial birefringent component, liquid crystal projector, and method for manufacturing biaxial birefringent component
JP2009161843A (en) * 2008-01-10 2009-07-23 Fujinon Corp Work supporting member, optical element, phase difference element, and polarization beam splitter
JP2011059715A (en) * 2010-12-08 2011-03-24 Fujifilm Corp Method of manufacturing biaxial birefringent material
CN114318239A (en) * 2021-12-30 2022-04-12 中国科学院西安光学精密机械研究所 Multi-angle adjustable coating workpiece frame for optical oblique vapor deposition coating

Similar Documents

Publication Publication Date Title
JPH11200017A (en) Optical thin film deposition apparatus and optical element deposited by the optical thin film deposition apparatus
JP4009044B2 (en) Thin-film birefringent element and method and apparatus for manufacturing the same
JPH09296265A (en) Production of oblique vapor-deposited coating film
JP2022513541A (en) CVD manufacturing method and its products to reduce particle defects in imaging modules
JPH1123840A (en) Double refractive plate
JP4502540B2 (en) Optical multilayer interference filter manufacturing apparatus and manufacturing method
JPH1068801A (en) Antireflection film
JP2004333908A (en) Optic element having antireflection film
JPS6082663A (en) Method and apparatus for manufacturing mixture thin film
JPH09291358A (en) Production of optical thin film and optical thin film
JPH09166710A (en) Double refractive film and optical system using the same
JPH05134115A (en) Double refraction member
JP2009007651A (en) Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
CN111218659A (en) Film forming method and film forming apparatus
JP5783613B2 (en) Magnetron coating module and magnetron coating method
JP3706409B2 (en) Method for producing composite oxide thin film
JPS6119774A (en) Sputtering apparatus
JPH11140642A (en) Optical thin film forming device
JPH06172998A (en) Method for forming thin film and device therefor
JPH10170717A (en) Production of dielectric multilayered film interference filter
JPH04147964A (en) Production of thin film of ferroelectric substance
JP2001108802A (en) Antireflection film
JPH11229135A (en) Sputtering device and formation of film
JPH1018031A (en) Sputtering device
JPH0752527B2 (en) Optical information recording / reproducing disk manufacturing method