JPS625132B2 - - Google Patents

Info

Publication number
JPS625132B2
JPS625132B2 JP10700878A JP10700878A JPS625132B2 JP S625132 B2 JPS625132 B2 JP S625132B2 JP 10700878 A JP10700878 A JP 10700878A JP 10700878 A JP10700878 A JP 10700878A JP S625132 B2 JPS625132 B2 JP S625132B2
Authority
JP
Japan
Prior art keywords
strain
virus
cells
vaccinia virus
attenuated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10700878A
Other languages
Japanese (ja)
Other versions
JPS5535004A (en
Inventor
Seiji Arakawa
Tomio Seki
Shuichi Matsuoka
Hatsunori Harada
Michinari Ninomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10700878A priority Critical patent/JPS5535004A/en
Publication of JPS5535004A publication Critical patent/JPS5535004A/en
Publication of JPS625132B2 publication Critical patent/JPS625132B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はワクチニア・ウイルス弱毒株を有効成
分とする細胞性免疫賦活剤に関し、またその製法
に関する。本発明の細胞性免疫賦活剤は抗腫瘍剤
としても有用である。 微生物起原の抗原について、顕著な細胞性免疫
反応を起す代表的なものとしては、細菌領域にお
ける結核菌と、ウイルス領域におけるワクチニ
ア・ウイルスとがあげられる。前者については、
BCGワクチンあるいは結核菌細胞壁物質が免疫
学的制ガン作用を有することが報告されて以来、
著しい注目を最近浴びているが、副作用があるた
め必ずしも臨床的応用はひろく行われるまでに至
つていない。他方、ワクチニア・ウイルスの制ガ
ン作用については一時注目されたが、ワクチニ
ア・ウイルスを接種すると、体液性免疫が一般に
成立する。そして、この体液性免疫が成立する
と、制ガン効果が上らないので最近は余り注目さ
れていない。 本発明者らは、ワクチニア・ウイルスの体液性
免疫活性を抑制、低下させたが細胞性免疫活性を
強化された特性をもつワクチニア・ウイルス弱毒
株を得る目的で種々研究をした。その結果、ワク
チニア・ウイルスをマウス腎臓細胞の組織培養で
得た単層細胞層中で継代的に組織培養した後に、
そのウイルスを鶏胎児細胞の組織培養で得た単層
細胞層中に移植してこの中でワクチニア・ウイル
スを継代的に組織培養すると、若しくは後者の鶏
胎児細胞の組織培養による単層細胞層中のみで相
当な回数継代培養すると、このウイルスは弱毒化
して家兎に対して殆んど又は全く発痘力を示さな
くなり、しかもそれの体液性免疫活性が実質的に
抑制され、好ましくは実質的に消失されるが、他
方、細胞性免疫活性が強化されるようになり、こ
うして得られたワクチニア・ウイルス弱毒株が細
胞性免疫賦活剤として、また免疫学的抗癌剤とし
て利用できることを認めた。 それ故、第一の本発明の要旨とするところは、
鶏胎児細胞の組織培養で得た単層細胞層中でワク
チニア・ウイルスを継代培養するか、又はマウス
腎臓細胞の組織培養で得た単層細胞層中でワクチ
ニア・ウイルスを継代培養した後に鶏胎児細胞の
組織培養で得た単層細胞層中に移植、継代培養す
ることによつて得られたワクチニア・ウイルス弱
毒株であつて、家兎に対して殆んど又は全く発痘
力を示さない程度に弱毒化され且つ体液性免疫活
性を実質的に抑制されたが細胞性免疫活性を強化
されたワクチニア・ウイルス弱毒株を有効成分と
することを特徴とする細胞性免疫賦活剤にある。 さらに第2の本発明の要旨とするところは、ワ
クチニア・ウイルスを、鶏胎児細胞の組織培養で
得た単層細胞層中で、家兎に対して殆んど又は全
く発痘力を示さない程度に弱毒化され且つ体液性
免疫活性が実質的に抑制されるまで継代培養する
か、若しくはマウス腎臓細胞の組織培養で得た単
層細胞層中でワクチニア・ウイルスを継代培養し
次いで鶏胎児細胞の組織培養で得た単層細胞層中
に移植し、家兎に対して殆んど又は全く発痘力を
示さない程度に弱毒化され且つ体液性免疫活性を
実質的に抑制されるまで継代培養し、こうして得
られたワクチニア・ウイルス弱毒株を常法で分
離、精製することを特徴とする、前記ワクチニ
ア・ウイルス弱毒株よりなる細胞免疫賦活剤の製
法にある。 本発明でワクチニア・ウイルス弱毒株を得るた
めに継代培養されるワクチニア・ウイルス株の例
としては、国立予防衛生研究所に保管されてある
ワクチニア・ウイルス大連1株(Dairen)、リス
ター株及び池田株、等(M.Majer及びS.A.Plotk
−in著「Strains of Human Viruses」250−253
頁(1972)、S.Kargel社発行、バーゼル、パリ、
ロンドン、ニユーヨーク参照)がある。このワク
チニア・ウイルス株を継代培養するのに培地とし
て用いられるマウス腎臓細胞の単層細胞層、並び
に鶏胎児細胞の単層細胞層の調製は、夫々の動物
細胞の組織培養技術上で公知の手法で無菌条件下
で行われ、またこれら単層細胞層中でのワクチニ
ア・ウイルスの継代的組織培養も、同様に国立予
防衛生研究所予研学友会発行「ウイルス実験学総
論」丸善書店発行(1969)及び(R.C.Parker
「Methods of Tissue Culture」3版(1961)、
Hoeber社、ニユーヨーク並びにJ.Paul「CeII
and Tissue CuIture」4版(1970)、Living−
stone社、ロンドン)に記載される公知のウイル
ス培養法で行い得る。ウイルスの継代培養に用い
る温度は33〜37℃の範囲であるのが好ましい。継
代培養の継代回数は、培養されたウイルス株が家
兎に対して殆んど又は全く発痘力を示さなくなる
まで反復される。また、その発痘力の有無の検定
は腫痘ワクチン調製上公知の手法でで行われる。
マウス腎臓細胞の単層細胞層中での継代培養の回
数は培養条件によつて左右されるけれども、100
回又はそれ以上であるのが好ましく、また鶏胎児
細胞の単層細胞層中での継代培養の回数は培養条
件によつて左右されるけれども5回又はそれ以上
であるのが好ましい。 このように継代培養されることにより体液性免
疫活性が実質的に抑制され、好ましくは実質的に
消失されたが細胞性免疫活性が強化された特性を
獲取したワクチニア・ウイルス弱毒株は、一般の
ウイルス・ワクチン調製技術上公知の手法と同じ
方法で分離、精製されてワクチン製剤と同じ形態
にすることができる。また、このウイルス弱毒株
ワクチンは加熱又は紫外線照射等の公知のウイル
ス不活化手法により不活化してもよい。 本発明の免疫賦活剤の有効成分とされるワクチ
ニア・ウイルス弱毒株の例としては、後記の実施
例1で作られたワクチニア・ウイルスAS株があ
り、これは本発明者により米国のアメリカン・タ
イプ・カルチユア・コレクシヨンに1980年1月22
日以来、ATCCNo.VR−2010として寄託されてあ
る(米国特許第4315914号明細書参照)。 本発明で用いられるワクチニア・ウイルスAS
株は、要約すると、M.Majer及びS.A.Plotkin著
「Strains of Human Viruses」256頁(1972)に
記載されて且つ国立予防衛生研究所で1947年まで
種痘ワクチンの生産に使用されたワクチニア・ウ
イルス大連1株を、マウス腎臓細胞及び鶏胎児細
胞で継代培養させて得られたポツクスウイルス目
のワクチニア科に属するウイルスであつて、その
継代培養及び採取方法は次の通りである。すなわ
ち、先づ大連1株を33℃でマウス腎臓細胞で115
代継代して組織培養し、次いで33℃で鶏胎児細胞
で5代継代培養させた。次に、このウイルスをク
ローニング(cloning)する目的で即ち痘疱形成
による精製の目的で、こうして得たウイルスを含
む鶏胎児細胞と細胞培養とを一緒にホモジネート
し、それを遠心分離(3000p.r.m、15分間)した
上清をPBSで希釈した。こうして得たウイルスを
限界希釈液をフ化12日の鶏胎児漿尿膜に接種し、
培養して生成されたウイルスの痘疱(pock)1
個からウイルスを分離し、再びフ化12日の鶏胎児
漿尿膜に接種、37℃で48時間培養し、こうして得
たウイルス痘疱1個から再びウイルスを分離し、
更にフ化12日の鶏胎児漿尿膜に接種、37℃で48時
間培養して生じたウイルス痘疱から分離されたウ
イルスがAS株である。このAS株は、大連1株の
抗血清について免疫学的に中和特異性を示し且つ
鶏胎児漿尿膜上で痘疱を生ずるが神経親和性がな
い(inneutrotrapic)の性質を示すものである。 更に、本発明で用いられるワクチニア・ウイル
ス弱毒株としては、本発明者がASE株と名づけ
たものがあり、これは、ワクチニア・ウイルス大
連1株を約33℃で鶏胎児細胞のみで60代継代培養
した以外は前記のAS株と同様な手法で大連1株
を弱毒化して得られたものであつてAS株と同様
な免疫応答性と抗腫瘍活性を示すものである。 本発明の免疫賦活剤で有効成分をなす上記のワ
クチニア・ウイルス弱毒株は、人体、家兎に対し
て発痘力がないが、細胞性免疫活性が従来公知の
ワクチニア・ウイルス弱毒株より遥かに強力であ
り、神経親和性がなく、これを投与された動物体
内では、生のワクチニア・ウイルスのみならず、
不活性ウイルスも、悪性腫瘍の発育を抑制でき
る。また、糖尿病患者、担ガン患者の免疫応答が
低下していることは良く知られている処であり、
本発明の免疫賦活剤を投与すると、そのように低
下された免疫応答を回復又は増強させることが期
待される。 本発明の免疫賦活剤は適切な投与方法で使用さ
れ、注射剤を調製する場合は、ウイルスをワクチ
ン製乳化する常法によつて、上記ワクチニア・ウ
イルス弱毒株にPH調整剤、緩衝剤、安定化剤、等
張剤、等を添加し、常法により皮下、筋肉内、静
脈内用注射剤を作ることもできる。ワクチンの注
射液は凍結乾燥することもできる。 経口用固型製剤を調整する場合には、ワクチニ
ア・ウイルス弱毒株に通常の賦形剤、安定化剤、
さらに必要に応じて結合剤、崩壊剤、滑沢剤、着
色剤、矯味剤、矯臭剤などを加えたのち常法によ
り錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤等
を作ることができる。 本発明の免疫賦活剤の有効成分投与量は、治療
目的及び症状により異なるが、マウスの細胞性免
疫活性を向上させるためには、力価2×108PFU
(plaque−forming unit)/mlのもので0.1ml〜
0.001mlであり、1日1回又は2日あるいは3日
に1回投与するのがよい。その最適投与量は当該
技術で知られた手法で予備試験することにより当
業者が容易に決定できる。 次に本発明を実施例及び試験例について説明す
る。 実施例 1 (イ) DDN系マウスの腎臓細胞を無菌的にとり出
し、ペニシリン、ストレプトマイシンを添加さ
れたハンクスのBSS(balanced salt
solution)〔すなわち、ペニシリン100単位/
ml、ストレプトマイシン100μg/mlを加えた
ハンクス(Hanks)氏の均衝塩類溶度〕で洗滌
後、腎皮質部を一辺約3mmの立方形に切り、一
匹分の腎組織をハンクスのBSSで数回洗つて血
液をできるだけ除去し、300ml容の消化コルベ
ンに移し、100mlの均衝塩類溶液(BSS)を加
えてよくゆり動かしてから液をアスピレーター
につけた滅菌ピペツトで吸引して捨て、さらに
予じめ37℃に加温しておいた0.25%トリプシン
添加BSSの100mlを加え室温でマグネチツク・
スターラーでなるベく緩やかな回転で30分間撹
拌する。その後、スターラーから離し、未消化
組織がコルベン底に沈下したところで細胞浮遊
液をくみ出し、4℃の氷水中に置いた瓶中にと
る。別個の消化コルベン中であらかじめ37℃に
暖めておいた新しいトリプシンのBSS溶液の
100mlを細胞浮遊液に加え、スターラーに30分
かける。以後同様の消化操作を数回くり返し、
最後に全部の細胞を滅菌ステンレス金網(最初
は80メツシユのものを用い、第二回以後は120
メツシユのものを用いる)で過し、大きな塊
りを除き、遠心管にとり遠心管容量の約半分ま
でを入れる。ハンクスのBSS液を細胞浮遊液の
半量まで加えて1000r.p.mで3分遠心分離し、
沈査を少量の細胞用培養液に再浮遊してプール
する。 これに用いた細胞用培養液の組成はYLE液
(酵母エキスとラクトアルブミン水解物を含む
Earle氏BSS)80部(容量)とウシ血清20部
(容量)よりなる混合物に、ペニシリン100単
位/ml及びストレプトマイシン100μg/mlを
加えたものである。 得られた細胞浮遊液の細胞数を測定し、新ら
たに前記の細胞培養培養液を追加して1〜3×
105細胞/mlの濃度に希釈してから、試験管に
2mlずつ分注し密詮し、37℃で培養し、マウス
腎臓細胞の単層細胞シートを作らせる。単層細
胞シートが形成したら培養液を更新する。 (ロ) 上記のマウス腎臓細胞の単層細胞シートに精
製無菌ワクチニア・ウイルス大連1株を0.1モ
イ(M.O.I.)の量を接種し、約33℃で4〜6日
間培養し細胞変性効果(CPE)の発現を指標
として培養を停止し、培養物の10分の1量を以
て2代に植えつぐ。このようにして継代培養を
115代に及んで行つた。その後、孵化9日鶏胎
児の皮膚−筋肉部を上記マウス腎臓細胞と同様
に処理して単細胞浮遊液として組織培養しこれ
によつて鶏胎児細胞の単細胞シートを試験管ガ
ラス上につくらせて、これにウイルスを移植す
る。マウス腎臓細胞の場合と同様に約33℃で継
代培養して5代に及んだ培養ウイルスとしてワ
クチニア・ウイルス弱毒株を得た。すなわち5
代目の鶏胎児細胞と培養液とをホモジネート
し、そしてその遠心上清(3000p.r.m.15分)を
ワクチニア・ウイルス弱毒株を含む培養ウイル
ス液として得た。この培養ウイルス液の一部を
取り、これを、5個の孵化12日の鶏胎児漿尿膜
に0.1mlづつ接種してこの孵化鶏卵を37℃でさ
らに48時間培養すると、微小な痘疱を漿尿膜上
にみとめてウイルスとして活性であることを確
認した。また前記培養ウイルス液の他の一部を
取つて孵化12日鶏胎児漿尿膜による培養法によ
つて力価をみると、継代培養5代の培養ウイル
ス液は力価2.3×106PFU(plaq−ue−forming
unit)/mlであつた。また、この培養ウイルス
液の0.1mlを家兎に皮内注射した処、注射局所
に発痘、等の局所反応を認めなかつた。このよ
うに得たワクチニア・ウイルス弱毒株をワクチ
ニア・ウイルスAS株と称することにした。 (ハ) 上記の培養ウイルス液をジクロロジフロロエ
タンを用いてEpstein法(M.A.Epstein、“Brit.
J.Exp.Path.”39巻、436頁(1958)参照)で、
ついで庶糖密度勾配遠心法(D.N.Planterose、
C.Nishimura、N.P.Salzman、“Virology”18
巻、294頁(1962)参照)で精製して力価2×
108PFU/mlのウイルス液(以下、AS株原液又
はAS株10゜液という)を得た。 他方、従来公知の株であるワクチニア・ウイ
ルス15株(“国立予防衛生研究所年報”30巻、
129頁(1976)、同31巻、128頁(1977)参照)
及びMVA株(H.Stickls及びV.Hochst−ein−
Minzel:“Mu¨nch Med.Wschr.“113巻、1149
〜1153頁(1971)についても、同様に孵化12日
鶏胎児漿尿膜に接種し、M15株は37℃、4日
間、MVA株は37℃、2日間放置して漿尿膜浄
に痘疱が密発、生存しているものの漿尿膜をと
り、ホモジネート化した後にPBS(燐酸塩緩衝
食塩水)に分散して乳剤の形のウイルス液に調
製し、上記Epstein法及び庶糖密度勾配法に精
製し、力価測定を行い、何れも2×108PFU/
mlの力価に調整したM15株原液及びMVA株原
液を比較試験として得た。 以下に、AS株の免疫応答について下記の誌験
例で調べた。 試験例 1 前記のAS株原液、並びにこれをPBSで10倍希
釈した10-1液、又は1千万倍希釈した10-7液を、
それぞれ0.2mlづつの量で、ワクチニア・ウイル
スに対する中和抗体のない体重約2Kgの家兎2匹
の剃毛した皮膚内に注射して観察した。原液を注
射した家兎群をのぞき、注射箇所に発赤をみた家
兎がなく、ワクチニア・ウイルス特有の硬結、腫
脹はみとめられなかつた。従つてAS株は家兎に
対して発痘力が殆んどないと認められる。 試験例 2 Cunningham検液法によるIgM抗体産生力の検
出 SPE(specified−pathogen−free)のDDN系
マウス(一群5匹)に10%羊血球を含む燐酸緩衝
液(PBS液)0.2mlづつ尾静脈に注射し、同時に
上記AS株原液、M15株原液の夫々の10-1液、対
照群にはPBS液(ウイルス含有せず)を0.1mlづ
つ腹部に注射後4日目に殺し、脾臓のPFC
(plaque−forming cell)を検討した
(Cunnigham A.J.、Smith、J.B.&Mercer、E.H.
、“J.Exp.Med.”124巻、701頁(1966)参照)。
溶血斑(プラツク)数の平均測定値はAS株接種
群、M15株接種群、対照群についてそれぞれ87.4
±65.5;140.8±33.1、85.0±30.1であり、M15株
接種群と対照群との間には有意の上昇(p<
0.05)がみられたが、AS株接種群との間には有
意の差がみとめられなかつた。これによつてAS
株は脾臓の免疫細胞数を実質的に増加させず、従
つて体液性免疫活性、少くともIgM抗体産生活性
を実質的に示さないことがみとめられた。 試験例 3a 遅延型過敏症反応(Delayed Type Hypersens
−tivity)の増強力 羊赤血球(SRBC)108個/0.05mlを含むPBS液
を0.05mlづつSPFのICR系マウス(一群10匹)の
左後肢足蹠に注射して感作する。これと同時に、
又はこれより一週間後に行う第2回羊赤血球注射
時に、ワクチニア・ウイルスAS株及びM15株の
夫々のウイルス原液(AS株2×108PFU/ml
液)、それを20倍希釈した107PFU/mlウイルス
液、及び200倍希釈した106PFU/mlウイルス液、
並びにAS株原液を60℃、30分間加熱することに
より不活化したウイルス液(不活化AS株2×
108PFU/ml液)を0.1mlづつマウス皮下に注射し
て接種する。対照マウスには、羊赤血球を含まな
いPBS液を同液に注射した。第1回羊赤血球注射
より一週間後に、すべてのマウスの右後肢足蹠の
厚みをノギスで測り、その後に羊赤血球108個/
0.05ml含むPBS液を0.05mlづつ該足蹠に注射し
(すなわち第2回羊赤血球注射)、これより24時間
後に再び足蹠の厚みを測り、その腫脹度を遅延型
過敏症反応(DTH反応)の目安として調べた。
その結果を次の第1表に示す。
The present invention relates to a cell-mediated immunostimulant containing an attenuated strain of vaccinia virus as an active ingredient, and to a method for producing the same. The cellular immunostimulant of the present invention is also useful as an antitumor agent. Typical antigens of microbial origin that cause a significant cellular immune response include Mycobacterium tuberculosis in the bacterial domain and vaccinia virus in the viral domain. Regarding the former,
Since it was reported that BCG vaccine or Mycobacterium tuberculosis cell wall substance has immunological anticancer effect,
Although it has recently attracted considerable attention, it has not necessarily been widely applied clinically due to side effects. On the other hand, the anticancer effect of vaccinia virus attracted attention for a time, but humoral immunity is generally established when vaccinated with vaccinia virus. Once this humoral immunity is established, the anticancer effect does not increase, so it has not received much attention recently. The present inventors conducted various studies with the aim of obtaining an attenuated strain of vaccinia virus that suppresses or reduces the humoral immune activity of vaccinia virus but has enhanced cell-mediated immune activity. As a result, after the vaccinia virus was serially cultured in monolayers obtained from tissue culture of mouse kidney cells,
When the virus is transplanted into a monolayer cell layer obtained by tissue culture of chicken fetal cells, and the vaccinia virus is successively cultured in this monolayer cell layer, or the latter, a monolayer cell layer obtained by tissue culture of chicken fetal cells is used. After a significant number of subcultures, the virus becomes attenuated and exhibits little or no virulence in domestic rabbits, and its humoral immune activity is substantially suppressed, preferably However, on the other hand, cell-mediated immune activity was enhanced, and it was recognized that the thus obtained attenuated vaccinia virus strain could be used as a cell-mediated immune stimulant and as an immunological anticancer agent. . Therefore, the gist of the first invention is as follows:
After subculturing the vaccinia virus in a monolayer cell layer obtained from tissue culture of chicken fetal cells or subculturing the vaccinia virus in a monolayer cell layer obtained from tissue culture of mouse kidney cells. An attenuated strain of vaccinia virus obtained by transplanting and subculturing in a monolayer cell layer obtained from tissue culture of fetal chicken cells, which has little or no virulence in domestic rabbits. A cell-mediated immune stimulant characterized by containing as an active ingredient an attenuated strain of vaccinia virus that has been attenuated to such an extent that it does not exhibit the following effects, has substantially suppressed humoral immune activity, but has enhanced cellular immune activity. be. Furthermore, the second aspect of the present invention is that vaccinia virus exhibits little or no pox-inducing power in domestic rabbits in a monolayer cell layer obtained by tissue culture of fetal chicken cells. Vaccinia viruses can be subcultured until they are attenuated to a certain degree and humoral immune activity is substantially suppressed, or the vaccinia virus can be subcultured in monolayers obtained from tissue culture of mouse kidney cells and then cultured in chickens. Transplanted into a monolayer of cells obtained by tissue culture of fetal cells, it is attenuated to the extent that it exhibits little or no pox-inducing power in domestic rabbits, and humoral immune activity is substantially suppressed. The present invention provides a method for producing a cell immunity stimulant made from the attenuated vaccinia virus strain, which comprises subculturing the vaccinia virus strain until subculture, and isolating and purifying the thus obtained attenuated vaccinia virus strain using a conventional method. Examples of vaccinia virus strains to be subcultured to obtain attenuated vaccinia virus strains in the present invention include vaccinia virus Dairen 1 strain kept at the National Institute of Preventive Health, Lister strain, and Ikeda virus strain. stocks, etc. (M. Majer and SAPlotk
−in “Strains of Human Viruses” 250−253
(1972), S. Kargel, Basel, Paris.
(See London and New York). The preparation of a monolayer of mouse kidney cells and a monolayer of chicken fetal cells used as a culture medium for subculturing this vaccinia virus strain is carried out using techniques known in the art for tissue culture of the respective animal cells. This technique is carried out under sterile conditions, and the successive tissue culture of vaccinia viruses in these monolayer cell layers is also carried out in the same way as in ``Introduction to Experimental Virology,'' published by the National Institute of Preventive Health Research Alumni Association, published by Maruzen Shoten ( 1969) and (RCParker
"Methods of Tissue Culture" 3rd edition (1961),
Hoeber, New York and J.Paul “CeII
and Tissue CuIture” 4th edition (1970), Living−
This can be carried out using the known virus culture method described by Stone, Ltd., London). The temperature used for subculture of the virus is preferably in the range of 33 to 37°C. The number of subcultures is repeated until the cultured virus strain exhibits little or no virulence in domestic rabbits. In addition, the presence or absence of smallpox potency is tested using a known method for preparing smallpox vaccines.
The number of passages of mouse kidney cells in a monolayer cell layer depends on the culture conditions, but
Preferably, the number of subcultures of chicken fetal cells in a monolayer cell layer is five times or more, although the number of subcultures depends on the culture conditions. The attenuated vaccinia virus strain that has acquired the characteristics of substantially suppressing, preferably substantially eliminating, humoral immune activity but having enhanced cell-mediated immune activity by subculturing in this way is generally It can be isolated and purified using the same methods known in the art for virus vaccine preparation to give the same form as the vaccine preparation. Further, this virus attenuated strain vaccine may be inactivated by known virus inactivation methods such as heating or ultraviolet irradiation. An example of the attenuated strain of vaccinia virus which is an active ingredient of the immunostimulant of the present invention is the vaccinia virus AS strain produced in Example 1 described later, which was developed by the present inventor as an American type strain in the United States.・Culture Your Collection January 22, 1980
Since then, it has been deposited as ATCC No. VR-2010 (see US Pat. No. 4,315,914). Vaccinia virus AS used in the present invention
In summary, the strain is Vaccinia virus Dalian 1, which was described in "Strains of Human Viruses" by M. Majer and SAPlotkin, p. 256 (1972) and used in the production of smallpox vaccines at the National Institute of Preventive Health until 1947. This virus belongs to the Vacciniaceae family of the order Poxvirales and was obtained by subculturing the strain in mouse kidney cells and chicken fetal cells.The subculturing and collection methods are as follows. That is, first, Dalian 1 strain was incubated at 33°C with mouse kidney cells at 115 °C.
The cells were subcultured and tissue cultured, and then subcultured for 5 generations using chicken fetal cells at 33°C. Then, for the purpose of cloning this virus, i.e. purification by blister formation, the virus-containing fetal chicken cells thus obtained and the cell culture were homogenized together and centrifuged (3000p.rm , 15 min) and diluted the supernatant with PBS. The limiting dilution of the virus thus obtained was inoculated into the chorioallantoic membrane of a 12-day-old chicken fetus.
Viral pock 1 produced by culturing
The virus was isolated from the chicken fetus on 12 days after incubation, cultured at 37°C for 48 hours, and the virus was isolated from one virus pox thus obtained.
Furthermore, the virus isolated from the virus pox produced by inoculating chicken fetal chorioallantoic membranes on day 12 of hatching and culturing at 37°C for 48 hours is the AS strain. This AS strain exhibits immunologically neutralizing specificity for the antiserum of the Dalian 1 strain, and although it causes small blisters on the chorioallantoic membrane of chicken fetuses, it exhibits inneutrotropic properties. . Furthermore, the attenuated strain of vaccinia virus used in the present invention is one that the inventor named ASE strain, which is a strain of vaccinia virus Dalian 1 strain that has been passaged for 60 generations using only chicken fetal cells at approximately 33°C. It was obtained by attenuating the Dalian 1 strain in the same manner as the AS strain described above, except that it was subcultured, and it exhibits the same immune responsiveness and antitumor activity as the AS strain. The above-mentioned attenuated strain of vaccinia virus, which constitutes the active ingredient in the immunostimulant of the present invention, does not have the ability to cause pox in humans or domestic rabbits, but its cell-mediated immune activity is far greater than that of previously known attenuated strains of vaccinia virus. It is highly potent and non-neurotropic, and in animals administered with it, not only live vaccinia virus but also
Inactive viruses can also inhibit the growth of malignant tumors. Additionally, it is well known that the immune response of diabetic patients and cancer patients is reduced.
Administration of the immunostimulant of the present invention is expected to restore or enhance such a reduced immune response. The immunostimulant of the present invention is used in an appropriate administration method, and when preparing an injection, the attenuated strain of vaccinia virus is added to the above-mentioned attenuated strain of vaccinia virus with a PH adjuster, a buffer, and a stabilizer. Subcutaneous, intramuscular, or intravenous injections can also be prepared by conventional methods by adding a curing agent, isotonic agent, etc. Vaccine injections can also be lyophilized. When preparing oral solid preparations, attenuated strains of vaccinia virus are combined with conventional excipients, stabilizers,
Furthermore, after adding binders, disintegrants, lubricants, coloring agents, flavoring agents, flavoring agents, etc. as necessary, tablets, coated tablets, granules, powders, capsules, etc. can be made by conventional methods. The dose of the active ingredient of the immunostimulant of the present invention varies depending on the therapeutic purpose and symptoms, but in order to improve cellular immune activity in mice, the dose should be 2 x 10 8 PFU.
(plaque-forming unit)/ml from 0.1ml
It is 0.001 ml and is preferably administered once a day or once every two or three days. The optimum dosage can be readily determined by one skilled in the art by preliminary testing using techniques known in the art. Next, the present invention will be explained with reference to Examples and Test Examples. Example 1 (a) Kidney cells from DDN mice were aseptically removed and added to Hank's BSS (balanced salt salt) supplemented with penicillin and streptomycin.
solution) [i.e. 100 units of penicillin/
After washing with Hanks' balanced salt solubility solution containing 100 μg/ml of streptomycin and 100 μg/ml of streptomycin, the renal cortex was cut into cubes of approximately 3 mm on each side, and the renal tissue of one animal was isolated using Hanks' BSS. Wash twice to remove as much blood as possible, transfer to a 300 ml digestive colven, add 100 ml of balanced salt solution (BSS), shake well, aspirate the liquid with a sterile pipette attached to an aspirator and discard. Add 100 ml of 0.25% trypsin-added BSS that had been warmed to 37°C and incubate magnetically at room temperature.
Stir with a stirrer for 30 minutes with gentle rotation. Thereafter, it is removed from the stirrer, and when the undigested tissue has settled to the bottom of the Kolben, the cell suspension is drawn out and placed in a bottle placed in ice water at 4°C. Separately digest fresh trypsin in BSS solution pre-warmed to 37 °C in a colven.
Add 100 ml to the cell suspension and place on a stirrer for 30 minutes. After that, repeat the same digestion operation several times,
Finally, all the cells were sterilized using a stainless steel wire mesh (80 mesh was used at first, and 120 mesh was used after the second test).
Remove large lumps, transfer to a centrifuge tube, and fill up to about half the volume of the centrifuge tube. Add Hank's BSS solution to half of the cell suspension and centrifuge at 1000 rpm for 3 minutes.
The pellets are resuspended in a small volume of cell culture medium and pooled. The composition of the cell culture medium used for this was YLE liquid (contains yeast extract and lactalbumin hydrolyzate).
100 units/ml of penicillin and 100 μg/ml of streptomycin were added to a mixture of 80 parts (by volume) of Earle BSS) and 20 parts (by volume) of bovine serum. The number of cells in the obtained cell suspension was measured, and the above cell culture medium was newly added to give a 1-3×
After diluting to a concentration of 10 5 cells/ml, dispense 2 ml into test tubes, tightly seal, and culture at 37°C to form a monolayer cell sheet of mouse kidney cells. Once a monolayer cell sheet is formed, refresh the culture medium. (b) The above monolayer cell sheet of mouse kidney cells was inoculated with purified sterile vaccinia virus Dalian 1 strain at an amount of 0.1 moi (MOI), and cultured at approximately 33°C for 4 to 6 days to detect cytopathic effect (CPE). The culture is stopped using the expression of the expression as an indicator, and 1/10th of the culture is used for the second generation. In this way, subculture
It lasted for 115 generations. Thereafter, the skin-muscle part of a 9-day-old chicken fetus was treated in the same manner as the mouse kidney cells described above, and a single cell suspension was cultured as a tissue culture, thereby producing a single cell sheet of chicken fetus cells on a glass test tube. Transfer the virus to this. As in the case of mouse kidney cells, an attenuated strain of vaccinia virus was obtained as a cultured virus that was subcultured at approximately 33°C for five generations. i.e. 5
The second generation chicken fetal cells and the culture solution were homogenized, and the centrifuged supernatant (3000 p.rm 15 minutes) was obtained as a culture virus solution containing an attenuated strain of vaccinia virus. A portion of this cultured virus solution was taken, and 0.1 ml of this was inoculated into the chorioallantoic membrane of five 12-day-old chicken fetuses, and the hatched chicken eggs were further cultured at 37°C for 48 hours. It was found on the chorioallantoic membrane and confirmed to be active as a virus. Furthermore, when we took another part of the cultured virus solution and examined its titer using the chorioallantoic membrane culture method of 12-day-old chicken fetuses, we found that the cultured virus solution from the 5th generation of subculture had a titer of 2.3×10 6 PFU. (plaq−ue−forming
unit)/ml. Furthermore, when 0.1 ml of this cultured virus solution was injected intradermally into a rabbit, no local reactions such as pox were observed at the injection site. The attenuated vaccinia virus strain thus obtained was designated as vaccinia virus AS strain. (c) The above cultured virus solution was prepared using dichlorodifluoroethane using the Epstein method (MAEpstein, “Brit.
J. Exp. Path.” vol. 39, p. 436 (1958)).
Next, sucrose density gradient centrifugation (DNPlanterose,
C. Nishimura, NPSalzman, “Virology”18
Vol., p. 294 (1962)) to obtain a titer of 2×.
A virus solution of 10 8 PFU/ml (hereinafter referred to as AS stock stock solution or AS stock 10° solution) was obtained. On the other hand, 15 previously known strains of vaccinia virus (“National Institute of Preventive Health Annual Report” Vol. 30,
(See p. 129 (1976), vol. 31, p. 128 (1977))
and MVA strains (H.Stickls and V.Hochst-ein-
Minzel: “Mu¨nch Med.Wshr.” vol. 113, 1149
- Page 1153 (1971) was similarly inoculated into the chorioallantoic membrane of chicken fetuses on the 12th day of hatching, and the M15 strain was left at 37℃ for 4 days, and the MVA strain was left at 37℃ for 2 days to cause small blisters on the chorioallantoic membrane. The chorioallantoic membranes of those that are secretly infected and alive are taken, homogenized, and then dispersed in PBS (phosphate buffered saline) to prepare a virus solution in the form of an emulsion. Purified and titrated, both at 2×10 8 PFU/
M15 strain stock solution and MVA strain stock solution adjusted to a titer of ml were obtained as a comparative test. Below, the immune response of the AS strain was investigated using the following journal example. Test Example 1 The AS stock solution described above, a 10 -1 solution obtained by diluting this 10 times with PBS, or a 10 -7 solution obtained by diluting it 10 million times,
A volume of 0.2 ml each was injected into the shaved skin of two domestic rabbits weighing approximately 2 kg, which lacked neutralizing antibodies against vaccinia virus, and observed. Except for the group of rabbits injected with the stock solution, no rabbits showed redness at the injection site, and no induration or swelling characteristic of vaccinia virus was observed. Therefore, the AS strain is recognized to have almost no potency against domestic rabbits. Test Example 2 Detection of IgM antibody productivity using the Cunningham test method SPE (specified-pathogen-free) DDN mice (group of 5 mice) were given 0.2 ml of phosphate buffer solution (PBS solution) containing 10% sheep blood cells in the tail vein. At the same time, 0.1 ml of each of the AS strain stock solution, M15 stock stock solution, and 0.1 ml of PBS solution (without virus) were injected into the abdomen for the control group. On the 4th day after killing, the PFC of the spleen was injected into the abdomen.
(plaque-forming cell) (Cunnigham AJ, Smith, JB & Mercer, EH
, “J.Exp.Med.” Vol. 124, p. 701 (1966)).
The average measured number of hemolytic plaques was 87.4 for the AS strain inoculated group, the M15 strain inoculated group, and the control group, respectively.
±65.5; 140.8±33.1, 85.0±30.1, and there was a significant increase (p<
0.05), but no significant difference was observed between the AS strain-inoculated group and the AS strain-inoculated group. This allows AS
It was observed that the strain did not substantially increase the number of immune cells in the spleen and therefore did not substantially exhibit humoral immune activity, at least IgM antibody production activity. Test Example 3a Delayed Type Hypersensitivity Reaction
-tivity) sensitization by injecting 0.05 ml of a PBS solution containing 10 8 sheep red blood cells (SRBC)/0.05 ml into the left hind foot pad of SPF ICR mice (10 mice per group). At the same time,
Or, at the time of the second sheep red blood cell injection one week later, each virus stock solution of vaccinia virus AS strain and M15 strain (AS strain 2 × 10 8 PFU/ml) was administered.
solution), 10 7 PFU/ml virus solution diluted 20 times, and 10 6 PFU/ml virus solution diluted 200 times,
In addition, a virus solution inactivated by heating the AS stock solution at 60℃ for 30 minutes (inactivated AS strain 2
Inoculate mice by subcutaneously injecting 0.1 ml of 10 8 PFU/ml solution. Control mice were injected with PBS solution without sheep red blood cells. One week after the first sheep red blood cell injection, the thickness of the right hind footpad of all mice was measured with a caliper, and then 108 sheep red blood cells/
Inject 0.05 ml of PBS solution containing 0.05 ml into the footpad (i.e., second sheep red blood cell injection), measure the thickness of the footpad again 24 hours later, and measure the degree of swelling as a delayed-type hypersensitivity reaction (DTH reaction). ) as a guideline.
The results are shown in Table 1 below.

【表】 第1表の結果から明らかなように、ウイルスを
第2回羊赤血球注射の一週間前すなわち第1回羊
赤血球注射時に注射した群、すなわち第1回羊赤
血球注射時ウイルス接種群のうちAS株接種群の
みが有意に強い腫脹をみた。これにより、AS株
は細胞性免疫活性が従来公知のウイルスM15株に
比べ著しく強いことを認められた。なお、このよ
うなDTH反応試験が細胞性免疫を賦活する活性
の尺度として用いられることは知られている
(“Jourual of the National Cancer
Institute”、51巻、5、1669〜1675頁(1973)及
び“Journal of Experimental Medicine”、139
巻、528〜524頁(1974)参照。 試験例 3(b) 先に比較例試料として作つたMVA株原液(力
価2×108PFU/ml)20倍希釈した107PFU/mlウ
イルス液、及び200倍希釈した106PFU/mlウイル
ス液を用いて、試験例3aの方法と同じにDTH反
応の増強力を調べた。その結果を第2表に示す。
これに対比して、AS株原液の2倍希釈液、20倍
希釈液、200倍希釈液についても試験した。
[Table] As is clear from the results in Table 1, the virus was injected one week before the second sheep red blood cell injection, that is, at the time of the first sheep red blood cell injection, that is, the group inoculated with the virus at the time of the first sheep red blood cell injection. Among them, only the group inoculated with the AS strain showed significantly strong swelling. As a result, it was confirmed that the cell-mediated immune activity of the AS strain was significantly stronger than that of the previously known virus strain M15. It is known that such a DTH reaction test is used as a measure of activity to activate cell-mediated immunity (“Journal of the National Cancer
51, 5, pp. 1669-1675 (1973) and “Journal of Experimental Medicine”, 139
See Vol. 528-524 (1974). Test Example 3(b) MVA strain stock solution (titer 2×10 8 PFU/ml) previously prepared as a comparative example sample, 20-fold diluted 10 7 PFU/ml virus solution, and 200-fold diluted 10 6 PFU/ml Using the virus solution, the ability to enhance the DTH reaction was investigated in the same manner as in Test Example 3a. The results are shown in Table 2.
In contrast, 2-fold dilutions, 20-fold dilutions, and 200-fold dilutions of the AS stock solution were also tested.

【表】 第2表の結果から明らかなように、ワクチニ
ア・ウイルスAS株はMVA株に比べDTH反応の増
強力が強い。すなわち鶏胎児漿尿膜に対するウイ
ルス力価は同じでも家兎に対する発痘力乃至親和
性の少ないAS株の方がDTH反応の増強力、従つ
て細胞性免疫活性は強い傾向を示した。 次にAS株が抗腫瘍活性を有することを次の試
験例で調べた。 試験例 4 肉腫(Sarcoma)180細胞をSPFのICR系のマ
ウス(5週令、メス)に102細胞/0.1ml量で腹腔
内注射し、24時間後にAS株の浮遊液(106PFU/
0.1ml)の0.1mlを皮下に注射、以後3日目毎に同
量注射した。この処理群では、ウイルスの接種后
21日目で、すべてのマウスが生存し、生存率100
%であるのに、無処理の対照群では生存率は20%
に止まつた。 試験例 5 SPFのICR系マウス(5週令)に、肉腫180の
細胞の107個/mlを含むPBS液を60℃、30分加温
したものを、0.1mlづつ腹腔注射し、1週後に同
じ肉腫180の生細胞の106個/mlを含むPBS液を
0.1mlづつ右肢皮下に接種した。これの直後にAS
株107PFU/ml液の0.1ml、又は60℃、30分間加熱
で不活化したAS株の107PFU/ml液の0.1mlを注
射し、その後に3日目毎に同ウイルス液の0.1ml
を注射して肉腫接種20日後に殺した。腫瘍の重さ
を対照群と比較したところ、対照群では5.47±
1.89gに対し、生AS株ウイルス処理群では2.65
±1.26gを、また不活化AS株ウイルス処理群で
は2.57±1.38gを示し、生又は不活化のAS株は
有意に腫瘍細胞の発育を抑えることがわかつた。 試験例 6 杉村らの方法(“Experimental Stomach
Cancer;Methods in Cancer Research”、7
巻、245〜308頁(1973)AcademicPress社、ニ
ユーヨーク)に準じて発癌剤MNNG(N−メチ
ル−N′−ニトロ−N−ニトロソグアニジン)を
160μg/mlと表面活性剤トウイーン(Tween)
60の3.36mg/mlとを含む水道水を自由摂取の飲料
水として遮光の下にSPFのWistar系ラツト(雄
8匹一群、6週令)に与え、週2回新しく上記の
発癌剤含有飲料水を交換した。AS株107PFU/ml
液又はAS株106PFU/ml液を3日おきに実験開始
とともに1ml/回皮下注射して注射回数62回にお
よんだ。218日後部見して胃をしらべ、MNNGの
みを与えた対照群と比較した。前胃に発生したポ
リープを調べると、AS株107PFU/ml処理群では
8匹中5匹にポリープが全く発生していない。そ
して残りの3匹には、ポリープと疑わしいものが
1個又は5個発生していた程度である。この処理
群の全体平均値では、1匹当りポリープ0.6個の
発生率であつた。それに対し対照群ではポリープ
の発生数が一匹当り実に平均17個と著しい。また
AS株106PFU/ml処理群ではポリープの数は一匹
当り平均9.8個であつた。腺胃の部所に発生した
ポリープの数について見るに、AS株106PFU/ml
処理群では、ポリープ数は一匹当り平均2.2個よ
り少なく、またAS株107PFU/ml処理群では1.5
個より少ないのに対して、対照群では一匹当り平
均3.8個であつた。また、病理組織学的所見もAS
株107PFU/ml処理群では、生じたポリープに
は、WHO分類(K.Oota and L.H.Sobin“Histo
−logical Typing of Gastric and Oesophageal
Tumors、International histological Classif−
ieation of Tumors“No.8、W.H.O.Geneva
(1977)で悪性(malignant)と認めるべきものは
ない。これに対して対照群では、生じたポリープ
中に良性(benign)に属するものがなく、明ら
かにAS株の投与は制癌効果を示している。 試験例 7 SPFのCDF系マウス(8週令、メス)を用い
各群10匹にIMC腹水腫瘍細胞106細胞/0.1mlを0.1
mlづつに皮下注射し、24時間後に紫外線不活化
AS株(107PFU/ml)を0.1mlづつ3日毎に皮下
注射した。腫瘍細胞注射後30日目に殺して腫瘍重
量を測定したところ9.96±6.47gであつた。これ
に対して、無処理の対照群では、腫瘍重量が
13.91±4.80gであり、明らかに(p<0.05)AS
株の投与が腫瘍発達を抑えることを示す結果を得
た。 試験例 8 AS株原液又は大連1株(力価108PFU/ml)を
含むPBS液の0.025ml/マウスを10匹一群のDDN
系マウスの脳内に注射して1日毎に1匹づつ殺し
て、脳標本をCoonsの方法でつくり(Coons、A.
H.、Leduc、E.H.&Kaplan、M.H.、“J、Exp、
Med、”93巻、173頁(1951))、螢光抗体間接法に
てフルオレセイン・イソチオシアネートによる抗
血清ラベル法で検討したところ、大連1株接種群
では、72時間以後常に脳標本中にウイルスを検出
することが出来たが、AS接種群には接種8日ま
で検して全くウイルスを検出できなかつた。これ
によつて、AS株は神経親和性がないことが認め
られた。 実施例 2 孵化9日鶏胎児の皮膚−筋肉部を前記の実施例
1(イ)におけるマウス腎臓細胞と同様に処理して単
細胞浮遊液として組織培養し、これによつて鶏胎
児細胞の単細胞シートを試験管ガラス上につくら
せた。この鶏胎児細胞の単層細胞シートに精製無
菌ワクチニア・ウイルス大連1株を0.1モイ(M.
O.I.)の量で接種し、約33℃で4〜6日間培養し
細胞変性効果(CPE)の発現を指標として培養
を停止し、培養物の10分の1量を以て2代に植え
つぐ。このようにして鶏胎児細胞のみで継代培養
を60代に及んで行い、60代目の培養ウイルスとし
てワクチニア・ウイルス弱毒株を得た。すなわち
60代目の鶏胎児細胞と培養液とをホモジネート
し、そしてその遠心上清(3000p.r.m15分)をワ
クチニア・ウイルス弱毒株を含む培養ウイルス液
として得た。 この培養ウイルス液の一部を取り、これを、5
個の孵化12日の鶏胎児漿尿膜に0.1mlづつ接種し
てこの孵化鶏卵を37℃でさらに48時間培養する
と、実施例1で得たAS株の場合と同様に、微小
な痘疱を漿尿膜上にみとめてウイルスとして活性
であることを確認した。また前記培養ウイルス液
の他の一部を取つて孵化12日鶏胎児漿尿膜による
培養法によつて力価をみると、この培養ウイルス
液は力価1.9×106PFU/mlであつた。また、この
培養ウイルス液の0.2mlを家兎に皮内注射した
処、注射局所に発痘、等の局所反応を認めなかつ
た。このように得たワクチニア・ウイルス弱毒株
をワクチニア・ウイルスASE株と称することに
した。 以下に、ASE株の免疫応答について下記の試
験例で調べた。 試験例 9 前記の実施例2のASE株の1.9×106PFU/mlの
原液、並びにこれをPBSで10倍希釈した10-1液、
又は100万倍希釈した10-6液を、それぞれ0.2mlづ
つの量で、ワクチニア・ウイルスに対する中和抗
体のない体重約1.5Kgの健常な家兎2匹の剃毛し
た皮膚内に注射して観察した。ASE株原液(10
゜液)を注射した家兎群で僅かに発赤をみたが、
他には、注射箇所に発赤をみた家兎がなく、また
ワクチニア・ウイルス特有の硬結、腫脹、隆起、
発痘などの局所反応もみとめられなかつた。従つ
てASE株は家兎に対して発痘力が殆んどないと
認められる。 次にASE株の抗腫瘍活性について次の試験例
で調べた。 試験例 10 実施例2で得たASE株を更に12日孵化鶏卵漿
尿膜に接種、36.5℃で48時間培養を3代継代して
108PFU/mlの力価をもつASE株のウイルス液を
得た。 他方、肉腫ザルコーマ180細胞をSPFのICR系
のマウスの30匹(5週令、雄)に5×105細胞/
マウスの量で腹腔内注射した。マウス肉腫ザルコ
ーマ180株を接種したICRマウス30匹は、10匹づ
つ3群に分け、一群は対照群(無処理)、他はそ
れぞれASE株処理群、AS株処理群とした。ザル
コーマ細胞注射直後に、ASE株処理群にとAS株
処理群、ザルコーマ細胞注射の局所にASE株又
はAS株ウイルスの107PFU/0.1mlを注射した。
接種3週後の腫瘍の径を測定したところ、対照
群、ASE株処理群およびAS株処理群でそれぞれ
に18.4±1.8mm、6.8±6.5mm、および5.1±6.9mmで
あり、腫瘍重量はそれぞれに6.96±1.97g、2.01
±1.83gおよび1.5g±1.5gであつた。明かに
ASE株はAS株と同様の腫瘍抑制効果を有するこ
とが示された。
[Table] As is clear from the results in Table 2, the vaccinia virus AS strain has a stronger ability to enhance the DTH reaction than the MVA strain. In other words, although the virus titer against chicken fetal chorioallantoic membrane was the same, the AS strain, which had less virulence or affinity for domestic rabbits, tended to have a stronger ability to enhance the DTH response and, therefore, a stronger cellular immune activity. Next, we investigated whether the AS strain has antitumor activity in the following test example. Test Example 4 Sarcoma 180 cells were intraperitoneally injected into SPF ICR mice (5 weeks old, female) at 10 2 cells/0.1 ml, and 24 hours later, AS strain suspension (10 6 PFU/
0.1 ml) was injected subcutaneously, and the same amount was injected every third day thereafter. In this treatment group, after virus inoculation
At day 21, all mice survived, survival rate 100
%, but in the untreated control group the survival rate was 20%.
It stopped. Test Example 5 SPF ICR mice (5 weeks old) were intraperitoneally injected with 0.1 ml of a PBS solution containing 107 sarcoma 180 cells/ml heated at 60°C for 30 minutes, and then administered for 1 week. After that, PBS solution containing 106 cells/ml of the same sarcoma 180 cells/ml was added.
0.1ml each was inoculated subcutaneously into the right limb. Immediately after this AS
Inject 0.1 ml of 10 7 PFU/ml of AS strain or 0.1 ml of 10 7 PFU/ml of AS strain inactivated by heating at 60°C for 30 minutes, followed by injection of 0.1 ml of the same virus every 3 days. ml
The animals were killed 20 days after the sarcoma inoculation. When the tumor weight was compared with the control group, it was 5.47±
1.89g compared to 2.65 in the group treated with live AS strain virus.
±1.26g, and 2.57±1.38g in the group treated with the inactivated AS strain virus, indicating that the live or inactivated AS strain significantly suppressed the growth of tumor cells. Test Example 6 Sugimura et al.’s method (“Experimental Stomach
Cancer;Methods in Cancer Research”, 7
Vol. 245-308 (1973) Academic Press, New York), the carcinogen MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) was
160μg/ml and surfactant Tween
SPF Wistar rats (group of 8 males, 6 weeks old) were given tap water containing 3.36 mg/ml of 60 as drinking water ad libitum while shielded from light. Changed the water. AS strain 10 7 PFU/ml
A total of 62 injections were carried out by subcutaneously injecting 1 ml/dose of AS strain or 10 6 PFU/ml of AS strain every 3 days at the start of the experiment. Stomachs were examined 218 days later and compared with a control group given only MNNG. When examining polyps that had developed in the forestomach, five out of eight animals in the AS strain 10 7 PFU/ml treated group had no polyps at all. The remaining three animals had only one or five suspected polyps. The overall average for this treatment group was an incidence of 0.6 polyps per animal. In contrast, in the control group, the number of polyps occurring per animal was remarkable at an average of 17. Also
In the group treated with AS strain 10 6 PFU/ml, the average number of polyps per animal was 9.8. Regarding the number of polyps that occurred in the glandular stomach area, the AS strain was 106 PFU/ml.
In the treatment group, the number of polyps was on average less than 2.2 per animal and 1.5 in the AS strain 10 7 PFU/ml treatment group.
In contrast, in the control group, there were an average of 3.8 pieces per animal. In addition, histopathological findings also indicate that AS
In the strain 107 PFU/ml treatment group, the resulting polyps were classified according to the WHO classification (K. Oota and LHSobin “Histo
−logical typing of gastric and oesophageal
Tumors, International histological classif−
ieation of Tumors“No.8, WHOGeneva
(1977), there is nothing that should be recognized as malignant. In contrast, in the control group, there were no benign polyps, indicating that administration of the AS strain clearly had an anticancer effect. Test Example 7 Using SPF CDF mice (8 weeks old, female), each group of 10 mice received IMC ascites tumor cells ( 106 cells/0.1 ml) at 0.1
Inject subcutaneously in ml portions and inactivate with UV rays after 24 hours.
0.1 ml of AS strain (10 7 PFU/ml) was subcutaneously injected every 3 days. The tumor cells were sacrificed 30 days after injection and the weight of the tumor was measured and was 9.96±6.47 g. In contrast, in the untreated control group, the tumor weight was
13.91±4.80g, clearly (p<0.05) AS
The results showed that administration of the strain suppressed tumor development. Test Example 8 DDN of a group of 10 mice was given 0.025 ml/mouse of AS stock stock solution or PBS solution containing 1 strain of Dalian (titer 10 8 PFU/ml).
Brain specimens were prepared using Coons' method by injecting the mouse into the brain and killing one mouse every day.
H., Leduc, E.H. & Kaplan, M.H., “J.Exp.
Med, vol. 93, p. 173 (1951)). When examined using the indirect fluorescent antibody method and the antiserum labeling method using fluorescein isothiocyanate, it was found that the virus was always present in the brain specimens after 72 hours in the Dalian 1 strain inoculation group. However, no virus could be detected in the AS-inoculated group up to 8 days after vaccination.Thus, it was confirmed that the AS strain had no neurotropism.Example 2. The skin and muscle of a 9-day-old chicken fetus was treated in the same manner as the mouse kidney cells in Example 1 (a) above, and tissue cultured as a single cell suspension, whereby a single cell sheet of chicken fetus cells was tested. 0.1 moi (M.
OI), cultured at about 33°C for 4 to 6 days, and stopping the culture using the expression of cytopathic effect (CPE) as an indicator, and transplanting one-tenth of the culture to the second generation. In this way, subculturing was carried out for 60 generations using only chicken fetal cells, and an attenuated strain of vaccinia virus was obtained as the cultured virus for the 60th generation. i.e.
The 60th generation chicken fetal cells and the culture solution were homogenized, and the centrifuged supernatant (3000 p.r.m for 15 minutes) was obtained as a culture virus solution containing an attenuated strain of vaccinia virus. Take a part of this cultured virus solution and add 5
When 0.1 ml was inoculated into the chorioallantoic membrane of a 12-day-old chicken fetus and the embryonated chicken eggs were cultured at 37°C for an additional 48 hours, small smallpox appeared as in the case of the AS strain obtained in Example 1. It was found on the chorioallantoic membrane and confirmed to be active as a virus. In addition, another part of the cultured virus solution was examined for titer using the chorioallantoic membrane culture method of 12-day-old chicken fetuses, and the titer of this cultured virus solution was 1.9×10 6 PFU/ml. . Furthermore, when 0.2 ml of this cultured virus solution was injected intradermally into a rabbit, no local reactions such as pox were observed at the injection site. The attenuated vaccinia virus strain thus obtained was designated as the vaccinia virus ASE strain. Below, the immune response of the ASE strain was investigated in the following test example. Test Example 9 A stock solution of 1.9×10 6 PFU/ml of the ASE strain of Example 2, and a 10 -1 solution obtained by diluting this 10 times with PBS,
Alternatively, inject 0.2 ml each of the 10-6 solution diluted 1 million times into the shaved skin of two healthy domestic rabbits weighing approximately 1.5 kg without neutralizing antibodies against vaccinia virus. Observed. ASE stock stock solution (10
A slight redness was observed in the group of rabbits injected with ゜liquid), but
There were no other rabbits that showed redness at the injection site, and no induration, swelling, bumps, or swelling characteristic of vaccinia virus.
No local reactions such as pox were observed. Therefore, the ASE strain is recognized to have almost no potency against domestic rabbits. Next, the antitumor activity of the ASE strain was investigated in the following test example. Test Example 10 The ASE strain obtained in Example 2 was further inoculated into the chorioallantoic membrane of chicken eggs hatched for 12 days, cultured at 36.5°C for 48 hours, and then subcultured for 3 generations.
A virus solution of ASE strain with a titer of 10 8 PFU/ml was obtained. On the other hand, sarcoma sarcoma 180 cells were added to 30 SPF ICR mice (5 weeks old, male) at 5×10 5 cells/
The amount of mice was injected intraperitoneally. Thirty ICR mice inoculated with mouse sarcoma sarcoma 180 strain were divided into three groups of 10 mice each, one group was a control group (untreated), and the other groups were treated with ASE strain and AS strain, respectively. Immediately after the sarcoma cell injection, 10 7 PFU/0.1 ml of the ASE strain or AS strain virus was injected into the ASE strain-treated group, the AS strain-treated group, and the local area of the sarcoma cell injection.
When the diameters of the tumors were measured 3 weeks after inoculation, they were 18.4 ± 1.8 mm, 6.8 ± 6.5 mm, and 5.1 ± 6.9 mm in the control group, ASE strain-treated group, and AS strain-treated group, respectively, and the tumor weights were 6.96±1.97g, 2.01
They were ±1.83g and 1.5g ±1.5g. obviously
The ASE strain was shown to have similar tumor suppressive effects as the AS strain.

Claims (1)

【特許請求の範囲】 1 鶏胎児細胞の組織培養で得た単層細胞層中で
ワクチニア・ウイルスを継代培養するか、若しく
はマウス腎臓細胞の組織培養で得た単層細胞層中
でワクチニア・ウイルスを継代培養した後に、鶏
胎児細胞の組織培養で得た単層細胞層中に移植、
継代培養することによつて得られたワクチニア・
ウイルス弱毒株であつて、家兎に対して殆んど又
は全く発痘力を示さない程度に弱毒化され且つ体
液性免疫活性が実質的に抑制されたが細胞性免疫
活性を強化されたワクチニア・ウイルス弱毒株を
有効成分とすることを特徴とする細胞性免疫賦活
剤。 2 ワクチニア・ウイルスを、鶏胎児細胞の組織
培養で得た単層細胞層中で、家兎に対して殆んど
又は全く発痘力を示さない程度に弱毒化され且つ
体液性免疫活性を実質的に抑制されるまで継代培
養するか、若しくはマウス腎臓細胞の組織培養で
得た単層細胞層中でワクチニア・ウイルスを継代
培養し次いで鶏胎児細胞の組織培養で得た単層細
胞層中に移植し、家兎に対しては殆んど又は全く
発痘力を示さない程度に弱毒化され且つ体液性免
疫活性を実質的に抑制されるまで継代培養し、こ
うして得られたワクチニア・ウイルス弱毒株を常
法で分離、精製することを特徴とする、前記ワク
チニア・ウイルス弱毒株よりなる細胞性免疫賦活
剤の製法。
[Scope of Claims] 1. Vaccinia virus is subcultured in a monolayer cell layer obtained by tissue culture of chicken fetal cells, or vaccinia virus is subcultured in a monolayer cell layer obtained by tissue culture of mouse kidney cells. After subculturing the virus, it was transplanted into a monolayer of cells obtained from tissue culture of fetal chicken cells.
Vaccinia obtained by subculturing
A vaccinia virus that is an attenuated strain of the virus and has been attenuated to the extent that it exhibits little or no virulence in domestic rabbits, and has substantially suppressed humoral immune activity but enhanced cell-mediated immune activity.・A cell-mediated immune stimulant characterized by containing an attenuated virus strain as an active ingredient. 2. Vaccinia virus is attenuated to the extent that it exhibits little or no virulence in domestic rabbits in a monolayer cell layer obtained by tissue culture of fetal chicken cells, and it substantially suppresses humoral immune activity. or subculturing vaccinia virus in a monolayer cell layer obtained from tissue culture of mouse kidney cells until inhibition is achieved, or subculture the vaccinia virus in a monolayer cell layer obtained from tissue culture of fetal chicken cells. The vaccinia obtained in this way are transplanted into a rabbit and subcultured until it is attenuated to the extent that it exhibits little or no pox-inducing power and that humoral immune activity is substantially suppressed. - A method for producing a cell-mediated immunostimulant made from the above-mentioned attenuated vaccinia virus strain, which comprises isolating and purifying the attenuated virus strain by a conventional method.
JP10700878A 1978-09-02 1978-09-02 Cell-immunity activator and its preparation Granted JPS5535004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10700878A JPS5535004A (en) 1978-09-02 1978-09-02 Cell-immunity activator and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10700878A JPS5535004A (en) 1978-09-02 1978-09-02 Cell-immunity activator and its preparation

Publications (2)

Publication Number Publication Date
JPS5535004A JPS5535004A (en) 1980-03-11
JPS625132B2 true JPS625132B2 (en) 1987-02-03

Family

ID=14448150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10700878A Granted JPS5535004A (en) 1978-09-02 1978-09-02 Cell-immunity activator and its preparation

Country Status (1)

Country Link
JP (1) JPS5535004A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869104A (en) * 1982-05-29 1983-04-25 Nec Corp Parallel operating system for fm modulator
JPS6038328A (en) * 1983-08-11 1985-02-27 Handai Biseibutsubiyou Kenkyukai Method for promoting antineoplastic immunity induction
BRPI0411526A (en) 2003-06-18 2006-08-01 Genelux Corp vaccinia virus and other modified recombinant microorganisms and uses thereof
WO2008100292A2 (en) 2006-10-16 2008-08-21 Genelux Corporation Modified vaccinia virus strains for use in diagnostic and therapeutic methods

Also Published As

Publication number Publication date
JPS5535004A (en) 1980-03-11

Similar Documents

Publication Publication Date Title
Duff The oral immunization of trout against Bacterium salmonicida
EP0020356B1 (en) Pasteurellosis vaccines
US3985615A (en) Process for preparing live varicella vaccines
US3869547A (en) Calf diarrhea virus vaccine and processes
US4315914A (en) Pharmaceutical compositions useful as cellular immunopotentiator and antitumor agent and process for production thereof
US4191745A (en) Preparation for the treatment of Herpes zoster and other Herpes infections, as well as method for manufacture thereof
PL145565B1 (en) Method of obtaining a vaccine for therapeutically and prophylactically treating infections of respiratory tracts of humans
JPH06505730A (en) Preparation and use of formalin-sterilized colony-forming factor antigen (CFA)-expressing E. coli for inoculation against intestinal infections/diarrhea caused by enterotoxin-producing E. coli in humans.
Mel et al. Studies on vaccination against bacillary dysentery: 1. Immunization of mice against experimental Shigella infection
AU705186B2 (en) Multivalent bovine coronavirus vaccine and method of treating bovine coronavirus infection
CA1039187A (en) Feline leukemia vaccines
EP0030063A2 (en) Infectious-bronchitis vaccines for poultry, combined infectious-bronchitis vaccines, process for preparing such vaccines, process for preventing infectious bronchitis and infectious-bronchitis virus strains
EP0037441B1 (en) Pharmaceutical compositions useful as cellular immunopotentiator and anti-tumor agent, process for production thereof and microorganism used therein
JPS625132B2 (en)
JP3522772B2 (en) Vaccine immunopotentiator
IE45145B1 (en) Immunostimulating agent
KR100825870B1 (en) Combined inactivated vaccine for iridovirus infectious diseases, streptococcus infectious diseases and combined diseases thereof in fishes
Fairbrother et al. Active Immunization against Experimental Influenza: The Use of Heat-killed Elementary Body Suspensions
HU210344A9 (en) Cell free mareks disease virus vaccine
JPS5817169B2 (en) Shinsei Koshigeri Vaccine
US4837018A (en) Vaccines for fowl colibacillosis
Torrey et al. The treatment of Flexner-Jobling rat carcinomas with bacterial proteolytic ferments
HU206050B (en) Process for producing hantaan virus vaccine
KR102656435B1 (en) Novel fowl adenovirus and Fowl adenovirus polyvalent vaccine comprising the same as effective component
Marennikova et al. Experimental study of the role of inactivated vaccine in two-step vaccination against smallpox