JPH06172217A - Immune effect enhancer for vaccine - Google Patents

Immune effect enhancer for vaccine

Info

Publication number
JPH06172217A
JPH06172217A JP3116158A JP11615891A JPH06172217A JP H06172217 A JPH06172217 A JP H06172217A JP 3116158 A JP3116158 A JP 3116158A JP 11615891 A JP11615891 A JP 11615891A JP H06172217 A JPH06172217 A JP H06172217A
Authority
JP
Japan
Prior art keywords
vaccine
spg
polysaccharide
glucan
immune effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3116158A
Other languages
Japanese (ja)
Other versions
JP3522772B2 (en
Inventor
Morio Honma
守男 本間
Hiroshi Hotta
博 堀田
Katsutsugu Hagiwara
克嗣 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taito Co Ltd
Original Assignee
Taito Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taito Co Ltd filed Critical Taito Co Ltd
Priority to JP11615891A priority Critical patent/JP3522772B2/en
Publication of JPH06172217A publication Critical patent/JPH06172217A/en
Application granted granted Critical
Publication of JP3522772B2 publication Critical patent/JP3522772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an immune effect enhancer for vaccine which has very low toxicity and can be applied as a food or feed. CONSTITUTION:The immune effect enhancer for viruses and bacteria comprises an effective amount of a glucan having beta-1,3-glycoside linkages as a major chain such as schizophyllan, lentinan or scleroglucan. The dose of the glucan is orally 1 to 1,000mg/kg, preferably 10 to 200mg/kg, and 0.1 to 100mg/kg, preferably 1 to 50mg/kg in injection. When it is applied as a food or feed, it is in no need of exact purification, may be a crude product or the dried culture mixture as such for polysaccharide production.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、「β−1,3−グリコ
シド結合を主鎖とするグルカン」(以下、便宜上「当該
多糖」と略称する)を有効成分として含む、免疫効果増
強ワクチンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vaccine for enhancing immune effect, which contains "a glucan having a β-1,3-glycoside bond as a main chain" (hereinafter abbreviated as "the polysaccharide" for convenience) as an active ingredient. It is a thing.

【0002】[0002]

【従来の技術】人類は種々のウイルスや細菌による感染
症をワクチンや抗生物質の開発により克服してきた。す
なわち、細菌感染症に対しては特効薬的な抗生物質の発
明が、既に細菌性疾患の脅威を大きく軽減している。し
かしながらウイルス感染症に対しては有効な抗生物質や
化学療法剤は比較的少なく、ポリオや種痘に代表される
ようなワクチン接種による予防法が主に行われている。
2. Description of the Related Art Humans have overcome infections caused by various viruses and bacteria by developing vaccines and antibiotics. That is, the invention of a specific medicine antibiotic against bacterial infection has already greatly reduced the threat of bacterial diseases. However, there are relatively few effective antibiotics and chemotherapeutic agents against viral infections, and vaccination prophylaxis represented by polio and smallpox is mainly used.

【0003】ところでワクチンには、病原ウイルスを不
活化した「不活化ワクチン」と、弱毒化した「生ワクチ
ン」とがある。また、現在、人間用としては、ポリオ、
麻疹、風疹、オタフクカゼ、インフルエンザ、日本脳
炎、水痘、黄疸及びB型肝炎等のワクチンが実用化され
ている。これらのうち「不活化ワクチン」に属するもの
は、インフルエンザ、日本脳炎及びB型肝炎ワクチン
で、それ以外は「生ワクチン」に属する。
By the way, vaccines include "inactivated vaccines" in which pathogenic viruses are inactivated and "live vaccines" which are attenuated. Currently, for humans, polio,
Vaccines for measles, rubella, otafukukase, influenza, Japanese encephalitis, chickenpox, jaundice, hepatitis B, etc. have been put to practical use. Of these, those belonging to the "inactivated vaccine" are influenza, Japanese encephalitis and hepatitis B vaccines, and the others belong to the "live vaccine".

【0004】ところで一般に生ワクチンは、不活化ワク
チンに比し、免疫の獲得が自然感染に近く、かつ免疫効
果も優れているが、毒力の回復する危険性や品質の不安
定性に難点があると言われている。一方、生ワクチンよ
り毒性の少ない不活化ワクチンも全く毒性がないわけで
はなく、より安全性が高く、かつ有効なコンポーネント
ワクチンの開発が、遺伝子工学的手法により活発に行わ
れている。しかしながら、それについても、実用面でい
くつかの問題点が指摘されている。
[0004] By the way, in general, a live vaccine is closer to natural infection than an inactivated vaccine in the acquisition of immunity and has an excellent immune effect, but has a problem in that there is a risk of recovery of virulence and instability of quality. Is said. On the other hand, inactivated vaccines, which are less toxic than live vaccines, are not completely toxic, and the development of more safe and effective component vaccines is being actively conducted by genetic engineering techniques. However, some problems have been pointed out in terms of practical use.

【0005】また前記のような多くのワクチンが実用化
されているが、感染予防効果の面で十分とは言い難く、
ワクチンの免疫効果を増強させる為の方法が種々検討さ
れている。例えばアジュバントの利用もワクチンの効果
増強のための一つの手段であり、古くから知られている
フロイントの合成アジュバントも試みられているが、副
作用が強いという欠点を持っている。すなわち、安全性
の面で未だ問題が残されているのである。
Although many vaccines as described above have been put to practical use, it is difficult to say that they are sufficient in terms of the infection prevention effect.
Various methods for enhancing the immune effect of vaccines have been studied. For example, the use of an adjuvant is one means for enhancing the effect of a vaccine, and although Freund's synthetic adjuvant which has been known for a long time has been tried, it has a drawback that side effects are strong. That is, there is still a problem in terms of safety.

【0006】[0006]

【発明が解決しようとしている課題】既に述べたように
生ワクチンでは、弱毒株が生体内で変異を起こし強毒化
するおそれがあるということ、又、不活化ワクチンで
は、不活化操作中に抗原性に歪みが起こり思わぬ副作用
の原因になる等の、ワクチンに本質的な危険性が潜在し
ていた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, in live vaccines, attenuated strains may cause mutations in vivo and become highly virulent, and in inactivated vaccines, antigenicity may occur during inactivation procedures. There is an inherent danger to the vaccine, such as distortion of the skin and unexpected side effects.

【0007】これとは別に、ワクチンの投与が低年齢層
を対象として集団的に実施されていることもあり、宿主
側の感受性のバラツキに帰因した副作用を、いかに防ぐ
かといった点で、より一層安全でかつ有効な、ワクチン
の出現が望まれていた。また、種々のウイルスの中で、
インフルエンザウイルスのように気道表面で感染増殖す
るウイルスに対しては、血中抗体が高くとも気道内の局
所分泌抗体(IgA 抗体)が充分に存在しないとウイルス
感染の予防が困難な場合もあった。すなわち現在、イン
フルエンザの予防には不活性化ワクチンを皮下接種する
方法がとられているが、この方法は、血中抗体を高める
には有効であってもIgA 抗体を高めることにはなってい
ない。このためインフルエンザウイルスに限らず気道表
面あるいは消化管粘膜上で感染増殖するウイルスに対し
ては、血中抗体だけでなくIgA 抗体をいかに高めるかが
感染防御効果の上で重要な課題であった。
[0007] Separately from this, the administration of the vaccine may be carried out collectively for the younger age group, and it is more preferable to prevent the side effect caused by the variation in the sensitivity on the host side. The emergence of a safer and more effective vaccine was desired. Also, among various viruses,
For viruses that infect and propagate on the respiratory tract surface, such as influenza virus, it may be difficult to prevent viral infection if there are not enough local secretory antibodies (IgA antibodies) in the respiratory tract, even if the blood antibodies are high. . That is, at present, a method of subcutaneous inoculation with an inactivated vaccine is used for the prevention of influenza, but this method is not effective for increasing IgA antibody even though it is effective for increasing blood antibody. . Therefore, how to increase IgA antibody as well as blood antibody was an important issue for protection against not only influenza virus but also virus that infects and propagates on respiratory tract surface or digestive tract mucosa.

【0008】[0008]

【課題を解決するための手段】本発明者等は、前述の如
き課題を解決すべく鋭意研究した結果、特定の多糖、即
ち特定のグルカン(当該多糖)を、ワクチンと併用する
ことにより本発明の目的が達成されることを見出し、本
発明を完成するに至った。本発明者等は、ワクチンの免
疫効果を増強させることにより投与量を減少させ、ひい
ては副作用発生の頻度を減らすことが可能であろうとい
う発想の下に、まずワクチンの免疫効果の増強方法につ
いて検討を加えた。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the present invention can be carried out by using a specific polysaccharide, that is, a specific glucan (the polysaccharide) in combination with a vaccine. The inventors have found that the above object can be achieved, and have completed the present invention. The inventors of the present invention first examined a method for enhancing the immune effect of a vaccine under the idea that it would be possible to reduce the dose by increasing the immune effect of the vaccine and thus reduce the frequency of side effect occurrence. Was added.

【0009】本発明者等は、当該多糖が注射による体内
投与により、宿主に対する優れた免疫賦活活性を有して
いること、また当該多糖の一つであるシゾフィランが、
インフルエンザウイルスにに対し免疫賦活作用に基づく
抗ウイルス作用を示すこと(近畿大学医学雑誌第6巻3
号381-391 頁1981年)等の事実に鑑み、当該多糖は血中
抗体、細胞性免疫の亢進に基づくワクチンのウイルス感
染防御効果の増強に有効であろうと考え、ワクチンと当
該多糖とを組み合せて用いることを検討した。
The present inventors have found that the polysaccharide has excellent immunostimulatory activity against the host when it is administered by injection into the body, and that one of the polysaccharides, sizofiran, is
To exhibit an antiviral action against influenza virus based on immunostimulatory action (Kinki University Medical Journal, Vol. 6, 3
No. 381-391, p. 1981), etc., the polysaccharide is considered to be effective for enhancing the virus infection protective effect of a vaccine based on the enhancement of blood antibodies and cell-mediated immunity, and the vaccine is combined with the polysaccharide. I considered using it.

【0010】更にマイタケの子実体に含まれる当該多糖
が、経口投与により免疫賦活作用を示すこと(Internat
ional Journal of Immunopharmacology, Vol 12, No.6,
675-684、1990) ならびに当該多糖の一種であるレンチ
ナンが経口投与により血液中のリンパ球サブセット(Su
bset) を変動させること(消化器と免疫、No. 20, 78〜
82頁、1988)等から、当該多糖を経口投与した時のワク
チンとの併用効果について鋭意研究を行った。
Furthermore, the polysaccharide contained in the fruiting body of Maitake mushrooms shows an immunostimulatory action by oral administration (Internat.
ional Journal of Immunopharmacology, Vol 12, No.6,
675-684, 1990) and lentinan, one of the polysaccharides, was orally administered to lymphocyte subsets (Su
bset) (digestive and immunity, No. 20, 78 ~
Pp. 82, 1988), etc., and conducted intensive studies on the combined effect with the vaccine when the polysaccharide was orally administered.

【0011】その結果、それらの単独投与に比べ、ワク
チンと当該多糖とを併合投与すると、血中及びIgA 抗体
産生は共に増強され、また細胞性免疫の指標の一つであ
るマクロファージの活性も高められることが認められた
のである。更にまた、ワクチン使用量を大幅に減らして
も有効な感染防御効果の得られることが確認され、前述
のすべての課題を解決する事ができたのである。
As a result, the combined administration of the vaccine and the polysaccharide enhances both blood and IgA antibody production, and also enhances the activity of macrophages, which is one of the indicators of cell-mediated immunity, as compared with the single administration thereof. It was admitted that it was done. Furthermore, it was confirmed that an effective infection protective effect could be obtained even if the amount of vaccine used was drastically reduced, and all the above-mentioned problems could be solved.

【0012】本発明でいう当該多糖とは、通常はβ−
1,3−グリコシド結合を主鎖とし、β−1,6−グリ
コシド結合を側鎖に有する分岐β−1,3−グルカンを
いう。たゞしβ−1,6結合のない直鎖β−1,3−グ
ルカンであっもよい。この種の分岐及び直鎖β−1,3
−グルカンは広く真菌類全般に分布している。特に普通
キノコと呼ばれる担子菌類の子実体に多く含まれてい
る。また担子菌類の培養液中からも高収量で得られる。
The polysaccharide referred to in the present invention is usually β-
A branched β-1,3-glucan having a 1,3-glycoside bond as a main chain and a β-1,6-glycoside bond as a side chain. However, it may be a straight-chain β-1,3-glucan having no β-1,6 bond. This type of branched and straight chain β-1,3
-Glucans are widely distributed throughout fungi. Especially, it is abundant in fruiting bodies of Basidiomycetes, which are usually called mushrooms. It can also be obtained in high yield from the culture liquid of basidiomycetes.

【0013】前述したシゾフィランあるいはレンチナン
等は、キノコ由来の多糖としてよく知られている。ま
た、スクレロチウム属の生産するスクレログルカン、ア
ルカリゲネス属の産生するカードラン等もよく知られて
いる。さらに、これらβ−1,3−グルカンのあるもの
は、化学的に修飾すると免疫賦活活性が上昇する。従っ
て本発明に於てはβ−1,3−グルカンを化学的に修飾
した誘導体も、当該多糖に含まれるものとする。加うる
に、真菌類がその細胞壁構成多糖として、β−1,3−
グルカンを含むこともよく知られており、(日本醸造協
会雑誌、第82巻、第9号、598 〜685 頁、1987) 、真菌
類に属する酵母の細胞壁β−1,3−グルカンがマウス
の免疫能を増強することも報告されている(Trends in
pharmacological Sciences 4, 344-347, 1983)。それ
故、これら真菌類の細胞壁破砕物も当然、本発明の当該
多糖に包含されるものとする。
The aforementioned schizophyllan, lentinan, etc. are well known as polysaccharides derived from mushrooms. Also, scleroglucan produced by the genus Sclerotium and curdlan produced by the genus Alcaligenes are well known. Furthermore, some of these β-1,3-glucans have increased immunostimulatory activity when chemically modified. Therefore, in the present invention, a derivative obtained by chemically modifying β-1,3-glucan is also included in the polysaccharide. In addition, fungi have β-1,3-as their cell wall constituent polysaccharides.
It is also well known to contain glucan (Journal of the Brewing Society of Japan, Vol. 82, No. 9, p. 598-685, 1987), and the cell wall β-1,3-glucan of yeast belonging to fungi is It has also been reported to enhance immunocompetence (Trends in
pharmacological Sciences 4, 344-347, 1983). Therefore, cell wall crushed products of these fungi are naturally included in the polysaccharide of the present invention.

【0014】本発明者等は、このようにシゾフィランの
産生菌でキノコの一種であるスエヒロタケの菌体破砕物
に、ワクチン増強効果を認めることができ、また真菌類
の菌体自体にもウイルス感染防御効果が存在するという
ことを確認したのである。なお中性多糖の腸内吸収は難
しいというのが通説となっており(食品加工技術Vol. 2
5, No.4, P.271, 1988)(化学と生物 Vol. 25, No.4,
P.273, 1987 )、実際当該多糖を経口投与した場合、体
内リンパ球サブセットの変動、或は多少の腫瘍増殖抑制
効果等の免疫能の賦活を示唆する傾向は見られるもの
の、臨床的に癌治療ができるというような治療効果につ
いては、今のところ報告されていない。
The inventors of the present invention can confirm the vaccine-enhancing effect on the crushed cells of Suehirotake mushroom, which is a kind of mushroom that produces Schizophyllan, and the fungal cells themselves are infected with the virus. I confirmed that there is a protective effect. It is generally accepted that intestinal absorption of neutral polysaccharides is difficult (Food Processing Technology Vol. 2
5, No.4, P.271, 1988) (Chemistry and Biology Vol. 25, No.4,
(P.273, 1987), oral administration of the polysaccharide actually shows a tendency to suggest activation of immunocompetence such as fluctuation of lymphocyte subset in the body, or some tumor growth inhibitory effect, but clinically No therapeutic effect has been reported so far that it can be treated.

【0015】通常、当該多糖の免疫賦活作用を有効に働
かせる為には注射による体内投与が望ましいと考えられ
る。その場合には呼吸気道や消化管粘膜上で分泌される
IgA抗体の産生亢進はみられず、そのためIgA 抗体が感
染防御に重要な働きを演じるインフルエンザワクチンの
免疫能増強にはやや難点がある。一方当該多糖を経口投
与した場合には、当該多糖が呼吸気道及び消化管粘膜と
適度に接触し、それらの粘膜を刺激することによってIg
A 抗体の分泌を促し、血中抗体、細胞性免疫及びIgA 抗
体の3つの機構によって生体をウイルス感染から防御す
るようになることが認められた。例えばインフルエンザ
ワクチンに対しても有効な免疫増強効果を示すことが予
想され、事実、本発明者等は当該多糖の経口投与によ
り、インフルエンザウイルスと近縁な関係になるセンダ
イウイルスのワクチン投与に伴うIgA 抗体の有意な産生
増強と感染防御効果の増強を確認するに至ったものであ
る。
Usually, in order to effectively exert the immunostimulatory action of the polysaccharide, it is considered desirable to administer it by injection into the body. In that case, it is secreted on respiratory tract and digestive tract mucosa
No increase in IgA antibody production was observed, so there is some difficulty in enhancing the immunocompetence of influenza vaccines in which IgA antibodies play an important role in defense against infection. On the other hand, when the polysaccharide is administered orally, the polysaccharide makes appropriate contact with the respiratory tract and gastrointestinal mucosa and stimulates the mucosa to induce Ig
It was confirmed that it stimulates the secretion of A antibody and protects the living body from viral infection by three mechanisms: blood antibody, cell-mediated immunity and IgA antibody. For example, it is expected to show an effective immunopotentiating effect against influenza vaccines, and in fact, the present inventors orally administer the IgA that accompanies the vaccine administration of Sendai virus, which is closely related to influenza virus, by oral administration of the polysaccharide. It was confirmed that a significant increase in antibody production and an increase in infection protective effect were confirmed.

【0016】理論に拘泥する意図はないが、本発明に於
て、当該多糖によるワクチン免疫効果の増強作用は、当
該多糖により宿主防御機構が非特異的に活性化される為
と考えられる。ちなみに、当該多糖はどのような種類の
ワクチンでもその免疫効果を亢進させ得、それ故、ウイ
ルスワクチンの種類を問わず、細菌ワクチンにも巾広く
適用可能であることが判明した。更にまた、原虫疾患、
例えばマラリア等にも有効性が期待できる。
Although not intending to be bound by theory, it is considered that the polysaccharide enhances the vaccine immunity effect of the present invention because the host defense mechanism is nonspecifically activated by the polysaccharide. By the way, it has been found that the polysaccharide can enhance the immune effect of any type of vaccine, and therefore can be widely applied to bacterial vaccines regardless of the type of viral vaccine. Furthermore, protozoal diseases,
For example, it can be expected to be effective against malaria.

【0017】当該多糖の体内への投与方法は注射、経口
のいずれであってもよい。ワクチンの種類、宿主の状態
等に合わせ適宜選択すればよい。しかしながらIgA 抗体
産生の賦与、投与の際の安全性、容易さ等の観点から注
射による投与より経口投与の方が望ましい。また、当該
多糖とワクチンとをあらかじめ混合して経口投与しても
よい。
The polysaccharide may be administered to the body by injection or oral administration. It may be appropriately selected depending on the type of vaccine, the condition of the host and the like. However, oral administration is preferable to administration by injection from the viewpoints of giving IgA antibody production, safety and ease of administration. Alternatively, the polysaccharide and vaccine may be premixed and orally administered.

【0018】更に、経口投与では当該多糖を高度に精製
する必要もなく、例えば当該多糖産生菌の菌体あるい
は、それらの混合物をそのまま利用できる等の利点を有
し、それにより製造コストの軽減も可能となったのであ
る。本発明に於て当該多糖の投与量は、経口投与の場合
1mg/kg〜1000mg/kg、また注射投与の場合は0.1
mg/kg〜100mg/kgで有効であるが、望ましくは経口
投与の場合は10mg/kg〜200mg/kg、注射投与の場
合は1mg/kg〜50mg/kgである。
Furthermore, the oral administration does not require a high degree of purification of the polysaccharide, and has the advantage that, for example, the bacterial cells of the polysaccharide-producing bacterium or a mixture thereof can be used as it is, thereby reducing the production cost. It has become possible. In the present invention, the dose of the polysaccharide is 1 mg / kg to 1000 mg / kg for oral administration, and 0.1 for injection.
Effective in mg / kg to 100 mg / kg, preferably 10 mg / kg to 200 mg / kg for oral administration and 1 mg / kg to 50 mg / kg for injection administration.

【0019】[0019]

【本発明の効果】本発明の当該多糖は体内の消化酵素に
よる分解を受けにくく、非常に低毒性であって、注射に
よる投与でもほとんど副作用を示さない。従って経口投
与では毒性は皆無であるという大きな特徴を有する。加
えて本発明の当該多糖は天然物であり、低毒性であるの
で、食品あるいは動物の飼料として服用しても、そのワ
クチン増強効果は十分に期待できる。なお、当該多糖を
食品や飼料として利用する場合には、あまり精製する必
要もなく、粗製品或は多糖製造の培養液乾燥物のままで
あっても十分に所定の効果を示す。
EFFECTS OF THE INVENTION The polysaccharide of the present invention is not easily decomposed by digestive enzymes in the body, has extremely low toxicity, and exhibits almost no side effects even when administered by injection. Therefore, it has a great feature that it is not toxic by oral administration. In addition, since the polysaccharide of the present invention is a natural product and has low toxicity, its vaccine-enhancing effect can be expected sufficiently even when it is taken as food or animal feed. When the polysaccharide is used as a food or a feed, it does not need to be purified so much and a crude product or a dried product of a culture solution for producing a polysaccharide shows a sufficient predetermined effect.

【0020】[0020]

【実施例】次に、本発明の詳細を実施例をもって説明す
る。 実施例1 シゾフィラン(以下SPGという)Schizophyllum comm
une Fries の菌体破砕物(以下菌体という)及びSPG
を30%含有する菌体(以下SPG含有菌体という)
を、リン酸緩衝生理食塩水(PBS)に0.75%又は0.
075%になるように溶解又は懸濁させた後、それらを
ワクチン投与の1、2、3、4、5日前及び1、2日後
マウス(ICR、3週令、雄)に経口又は腹腔内投与し
た。試料の投与量は経口の場合0.75%の溶解又は懸濁
液0.2ml(約100mg/kg)、腹腔内の場合0.075%
の溶解又は懸濁液0.2ml(約10mg/kg)とした。ここ
ではワクチンとしてセンダイウイルスの弱毒株であるT
R−5株を用い、これをエーテル麻酔下のマウスに50
又は500CIU(Cell Infectious Unit :ウイルス感
染価) を経鼻投与した。即ち、TR−5株の保存液(1
6 CIU/ml)をPBSで100倍及び1000倍に
希釈し、50CIUの場合は1000倍希釈液50μl
を、500CIUの場合は100倍希釈液50μlをそ
れぞれ経鼻投与した。ワクチン投与後、経時的(接種当
日、5日後、7日後、14日後、21日後)に血清を採
取し、赤血球凝集(hemagglutination : HA)反応を阻止
する赤血球凝集抑制 (hemagglutination inhibition :
HI) 反応により血清中の抗ウイルス抗体価を測定した。
The details of the present invention will be described below with reference to examples. Example 1 Schizophyllum comm (hereinafter referred to as SPG)
une Fries crushed cells (hereinafter referred to as cells) and SPG
Bacterial cells containing 30% (hereinafter referred to as SPG-containing bacterial cells)
To 0.75% or 0.7% in phosphate buffered saline (PBS).
After being dissolved or suspended to 075%, they are orally or intraperitoneally administered to mice (ICR, 3 weeks old, male) 1, 2, 3, 4, 5 days before and 1 and 2 days after vaccination. did. The dose of the sample is 0.75% for oral dissolution or suspension 0.2 ml (about 100 mg / kg), for intraperitoneal 0.075%
0.2 ml (about 10 mg / kg) of the solution or suspension was prepared. Here, T, which is an attenuated strain of Sendai virus, is used as a vaccine.
R-5 strain was used in mice under ether anesthesia.
Alternatively, 500 CIU (Cell Infectious Unit: viral infectivity) was intranasally administered. That is, a stock solution of TR-5 strain (1
0 6 CIU / ml) diluted 100 times and 1000 times with PBS, and in the case of 50 CIU, 50 μl of 1000 times diluted solution.
In the case of 500 CIU, 50 μl of 100-fold diluted solution was intranasally administered. After vaccination, serum is collected over time (5 days, 7 days, 14 days, and 21 days after inoculation) to prevent hemagglutination (HA) reaction, and inhibit hemagglutination inhibition (hemagglutination inhibition: HA).
The antiviral antibody titer in serum was measured by HI) reaction.

【0021】HA反応とはウイルス粒子又は、HA抗原
が赤血球に吸着、赤血球同士を結びつけ凝集させる反応
のことである。HA価の測定に当たっては、ウイルス液
の2倍階段希釈列を作り、それぞれの希釈液に一定量の
赤血球を加えて一定時間後に凝集像を調べ、凝集陽性を
呈する試験管の最高希釈倍数の逆数を以てHA価(HA
U)とする。このHA反応は、ウイルス液にあらかじめ
抗ウイルス抗体を加えることによって阻止される。これ
がHI反応である。
The HA reaction is a reaction in which virus particles or HA antigens are adsorbed to red blood cells, and red blood cells are bound to each other and aggregated. In measuring the HA value, make a 2-fold serial dilution series of the virus solution, add a certain amount of red blood cells to each dilution solution and examine the agglutination image after a certain time, the reciprocal of the highest dilution factor of the test tube showing agglutination positive. HA value (HA
U). This HA reaction is blocked by adding anti-virus antibody to the virus solution in advance. This is the HI reaction.

【0022】HI抗体価(HIU)は、4HAUのウイ
ルス抗原によるHA反応を完全に阻止する血清の最高希
釈倍数の逆数をもって示す。 (試験方法)2倍階段希釈した血清25μlに、16H
AUに調整したウイルス液25μlを加え1時間室温に
静置した後、0.5%ニワトリ赤血球浮遊液50μlを加
え4℃1時間静置後、HI価を判定した。結果を表1に
示した。
The HI antibody titer (HIU) is shown as the reciprocal of the highest dilution of serum that completely blocks the HA reaction by 4 HAU of viral antigen. (Test method) 16H was added to 25 μl of 2-fold serially diluted serum
After adding 25 μl of the virus solution adjusted to AU and allowing it to stand at room temperature for 1 hour, 50 μl of 0.5% chicken red blood cell suspension was added and allowed to stand at 4 ° C. for 1 hour, and then the HI titer was determined. The results are shown in Table 1.

【0023】 表1.ワクチン投与後の血中抗体価の推移に及ぼすSPGの影響 ─────────────────────────────────── HIU(腹腔内投与) HIU(経口投与) 試 料 0 5 7 14 21 0 5 7 14 21 (感染後、日) (感染後、日) ─────────────────────────────────── ワクチン 50 CIU <16 <16 <16 <16 <16 N D ワクチン 500 CIU <16 <16 <16 16 16 <16 <16 <16 16 16 ワクチン 50CIU+SPG <16 <16 16 32 32 N D ワクチン 500CIU+SPG <16 <16 16 64 128 <16 <16 16 32 64 ワクチン500CIU + N D <16 <16 16 64 128 SPG含有菌体 ワクチン500CIU+ 菌体 N D <16 <16 16 32 64 ─────────────────────────────────── ND:測定しなかった。Table 1. Effect of SPG on blood antibody titers after vaccination ──────────────────────────────────── HIU (intraperitoneal administration) HIU (oral administration) Sample 0 5 7 14 21 0 5 7 14 21 (post infection day) (post infection day) ──────────────── ──────────────────── Vaccine 50 CIU <16 <16 <16 <16 <16 N D Vaccine 500 CIU <16 <16 <16 16 16 <16 <16 <16 16 16 vaccine 50CIU + SPG <16 <16 16 32 32 N D vaccine 500CIU + SPG <16 <16 16 64 128 <16 <16 16 32 64 vaccine 500CIU + N D <16 <16 16 64 128 SPG-containing bacteria Body Vaccine 500 CIU + bacterial body N D <16 <16 16 32 64 ─────────────────────────────────── ND : Not measured.

【0024】ワクチン単独の場合に比べ、ワクチンとS
PG、SPG含有菌体あるいは菌体を併用することによ
り、血中抗体価は有意に上昇した。 実施例2 SPGをPBSに溶解させ、0.0075%、0.0375
%、0.075%、0.375%、0.75%、1.5%及び3.
75%の濃度になるように調製した。これらのSPG溶
液を実施例1と同様にワクチン投与の1、2、3、4、
5日前及び1日、2日後、マウスに経口投与又は腹腔内
投与し、血中抗体価の測定を行なった。
Vaccine and S compared to the case of vaccine alone
The antibody titer in blood was significantly increased by the combined use of PG and SPG-containing cells or cells. Example 2 SPG was dissolved in PBS and 0.0075%, 0.0375
%, 0.075%, 0.375%, 0.75%, 1.5% and 3.
The concentration was adjusted to 75%. These SPG solutions were used in the same manner as in Example 1 for vaccination with 1, 2, 3, 4,
Five days before and one day and two days later, the mice were orally or intraperitoneally administered to measure the antibody titer in blood.

【0025】試料の投与量は、経口投与の場合は0.07
5%、0.375%、0.75%、1.5%及び3.75%濃度
の溶解液を0.2ml(それぞれ10mg/kg、50mg/kg、
100mg/kg、200mg/kg、及び500mg/kg)、腹
腔内投与の場合は0.0075%、0.0375%、0.07
5%、0.375%、及び0.75%濃度の溶解液を0.2ml
(それぞれ1mg/kg、5mg/kg、10mg/kg、50mg/
kg、及び100mg/kg)とした。又、ワクチン接種は5
00CIUとした。表2に結果を示した。
The dose of the sample is 0.07 in the case of oral administration.
0.2 ml (10 mg / kg, 50 mg / kg, respectively) of 5%, 0.375%, 0.75%, 1.5% and 3.75% strength lysates.
100 mg / kg, 200 mg / kg, and 500 mg / kg), 0.0075%, 0.0375%, 0.07 for intraperitoneal administration
0.2 ml of 5%, 0.375%, and 0.75% strength lysate
(1 mg / kg, 5 mg / kg, 10 mg / kg, 50 mg /
kg, and 100 mg / kg). Also, vaccination is 5
It was set to 00 CIU. The results are shown in Table 2.

【0026】 表2.ワクチン投与後の血中抗体価に及ぼすSPG投与量の影響 ─────────────────────────────────── HIU(腹腔内投与) HIU(経口投与) SPG投与量 0 5 7 14 21 0 5 7 14 21 (mg/kg) (感染後、日) (感染後、日) ─────────────────────────────────── 0(コントロール) <16 <16 <16 16 16 <16 <16 <16 <16 <16 1 <16 <16 <16 16 16 N D 5 <16 <16 16 32 32 N D 10 <16 <16 64 64 128 <16 <16 16 16 16 50 <16 <16 32 64 64 <16 <16 16 32 32 100 <16 <16 16 16 32 <16 <16 32 64 128 200 N D <16 <16 32 64 64 500 N D <16 <16 16 64 64 ─────────────────────────────────── ND:測定しなかった。Table 2. Effect of SPG dose on blood antibody titer after vaccination ──────────────────────────────────── HIU (intraperitoneal administration) HIU (oral administration) SPG dose 0 5 7 14 21 0 5 7 14 21 (mg / kg) (day after infection) (day after infection) ────────── ────────────────────────── 0 (control) <16 <16 <16 16 16 <16 <16 <16 <16 <16 1 < 16 <16 <16 16 16 N D 5 <16 <16 16 32 32 N D 10 <16 <16 64 64 128 <16 <16 16 16 16 50 <16 <16 32 64 64 <16 <16 16 32 32 100 <16 <16 16 16 32 <16 <16 32 64 128 200 200 ND <16 <16 32 64 64 500 ND <16 <16 16 64 64 ──────────────── ─────────────────── ND: Not measured.

【0027】SPGをワクチンと併用することによりワ
クチン単独の場合よりも血中抗体価の上昇が認められ
た。SPGを腹腔内投与した場合にはSPG投与量が1
0mg/Kg、SPGを経口投与した場合にはSPG投与量
が100mg/Kgで、それぞれ最大の血中抗体価が得られ
た。 実施例3 実施例1と同様の方法でSPG、菌体及びSPG含有菌
体並びにワクチンの接種(500CIU)を行った。ワ
クチン接種後14日目にマウス腹腔からマクロファージ
を採取し、マクロファージの個数を顕微鏡で計数した。
また、マクロファージの活性を以下の通りに行った。線
維肉腫SMT−5(標的細胞)と採取したマクロファー
ジ(エフェクター細胞)を1:7の割合で混合し、CO2
培養器にて24時間培養した。培養終了8時間前に 3
−チミジンを添加し、残存する標的細胞中に取り込まれ
3H−チミンジン量を液体シンチレーションカウンタ
ーにて測定した。
When SPG was used in combination with the vaccine, an increase in the antibody titer in blood was observed as compared with the case where the vaccine was used alone. When SPG is administered intraperitoneally, the SPG dose is 1
When 0 mg / Kg and SPG were orally administered, the maximum blood antibody titer was obtained at the SPG dose of 100 mg / Kg. Example 3 Inoculation of SPG, bacterial cells, SPG-containing bacterial cells and a vaccine (500 CIU) was carried out in the same manner as in Example 1. On the 14th day after vaccination, macrophages were collected from the abdominal cavity of the mice, and the number of macrophages was counted with a microscope.
Moreover, the activity of macrophages was performed as follows. Fibrosarcoma SMT-5 (target cells) and collected macrophages (effector cells) were mixed at a ratio of 1: 7, and CO 2
The cells were cultured in an incubator for 24 hours. 3 H at 8 hours before the end of culture
-Thymidine was added, and the amount of 3 H-thymidine incorporated into the remaining target cells was measured by a liquid scintillation counter.

【0028】マクロファージの活性は以下の式で求め
た。 なお、対照群の 3H−チミジン量とは、マクロファージ
を加えない場合の標的細胞中に取り込まれた 3H−チミ
ジン量をさす。
The activity of macrophages was calculated by the following formula. The amount of 3 H-thymidine in the control group refers to the amount of 3 H-thymidine incorporated into target cells when macrophages are not added.

【0029】表3に示す結果を得た。 表3.マクロファージ活性化に対するワクチンとSPG及び菌体の影響 ─────────────────────────────────── 試 料 投与経路 マクロファージ マクロファージ /body (×106) 活性(%) ─────────────────────────────────── ワクチン 500 CIU 腹腔内投与 4.52 10.5 ワクチン 500 CIU+SPG 腹腔内投与 9.33 21.7 ワクチン 500 CIU+SPG 経口投与 6.81 19.8 ワクチン 500 CIU+SPG含有菌体 経口投与 7.81 22.2 ワクチン 500 CIU+ 菌体 経口投与 6.37 20.3 ─────────────────────────────────── ワクチン単独に比べ、ワクチンとSPGあるいは菌体を
併用することによりマクロファージの産生増強及び活性
化が認められた。 実施例4 実施例1と同様の方法でSPG、菌体及びSPG含有菌
体の投与、並びにワクチン接種を行った。ワクチン接種
14日後にマウスを殺し、気管及び気管支をPBS(リ
ン酸緩衝生理食塩水 Phosphate Bufferd Saline)1mlで
2回洗浄し、PBS中に回収されたIgA を Enzyme Link
ed Immunosorbent Assay(ELISA法)により測定し
た。結果を表4にまとめて示した。 ELISA法:プレートにセンダイウイルスを固定し、
これに被検液を反応させた。次に、パーオキシダーゼ標
識抗マウスIgA 免疫グロブリンを反応させた後、フェニ
レンジアミン2HCl を加え発色させた。OD492 を測
定、標準IgA より得た検量線より、被検液中のIgA 量を
求めた。
The results shown in Table 3 were obtained. Table 3. Effect of vaccine, SPG and bacterial cells on macrophage activation ──────────────────────────────────── Pathway Macrophage Macrophage / body (× 10 6 ) activity (%) ─────────────────────────────────── Vaccine 500 CIU intraperitoneal administration 4.52 10.5 vaccine 500 CIU + SPG intraperitoneal administration 9.33 21.7 vaccine 500 CIU + SPG oral administration 6.81 19.8 vaccine 500 CIU + SPG containing cells oral administration 7. 81 22.2 Vaccine 500 CIU + Oral administration 6.37 20.3 ─────────────────────────────────── --Compared to the vaccine alone, the combined use of the vaccine and SPG or bacterial cells was found to enhance and activate macrophage production. Example 4 Administration of SPG, bacterial cells and SPG-containing bacterial cells, and vaccination were carried out in the same manner as in Example 1. 14 days after vaccination, the mice were killed, and the trachea and bronchus were washed twice with 1 ml of PBS (Phosphate Buffered Saline), and IgA recovered in PBS was Enzyme Linked.
It was measured by ed Immunosorbent Assay (ELISA method). The results are summarized in Table 4. ELISA method: Immobilize Sendai virus on the plate,
The test liquid was reacted with this. Next, after reacting with peroxidase-labeled anti-mouse IgA immunoglobulin, phenylenediamine 2HCl was added to develop color. The OD 492 was measured, and the amount of IgA in the test solution was determined from the calibration curve obtained from the standard IgA.

【0030】 表4.センダイウイルス生ワクチンによる分泌型IgA 誘導 に及ぼすSPGの影響 ───────────────────────────── 投与経路 IgA (U/μg) ───────────────────────────── 対照群(未処理) 15±2 ワクチン 500 CIU 腹腔内投与 20±3 ワクチン 500 CIU+SPG 腹腔内投与 75±7 ワクチン 500 CIU+SPG 経口投与 50±6 ワクチン 500 CIU+SPG含有菌体 経口投与 70±9 ワクチン 500 CIU+ 菌体 経口投与 55±7 ───────────────────────────── ワクチン単独の場合に比べ、ワクチンとSPG、SPG
含有菌体あるいは菌体を併用することにより分泌型IgA
の誘導が増強された。 実施例5 実施例1と同様の方法でSPG、菌体及びSPG含有菌
体の投与、並びにワクチンの接種を行った。弱毒ワクチ
ン接種14日目に、センダイウイルスの強毒株(1.7×
107 CIU/ml)をPBSで15倍希釈し、その希釈
液70μl(約8×104 CIU:15LD50)をエー
テル麻酔下のマウスに経鼻感染させ、強毒株感染20日
後のマウス生存率を調べた。結果を表5に示した。LD50の測定 被検液を段階希釈し、その各希釈液を一群の動物に使
用、生死を調べて50%に死亡が認められる希釈度の点
を1LD50とした。
Table 4. Effect of SPG on secretory IgA induction by Sendai virus live vaccine ───────────────────────────── Route of administration IgA (U / μg ) ───────────────────────────── Control group (untreated) 15 ± 2 vaccine 500 CIU ip 20 ± 3 vaccine 500 CIU + SPG intraperitoneal administration 75 ± 7 vaccine 500 CIU + SPG oral administration 50 ± 6 vaccine 500 CIU + SPG-containing bacterial cells oral administration 70 ± 9 vaccine 500 CIU + bacterial cells oral administration 55 ± 7 ────────── ───────────────────── Vaccine, SPG and SPG compared to the case of vaccine alone
Secreted IgA by containing cells or by using cells in combination
Induction was enhanced. Example 5 In the same manner as in Example 1, administration of SPG, bacterial cells and SPG-containing bacterial cells, and vaccination were performed. On the 14th day of attenuated vaccination, a virulent strain of Sendai virus (1.7 ×
(10 7 CIU / ml) was diluted 15 times with PBS, and 70 μl of the diluted solution (about 8 × 10 4 CIU: 15 LD 50 ) was intranasally infected to ether anesthetized mice, and the mice survived 20 days after infection with the virulent strain. I checked the rate. The results are shown in Table 5. Measurement of LD 50 The test liquid was serially diluted, and each diluted liquid was used for one group of animals. The point of the dilution at which death was observed in 50% of the animals was determined as 1 LD 50 .

【0031】 表5.ワクチンの効果に及ぼすSPGの影響 ─────────────────────────────────── 生存率(生存マウス数/被検マウス数) 試 料 投与経路 ワクチン摂取量(CIU) 0 50 500 ─────────────────────────────────── 対照群(PBS 投与) 腹腔内投与 0/10 0/10 3/10 〃 経口投与 0/10 0/10 2/10 SPG 腹腔内投与 0/10 8/10 9/10 SPG 経口投与 0/10 3/9 8/9 SPG含有菌体 経口投与 1/10 8/9 9/9 菌 体 経口投与 1/10 5/9 7/9 ─────────────────────────────────── SPG、SPG含有菌体あるいは菌体とワクチンを併用
することにより、ワクチン単独に比べ生存率の向上が確
認された。
Table 5. Effect of SPG on the effect of vaccine ─────────────────────────────────── Survival rate (number of surviving mice / Number of mice to be tested) Test substance Route of administration Vaccine intake (CIU) 0 50 500 ───────────────────────────────── ─── Control group (PBS administration) Intraperitoneal administration 0/10 0/10 3/10 〃 Oral administration 0/10 0/10 2/10 SPG Intraperitoneal administration 0/10 8/10 9/10 SPG Oral administration 0 / 10 3/9 8/9 SPG-containing bacterial cells Oral administration 1/10 8/9 9/9 bacterial cells Oral administration 1/10 5/9 7/9 ─────────────── ───────────────────── It was confirmed that the survival rate was improved by using SPG, SPG-containing cells or a combination of cells with a vaccine. .

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 β−1,3−グリコシド結合を主鎖とす
るグルカンの有効量からなるウイルス及び細菌用ワクチ
ンの免疫効果増強剤。
1. An agent for enhancing the immune effect of a vaccine for viruses and bacteria, which comprises an effective amount of a glucan having a β-1,3-glycoside bond as a main chain.
【請求項2】 グルカンがシゾフィランである請求項1
記載のワクチンの免疫効果増強剤。
2. The glucan is schizophyllan.
An agent for enhancing the immune effect of the described vaccine.
【請求項3】 グルカンがレンチナンである請求項1記
載のワクチンの免疫効果増強剤。
3. The vaccine according to claim 1, wherein the glucan is lentinan.
【請求項4】 グルカンがスクレログルカンである請求
項1記載のワクチンの免疫効果増強剤。
4. The vaccine according to claim 1, wherein the glucan is scleroglucan.
【請求項5】 グルカンがカードランである請求項1記
載のワクチンの免疫効果増強剤。
5. The agent for enhancing the immune effect of a vaccine according to claim 1, wherein the glucan is curdlan.
【請求項6】 有効量は1mg/kg〜1000mg/kg(経
口投与)である請求項1記載のワクチンの免疫効果増強
剤。
6. The vaccine according to claim 1, wherein the effective amount is 1 mg / kg to 1000 mg / kg (oral administration).
【請求項7】 有効量は0.1mg/kg〜1000mg/kg
(注射投与)である請求項1記載のワクチンの免疫効果
増強剤。
7. The effective amount is 0.1 mg / kg to 1000 mg / kg.
(Injection administration) The agent for enhancing the immune effect of the vaccine according to claim 1.
JP11615891A 1991-05-21 1991-05-21 Vaccine immunopotentiator Expired - Fee Related JP3522772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11615891A JP3522772B2 (en) 1991-05-21 1991-05-21 Vaccine immunopotentiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11615891A JP3522772B2 (en) 1991-05-21 1991-05-21 Vaccine immunopotentiator

Publications (2)

Publication Number Publication Date
JPH06172217A true JPH06172217A (en) 1994-06-21
JP3522772B2 JP3522772B2 (en) 2004-04-26

Family

ID=14680214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11615891A Expired - Fee Related JP3522772B2 (en) 1991-05-21 1991-05-21 Vaccine immunopotentiator

Country Status (1)

Country Link
JP (1) JP3522772B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020094269A (en) * 2001-06-08 2002-12-18 주식회사 더멋진 바이오텍 Feed containing beta-glucan to stimulate the growth of fish
EP1280517A1 (en) * 2000-05-09 2003-02-05 MCP Hahnemann University Beta-glucans encapsulated in liposomes
JP2003523401A (en) * 2000-02-23 2003-08-05 バイオテク ファーマコン エイエスエイ A novel non-antigenic mucosal adjuvant formulation that modulates the effects of substances, including vaccine antigens, by contacting the mucosal body surface
WO2003020944A3 (en) * 2001-09-03 2004-06-03 Medimush Aps Production of fungal extracellular immune stimulating compounds
WO2006007848A3 (en) * 2004-07-16 2006-02-23 Medimush As Immune modulating compounds from fungi
JP2008273846A (en) * 2007-04-25 2008-11-13 Yukito Akiyama ADJUVANT AGAINST VIRUS- OR PATHOGENIC BACTERIUM-DERIVED INACTIVATED ANTIGEN AND SECRETORY IgA ANTIBODY INDUCER
US7514085B2 (en) 2004-07-16 2009-04-07 Medimush A/S Immune modulating compounds from fungi
WO2009068996A3 (en) * 2007-11-26 2009-12-23 Novartis Ag Conjugated beta-1,3-linked glucans
US9072776B2 (en) 2005-06-15 2015-07-07 Glycanova As Anti-cancer combination treatment and kit-of-parts
WO2021256470A1 (en) * 2020-06-16 2021-12-23 Sophy Inc. Beta-glucan for immuno-enhancement and/or immuno-balancing, and for adjuvant use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136528A (en) * 1981-02-09 1982-08-23 Hayashibara Biochem Lab Inc Preparation of viral vaccine
JPH01193227A (en) * 1988-01-29 1989-08-03 Res Dev Corp Of Japan Adjuvant for cancer immunotherapy
WO1990005536A1 (en) * 1988-11-18 1990-05-31 Reinhard Teichmann Products and process for increasing the growth rate and/or utilization of fodder or foodstuffs and/or resistance in animals and humans
JPH02256620A (en) * 1989-02-20 1990-10-17 Taito Kk Composition and method for enhancing effect of fish vaccine
WO1990015596A1 (en) * 1989-06-15 1990-12-27 Alpha Beta Technology Glucan drug delivery system and adjuvant
JPH0393792A (en) * 1989-09-04 1991-04-18 Merck Patent Gmbh Tetrasaccharides, their use and intermediate and method of their preparation
JPH04253703A (en) * 1990-07-06 1992-09-09 Phillips Petroleum Co Method for increasing resistance of aqueous animal against disease

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136528A (en) * 1981-02-09 1982-08-23 Hayashibara Biochem Lab Inc Preparation of viral vaccine
JPH01193227A (en) * 1988-01-29 1989-08-03 Res Dev Corp Of Japan Adjuvant for cancer immunotherapy
WO1990005536A1 (en) * 1988-11-18 1990-05-31 Reinhard Teichmann Products and process for increasing the growth rate and/or utilization of fodder or foodstuffs and/or resistance in animals and humans
JPH02256620A (en) * 1989-02-20 1990-10-17 Taito Kk Composition and method for enhancing effect of fish vaccine
WO1990015596A1 (en) * 1989-06-15 1990-12-27 Alpha Beta Technology Glucan drug delivery system and adjuvant
JPH0393792A (en) * 1989-09-04 1991-04-18 Merck Patent Gmbh Tetrasaccharides, their use and intermediate and method of their preparation
JPH04253703A (en) * 1990-07-06 1992-09-09 Phillips Petroleum Co Method for increasing resistance of aqueous animal against disease

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523401A (en) * 2000-02-23 2003-08-05 バイオテク ファーマコン エイエスエイ A novel non-antigenic mucosal adjuvant formulation that modulates the effects of substances, including vaccine antigens, by contacting the mucosal body surface
EP1280517A1 (en) * 2000-05-09 2003-02-05 MCP Hahnemann University Beta-glucans encapsulated in liposomes
EP1280517A4 (en) * 2000-05-09 2006-12-13 Univ Mcp Hahnemann Beta-glucans encapsulated in liposomes
KR20020094269A (en) * 2001-06-08 2002-12-18 주식회사 더멋진 바이오텍 Feed containing beta-glucan to stimulate the growth of fish
US8758768B2 (en) 2001-09-03 2014-06-24 Glycanova As Process for production of fungal extracellular immune stimulating compounds
WO2003020944A3 (en) * 2001-09-03 2004-06-03 Medimush Aps Production of fungal extracellular immune stimulating compounds
US10471135B2 (en) 2001-09-03 2019-11-12 Glycanova As Production of fungal extracellular immune stimulating compounds
US9249438B2 (en) 2001-09-03 2016-02-02 Glycanova As Production of fungal extracellular immune stimulating compounds
WO2006007848A3 (en) * 2004-07-16 2006-02-23 Medimush As Immune modulating compounds from fungi
US7514085B2 (en) 2004-07-16 2009-04-07 Medimush A/S Immune modulating compounds from fungi
US7682615B2 (en) 2004-07-16 2010-03-23 Beka Holding As Immune modulating compounds from fungi
US9072776B2 (en) 2005-06-15 2015-07-07 Glycanova As Anti-cancer combination treatment and kit-of-parts
JP2008273846A (en) * 2007-04-25 2008-11-13 Yukito Akiyama ADJUVANT AGAINST VIRUS- OR PATHOGENIC BACTERIUM-DERIVED INACTIVATED ANTIGEN AND SECRETORY IgA ANTIBODY INDUCER
JP2011504535A (en) * 2007-11-26 2011-02-10 ノバルティス アーゲー Conjugated β-1,3-linked glucan
WO2009068996A3 (en) * 2007-11-26 2009-12-23 Novartis Ag Conjugated beta-1,3-linked glucans
US9439955B2 (en) 2007-11-26 2016-09-13 Glaxosmithkline Biologicals Sa Conjugated β-1,3-linked glucans
US9439954B2 (en) 2007-11-26 2016-09-13 Glaxosmithkline Biologicals Sa Conjugated beta-1,3-linked glucans
WO2021256470A1 (en) * 2020-06-16 2021-12-23 Sophy Inc. Beta-glucan for immuno-enhancement and/or immuno-balancing, and for adjuvant use

Also Published As

Publication number Publication date
JP3522772B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
Käufer et al. Significance of bursa of Fabricius as target organ in infectious bursal disease of chickens
JP2911554B2 (en) Antiviral agent
Sun et al. The antiviral property of Sargassum fusiforme polysaccharide for avian leukosis virus subgroup J in vitro and in vivo
JP3522772B2 (en) Vaccine immunopotentiator
Suzuki et al. Antiviral and interferon-inducing activities of a new peptidomannan, KS-2, extracted from culture mycelia of Lentinus edodes
US4705780A (en) Medicaments containing pichia or extracts thereof
CN106488929A (en) Novel C ATH2 derivant
CN111110703A (en) Bifidobacterium animalis and application of compound bacterium preparation prepared from the same in preparation of medicines for treating or preventing avian influenza virus infection
KR101654023B1 (en) Live vaccine composition, inactivated vaccine composition and oral vaccine comprising the same from currently isolated attenuated porcine epidemic diarrhea virus
US20030035812A1 (en) Immune enhancement compositions and use thereof
ES2243985T3 (en) COMPOSITION AND METHOD TO TREAT FUNGICAL DISEASES IN ANIMALS.
US4315914A (en) Pharmaceutical compositions useful as cellular immunopotentiator and antitumor agent and process for production thereof
Hotta et al. Augmentation of protective immune responses against Sendai virus infection by fungal polysaccharide schizophyllan
US4242270A (en) Process for separating lipids from endotoxins
JPH062676B2 (en) Preventive agent for fish diseases consisting of water-soluble glucan
US6444210B1 (en) Bacterial and synthetic polysaccharide immunomodulators that enhance general immunity
JP5520389B2 (en) Route of administration for animal protection composition against Rhodococcus equi
EP0037441B1 (en) Pharmaceutical compositions useful as cellular immunopotentiator and anti-tumor agent, process for production thereof and microorganism used therein
JPH01311093A (en) Substituted n-glycosylamides
KR20010098698A (en) Combined inactivated vaccine for iridovirus infectious diseases, streptococcus infectious diseases and combined diseases thereof in fishes
WO2001064245A1 (en) Immune enhancement compositions and use thereof
KR101588297B1 (en) Multivalent vaccine composition for preventing or treating infection by actinobacillus pleuropneumoniae, pasteurella multocida and porcine circovirus
KR100753674B1 (en) The preparing method of live vaccine using diluent added gel or gel adsorbed with immunostimulants
JPS625132B2 (en)
RU2111012C1 (en) Vaccine preparation for typhoid fever prophylaxis

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees