JPH06172912A - Tough cemented carbide - Google Patents
Tough cemented carbideInfo
- Publication number
- JPH06172912A JPH06172912A JP43A JP35156192A JPH06172912A JP H06172912 A JPH06172912 A JP H06172912A JP 43 A JP43 A JP 43A JP 35156192 A JP35156192 A JP 35156192A JP H06172912 A JPH06172912 A JP H06172912A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- cemented carbide
- alloy
- grains
- tic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、切削工具などに使用し
た際に優れた靱性を発揮する超硬合金に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide that exhibits excellent toughness when used in a cutting tool or the like.
【0002】[0002]
【従来の技術】WC基超硬合金は、耐摩耗性などに優れ
るために切削工具材料としても幅広く使用されている。
中でもWC−Co合金は特に優れた特性を有するが、連
続切屑を生じる鋼の切削時には工具すくい面が大きく摩
耗(所謂クレータ摩耗)し、工具寿命が著しく短くな
る。そこで、このクレータ摩耗を抑えるために、耐酸化
性に優れたTiCを含む固溶体炭化物を添加した合金が
使用されている。2. Description of the Related Art WC-based cemented carbide is widely used as a cutting tool material because of its excellent wear resistance.
Among them, the WC-Co alloy has particularly excellent characteristics, but the tool rake face is greatly worn (so-called crater wear) during cutting of steel that produces continuous chips, and the tool life is significantly shortened. Therefore, in order to suppress the crater wear, an alloy to which solid solution carbide containing TiC having excellent oxidation resistance is added is used.
【0003】[0003]
【発明が解決しようとする課題】ところが、このWC−
Co合金にTiCを含む固溶体炭化物(β固溶体と呼ば
れる)を含有させると、鈴木 壽 編著「超硬合金と焼
結硬質」、昭和61年2月20、丸善株式会社発行、第
132頁に図示されている(これを図1として示した)
ように、超硬合金の抗折力、すなわち強度が低下する傾
向にある。そのため、本系合金をドリルなど特に高負荷
の過酷な条件下で使用すると、刃先にチッピングと呼ば
れる欠けが生じやすく、該チッピングにより切削抵抗が
増大して場合によっては切削工具が破損するなどの問題
があった。本発明は、上記課題を解決するために、耐チ
ッピング性に優れた強靱性超硬合金を提供することを目
的とする。However, this WC-
When a solid solution carbide containing TiC (called a β solid solution) is contained in a Co alloy, it is illustrated in page 132, "Cemented Carbide and Sintered Hard", edited by Toshi Suzuki, February 20, 1986, published by Maruzen Co., Ltd. (Shown as Figure 1)
As described above, the transverse rupture strength of cemented carbide, that is, the strength tends to decrease. Therefore, when the alloy of the present system is used under severe conditions of high load such as a drill, a chipping called chipping is likely to occur, and the chipping resistance increases due to the chipping, and the cutting tool may be damaged in some cases. was there. An object of the present invention is to provide a tough cemented carbide having excellent chipping resistance in order to solve the above problems.
【0004】[0004]
【課題を解決するための手段】超硬合金は、粉末状の硬
質炭化物とCoを所定量配合して粉砕混合し、圧粉成形
して高温で焼結するという、所謂粉末冶金法により製造
される。また、硬質成分の主体となるWC相は結晶学的
には六方晶なので、焼結工程でCoの液相を介した溶解
析出プロセスにより粒成長すると三角柱状に結晶化が進
み、粒子が角張った形状となる。このような粒成長して
角張ったWC相はα2相と呼ばれる。これに対し粒成長
による結晶化が抑制されて粉砕状態の丸みを帯びた不規
則形状を保つWC相はα1相と呼ばれる。Cemented carbide is manufactured by a so-called powder metallurgy method in which a predetermined amount of powdered hard carbide and Co are blended, pulverized and mixed, powder compacted and sintered at high temperature. It Since the WC phase, which is the main component of the hard component, is crystallographically hexagonal, crystallization progresses into triangular prisms when the grains grow due to the dissolution and precipitation process through the liquid phase of Co in the sintering step, and the grains become angular. It becomes the shape. Such a grain-grown and angular WC phase is called an α2 phase. On the other hand, the WC phase in which crystallization due to grain growth is suppressed and which maintains a rounded and irregular shape in a pulverized state is called an α1 phase.
【0005】この未粒成長WC粒子(α1相)と粒成長
WC粒子相(α2相)は、光学顕微鏡または電子顕微鏡
による合金組織写真において、WC相粒子の形状が主と
して直線で構成された幾何学的形状すなわち角張ってい
る形状である(α2相)か、それとも主として曲線で構
成された形状すなわち丸みを帯びた形状である(α1
相)かで判別することができる。超硬合金は、一般に焼
結が不十分になると合金内に巣が発生する危険があるた
めに、焼結は充分に行う必要があるが、焼結が過剰にな
るとWC粒は粒成長して角張ったα2相が多くなる。The ungrown WC grains (α1 phase) and grain-grown WC grain phases (α2 phase) are geometrical shapes in which the shape of the WC phase grains is mainly composed of straight lines in an alloy structure photograph by an optical microscope or an electron microscope. Shape, that is, a square shape (α2 phase), or a shape that is mainly composed of curves, that is, a rounded shape (α1)
Phase). In general, cemented carbide has a risk of forming voids in the alloy if sintering is insufficient. Therefore, it is necessary to sufficiently sinter, but if sintering is excessive, WC grains will grow. There are more angular α2 phases.
【0006】ところで、図2はKeneth J.A.Brookes編
著,World Directoryand Hand
book of HARDMETALS,1987年
(昭和62年)に英国Interanational
Carbide Data社発行, 第4版、第51頁
に記載されたFigure 3.6(図2として示す)
であり、TiCを含む固溶炭化物を含有する超硬合金の
典型的な組織例として示される顕微鏡組織写真である
が、ここで見られるWC相粒子は、皆角張っており、α
2相であることは明瞭である。このことからも、従来は
本系合金のWC相粒子形状については何ら注意が払われ
ず、角張ったα2相の多い合金が大半であったと言え
る。[0006] By the way, FIG. 2 is edited by Keneth JA Brookes, World Directory Hand.
book of HARDMETALS, UK International in 1987
Figure 3.6, shown in Carbide Data, Inc., 4th edition, page 51 (shown as FIG. 2).
And a microstructure photograph showing a typical microstructure of a cemented carbide containing a solid solution carbide containing TiC. The WC phase particles seen here are all angular, and
It is clear that there are two phases. From this, it can be said that conventionally, no attention was paid to the shape of the WC phase particles of the present system alloy, and most of the alloys had many angular α2 phases.
【0007】これに対し、本発明はTiCを含むWC基
超硬合金のこのWC相の粒子形状と合金特性、特に靱性
との関係に着目して種々の研究を重ねた結果、WCの2
α相が少なくてWC相粒子形状が丸みを帯びた合金は、
α2相が多くWC相粒子形状が角張っている合金より靱
性が優れるという、従来知られていなかった新しい知見
に基づいてなされたものである。On the other hand, according to the present invention, as a result of various studies focusing on the relationship between the particle shape of the WC phase of the WC-based cemented carbide containing TiC and the alloy characteristics, particularly toughness, the results of WC 2
An alloy with a small α phase and a round WC phase particle shape
This is based on a previously unknown new finding that the toughness is superior to an alloy having many α2 phases and angular WC phase particles.
【0008】そこで、本発明に係る超硬合金は、重量%
でCoが5〜15%、TiCまたはTiCとMCが3〜
50%(ただしMはTaおよび/またはNb)、残部が
WCおよび不可避不純物からなる組成を有する超硬合金
であって、合金組織上全WC粒子相数に対する未粒成長
WC粒子相(α1相)数の比が30〜95%であるよう
にしたものであり、かくて靱性が優れ、ドリルなどで使
用した際にも耐チッピング性が抜群で折損も発生しない
のである。Therefore, the cemented carbide according to the present invention contains
5% to 15% Co, 3% TiC or TiC and MC
A cemented carbide having a composition of 50% (where M is Ta and / or Nb) with the balance being WC and unavoidable impurities, and an ungrained WC particle phase (α1 phase) with respect to the total number of WC particle phases on the alloy structure. The ratio of the numbers is 30 to 95%, and thus the toughness is excellent, the chipping resistance is excellent even when used in a drill, etc., and no breakage occurs.
【0009】合金組織上全WC粒子相数に対する未粒成
長WC相(α1相)の数の比を30〜95%に制御する
には、焼結時のWC粒成長をなるべく抑制する必要があ
るが、その手段としては、合金中の炭素含有量を低炭素
状態にする、原料粉砕強度を抑えて混砕混合後の粉体表
面の活性度を落とす、焼結条件を低温・短時間にするな
どの方法があるが、これらの方法を単独または組合せて
用いることにより本発明合金を得ることが可能である。
ただしいずれの場合も、η相、遊離炭素などの超硬合金
にとって有害な相が出現したり、未焼結により特性劣化
が生じたりしてはならないことはもちろんである。In order to control the ratio of the number of ungrained WC phases (α1 phase) to the total number of WC grain phases on the alloy structure to 30 to 95%, it is necessary to suppress WC grain growth during sintering as much as possible. However, as the means, the carbon content in the alloy is made into a low carbon state, the crushing strength of the raw materials is suppressed to reduce the activity of the powder surface after pulverization and mixing, and the sintering condition is set to a low temperature for a short time. Etc., but the alloy of the present invention can be obtained by using these methods alone or in combination.
However, in any case, it is needless to say that a phase harmful to the cemented carbide such as η phase or free carbon should not appear, or the characteristics should not be deteriorated due to unsintering.
【0010】次に成分組成を上記のように限定した理由
を説明する。 (1)Co Coが5%未満では靱性を確保することができず、15
%を越えると耐摩耗性が低下して鋼を切削する工具など
としての使用に適さなくなるからである。 (2)TiC、TaC、NbC その含有量が3%未満ではとくに鋼を切削する工具など
の材料として必要な耐クレータ摩耗性が不足し、50%
を越えると靱性の低下が著しいからである。 (3)α1相粒子数の全WC相粒子数に対する比率 α1相粒子数の比率が30%以下では靱性の向上は不十
分であり、95%以上では焼結が不十分の状態でやはり
靱性が不足するからである。Next, the reason why the component composition is limited as described above will be explained. (1) Co If Co is less than 5%, the toughness cannot be secured, and
If it exceeds%, the wear resistance is lowered and it becomes unsuitable for use as a tool for cutting steel. (2) TiC, TaC, NbC If the content is less than 3%, the crater wear resistance necessary for materials such as tools for cutting steel is insufficient and 50%.
This is because the toughness is remarkably deteriorated when the value exceeds. (3) Ratio of the number of α1 phase particles to the total number of WC phase particles When the ratio of the number of α1 phase particles is 30% or less, the toughness is insufficiently improved, and when the ratio is 95% or more, the toughness is still insufficient in the state of insufficient sintering. This is because there will be a shortage.
【0011】[0011]
【実施例】以下に、本発明の内容を実施例により説明す
る。 (実施例1)原料粉末として平均粒度5μmのWC粉
末、同1.5μmの(W,Ti)C固溶体粉末(ただし
WC/TiC比70/30)、TaC粉末、NbC粉末
および同1μmのCo粉末を、最終的に表1に示す組成
になるように配合し、アセトンを溶媒としてボール・ミ
ルで混合粉砕後、溶媒を乾燥した。これに成形助剤とし
てパラフィンワックスを重量で1%添加し、乾式CIP
(冷間静水圧プレス)により丸棒状に成形した。この成
形体を脱ワックス処理して、750℃×1時間の中間焼
結後若干の成形加工を行い、さらに真空焼結して焼結体
とした。ここで、ボール・ミル時間、合金の炭素含有
量、焼結温度および焼結時間は表2に示すように変化さ
せ、未粒成長WC相粒子(α1相)の数の比率が本発明
の範囲にある合金金(No.1〜3)α1相の比率が本
発明とは異なる比較合金(No.4〜6)を作成した。EXAMPLES The contents of the present invention will be described below with reference to examples. (Example 1) As a raw material powder, WC powder having an average particle size of 5 μm, (W, Ti) C solid solution powder of 1.5 μm (however, WC / TiC ratio 70/30), TaC powder, NbC powder and Co powder of 1 μm Were finally blended so as to have the composition shown in Table 1, and were mixed and pulverized by a ball mill using acetone as a solvent, and then the solvent was dried. 1% by weight of paraffin wax is added to this as a molding aid, and dry CIP is applied.
It was formed into a round bar shape by (cold isostatic pressing). The compact was dewaxed, subjected to intermediate sintering at 750 ° C. for 1 hour, then slightly molded, and further vacuum-sintered to obtain a sintered body. Here, the ball mill time, the carbon content of the alloy, the sintering temperature and the sintering time were changed as shown in Table 2, and the ratio of the number of ungrained WC phase particles (α1 phase) was within the range of the present invention. Comparative alloys (Nos. 4 to 6) in which the ratio of the alloy gold (Nos. 1 to 3) α1 phase in Example 1 was different from the present invention were prepared.
【0012】[0012]
【表1】 [Table 1]
【0013】[0013]
【表2】 [Table 2]
【0014】得られた丸棒焼結体は、ダイヤモンド砥石
によりドリル形状に加工した後、PVD法でTiCNコ
ーティングを施して表3に示すドリル穴あけテストを行
った。得られた合金のWC相粒子形状とドリル穴あけテ
ストの結果を表4に示す。WC相粒子形状の例として、
本発明合金(No.1)と比較合金(No.4)の電子
顕微鏡による合金組織写真(倍率4000倍)を図3お
よび図4にそれぞれ示した。写真中白い相がWC相であ
るが、本発明合金(図3)の場合WC相の輪郭が曲線が
多く丸みを帯びているのに対し、比較合金(図4)は輪
郭が直線的で構成され幾何学的で角張っていることが明
瞭である。このWC相粒子の形状の差が性能に決定的な
違いをもたらす。すなわち表4に示すとおり、本発明合
金のドリル寿命(穴あけ個数)はいずれも1600個以上と
長いのに対し、比較合金は組成が同じであるにもかかわ
らず寿命は明らかに短い。The round bar sintered body thus obtained was processed into a drill shape with a diamond grindstone, and then TiCN coating was applied by the PVD method, and a drill hole drilling test shown in Table 3 was conducted. Table 4 shows the WC phase particle shape of the obtained alloy and the result of the drilling test. As an example of the WC phase particle shape,
Electron micrographs of the alloy structure of the present invention alloy (No. 1) and the comparative alloy (No. 4) (magnification: 4000 times) are shown in FIGS. 3 and 4, respectively. In the photograph, the white phase is the WC phase, but in the case of the alloy of the present invention (FIG. 3), the contour of the WC phase has many curves and is rounded, whereas the comparative alloy (FIG. 4) has a linear contour. It is clear that it is geometric and angular. This difference in the shape of the WC phase particles brings about a decisive difference in performance. That is, as shown in Table 4, the drill lives (the number of drilled holes) of the alloys of the present invention are long as 1600 or more, whereas the comparative alloys have a clearly shorter life despite having the same composition.
【0015】[0015]
【表3】 [Table 3]
【0016】[0016]
【表4】 [Table 4]
【0017】(実施例2)成分組成の影響をみるため
に、実施例1で用いたものと同じ原料粉末を用いて表5
に示す組成および製造条件で、本発明組成域の合金(N
o.7〜10)と組成域のはずれる比較合金(No.1
1〜13)を作成し、やはりドリル穴あけテストを行っ
た。製造方法およびドリル穴あけテスト条件は実施例1
と同じである。結果は表第6表に示すごとく、WC相粒
子形状は丸みを帯びているものの組成域が本発明をはず
れる比較合金は寿命が極端に短く、本発明が対象として
いる切削工具などとしての使用には不適であることがわ
かる。(Example 2) In order to examine the influence of the component composition, the same raw material powder as that used in Example 1 was used.
Under the composition and manufacturing conditions shown in, alloys (N
o. 7 to 10) and comparative alloys (No. 1) out of the composition range
1 to 13) were prepared and a drilling test was conducted. The manufacturing method and drill drilling test conditions are described in Example 1.
Is the same as. The results are shown in Table 6, and the comparative alloys whose WC phase particle shape is rounded but whose composition range is outside the scope of the present invention have extremely short lives and are suitable for use as a cutting tool or the like targeted by the present invention. Turns out to be unsuitable.
【0018】[0018]
【表5】 [Table 5]
【0019】[0019]
【表6】 [Table 6]
【0020】[0020]
【発明の効果】本発明は、上述のように、従来は全く顧
みられていなかったTiCを含むWC基超硬合金のWC
相粒子形状を、本発明のごとく丸みを帯びた状態に制御
することにより従来合金に比べ靱性が格段に向上し、鋼
の穴あけ加工用ドリルとして用いた場合にも安定した寿
命が得られる。さらに本発明合金は特に靱性が要求され
る鋼の断続旋削、フライス切削用スローアウェイチップ
などにも好適である。As described above, the present invention provides a WC-based cemented carbide WC containing TiC, which has never been neglected.
By controlling the phase particle shape in a rounded state as in the present invention, the toughness is remarkably improved as compared with the conventional alloy, and a stable life can be obtained even when used as a drill for drilling steel. Further, the alloy of the present invention is also suitable for intermittent turning of steel, which requires particularly toughness, and throw-away inserts for milling.
【図1】WC基超硬合金にTiCを含む固溶体炭化物を
添加した場合の抗折力の変化を示すグラフである。FIG. 1 is a graph showing changes in transverse rupture strength when a solid solution carbide containing TiC is added to a WC-based cemented carbide.
【図2】TiCを含む固溶体炭化物を含有する超硬合金
の典型的な顕微鏡組織写真である。FIG. 2 is a typical microstructure photograph of a cemented carbide containing a solid solution carbide containing TiC.
【図3】本発明に係る超硬合金の電子顕微鏡による組織
写真である。FIG. 3 is an electron micrograph of a cemented carbide according to the present invention.
【図4】比較超硬合金の電子顕微鏡による組織写真であ
る。FIG. 4 is an electron micrograph of a comparative cemented carbide.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 浩章 富山県富山市石金20番地 株式会社不二越 内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroaki Murakami 20 Ishigane, Toyama City, Toyama Prefecture Fujikoshi Co., Ltd.
Claims (1)
TiCとMCが3〜50%(ただしMはTaおよび/ま
たはNb)、残部がWCおよび不可避不純物からなる組
成を有する超硬合金において、合金組織上全WC粒子相
数に対する未粒成長WC粒子相(α1相)数の比が30
〜95%であることを特徴とする強靱性超硬合金。1. A cemented carbide having a composition of 5 to 15% by weight of Co, 3 to 50% of TiC or TiC and MC (where M is Ta and / or Nb), and the balance WC and unavoidable impurities. In the alloy structure, the ratio of the number of ungrown WC particle phases (α1 phase) to the total number of WC particle phases is 30.
A tough cemented carbide, characterized in that it is ˜95%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP43A JPH06172912A (en) | 1992-12-09 | 1992-12-09 | Tough cemented carbide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP43A JPH06172912A (en) | 1992-12-09 | 1992-12-09 | Tough cemented carbide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06172912A true JPH06172912A (en) | 1994-06-21 |
Family
ID=18418119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP43A Withdrawn JPH06172912A (en) | 1992-12-09 | 1992-12-09 | Tough cemented carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06172912A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102994853A (en) * | 2012-11-30 | 2013-03-27 | 株洲普瑞克硬质合金有限公司 | Hard alloy raw material, hard alloy for cutting tool as well as preparation method of hard alloy |
-
1992
- 1992-12-09 JP JP43A patent/JPH06172912A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102994853A (en) * | 2012-11-30 | 2013-03-27 | 株洲普瑞克硬质合金有限公司 | Hard alloy raw material, hard alloy for cutting tool as well as preparation method of hard alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0374358B1 (en) | High strength nitrogen-containing cermet and process for preparation thereof | |
JP4662599B2 (en) | Manufacturing method of submicron cemented carbide with increased toughness | |
JP2895107B2 (en) | Sintered hard metal composite and method for producing the same | |
JP5117931B2 (en) | Fine-grained cemented carbide | |
KR100231267B1 (en) | Hard alloy and production thereof | |
JP2009540129A (en) | Sintered carbide with precision structure | |
JPH10512624A (en) | Cement-bonded ceramic tool made from ultrafine solid solution powder, method of manufacturing the same, and material thereof | |
JP2622131B2 (en) | Alloys for cutting tools | |
JPH0860201A (en) | Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom | |
KR920004669B1 (en) | Cermet cutting tool | |
CN113179647B (en) | Cemented carbide and cutting tool comprising same as base material | |
US5421851A (en) | Sintered carbonitride alloy with controlled grain size | |
JP2002520484A (en) | Cemented carbide insert with bonded phase enriched surface zone | |
US3737289A (en) | Carbide alloy | |
US5659872A (en) | Sintered carbonitride alloy and method of producing | |
JP2580168B2 (en) | Nitrogen-containing tungsten carbide based sintered alloy | |
JP4351453B2 (en) | Cemented carbide and drill using the same | |
US3723104A (en) | Refractory metal alloy bonded carbides for cutting tool applications | |
JPH06172912A (en) | Tough cemented carbide | |
US5503653A (en) | Sintered carbonitride alloy with improved wear resistance | |
JPH0346538B2 (en) | ||
KR20040044153A (en) | Ti(C,N)-(Ti,Nb,W)(C,N)-Co ALLOY FOR MILLING CUTTING TOOL APPLICATIONS | |
JPS6059195B2 (en) | Manufacturing method of hard sintered material with excellent wear resistance and toughness | |
JP2502322B2 (en) | High toughness cermet | |
JP2514088B2 (en) | High hardness and high toughness sintered alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000307 |