JPH06170237A - Catalyst formed body for production of unsaturated carboxylic acid and use thereof - Google Patents

Catalyst formed body for production of unsaturated carboxylic acid and use thereof

Info

Publication number
JPH06170237A
JPH06170237A JP4332056A JP33205692A JPH06170237A JP H06170237 A JPH06170237 A JP H06170237A JP 4332056 A JP4332056 A JP 4332056A JP 33205692 A JP33205692 A JP 33205692A JP H06170237 A JPH06170237 A JP H06170237A
Authority
JP
Japan
Prior art keywords
catalyst
parts
shape
carboxylic acid
unsaturated carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4332056A
Other languages
Japanese (ja)
Other versions
JP3260186B2 (en
Inventor
Toru Kuroda
徹 黒田
Toru Shiotani
徹 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP33205692A priority Critical patent/JP3260186B2/en
Publication of JPH06170237A publication Critical patent/JPH06170237A/en
Application granted granted Critical
Publication of JP3260186B2 publication Critical patent/JP3260186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide a special shape of catalyst advantageously producing unsaturated carboxylic acid from unsaturated aldehyde by vapor catalytic oxidation. CONSTITUTION:A Mo and V based catalyst formed body has a cylindrical shape with a through hole and either one of the outer periphery or the inner periphery of the cross section has an elliptical shape, and the other one has a circular shape, the center of the outer periphery coincides with the center of the inner periphery and the ratio of the minor axis to the major axis of the elliptical shape is 1.2-4.0. Thus the yield of the unsaturated acid can be improved by forming such wa catalyst shape that the pressure drop is minimized, even if the catalyst is destroyed by impact at the packing time of the catalyst, etc., by any chance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不飽和アルデヒドの気
相接触酸化により不飽和カルボン酸を製造する際に使用
する触媒成型体の形状に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the shape of a molded catalyst used for producing an unsaturated carboxylic acid by vapor phase catalytic oxidation of an unsaturated aldehyde.

【0002】[0002]

【従来の技術】従来、不飽和アルデヒドを気相接触酸化
して不飽和カルボン酸を製造する方法及び触媒に関し、
数多くの提案がなされている。その中には触媒の形状に
関し、リング状、車輪状など様々なものが提案されてい
る。例えば特開昭59−115750号公報、特開平2
−169036号公報等の報告がある。一般的に固定床
における上記の気相接触酸化では、触媒形状及び触媒体
の大きさが、触媒堆積物の圧力降下に影響を及ぼし、圧
力降下が増加することにより、目的とする生成物の選択
性に悪影響を及ぼすことは既知である。従って、貫通孔
を有する形状は圧力降下が小さいのでこの点では優れて
いる。
BACKGROUND OF THE INVENTION Conventionally, a method and a catalyst for producing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde,
Many proposals have been made. Various catalyst shapes such as a ring shape and a wheel shape have been proposed therein. For example, JP-A-59-115750 and JP-A-2
There are reports such as Japanese Patent No. 169036. Generally, in the above-mentioned gas phase catalytic oxidation in a fixed bed, the shape of the catalyst and the size of the catalyst body influence the pressure drop of the catalyst deposit, and the pressure drop increases, so that the desired product is selected. It is known to affect sexuality. Therefore, the shape having the through hole has a small pressure drop and is excellent in this respect.

【0003】しかし、貫通孔を有する形状は、貫通孔を
有しない形状に比べて触媒体の機械的強度が小さく、取
扱い中又は使用中に壊れて触媒粒子の小破片、微粉及び
粉塵が増加する結果、逆に圧力降下が増大し、選択性に
悪影響を及ぼす。特に同心円のリング状構造は、取扱い
中又は使用中に壊れる際、図3のように四分割される場
合が多い。この四分割された触媒の小破片が圧力降下を
増大させ、選択性に悪影響を及ぼすため、工業触媒とし
ての使用に際しては更に改良が望まれているのが現状で
ある。
However, the shape having through-holes has a lower mechanical strength of the catalyst body than the shape having no through-holes, and breaks during handling or use to increase small fragments of catalyst particles, fine powder and dust. As a result, on the contrary, the pressure drop increases, which adversely affects the selectivity. In particular, the concentric ring-shaped structure is often divided into four as shown in FIG. 3 when it is broken during handling or use. Since the small pieces of the catalyst divided into four parts increase the pressure drop and adversely affect the selectivity, it is the current situation that further improvement is desired in the use as an industrial catalyst.

【0004】[0004]

【発明が解決しようとする課題】本発明は、貫通孔を有
する形状の触媒を使用する際、取扱い中又は使用中に壊
れて触媒粒子の小破片が発生しても、圧力降下を最小限
に抑える、不飽和アルデヒドから不飽和カルボン酸を有
利に製造する新規な触媒成型体の提供を目的としてい
る。
DISCLOSURE OF THE INVENTION The present invention uses a catalyst having a shape having a through hole to minimize the pressure drop even if a small particle of the catalyst particle is generated due to breakage during handling or during use. It is an object of the present invention to provide a novel catalyst molded body that advantageously produces unsaturated carboxylic acid from unsaturated aldehyde.

【0005】[0005]

【課題を解決するための手段】同心円のリング状構造
は、断面に対して垂直方向については触媒体の機械的強
度は優れているが、側面に対して垂直方向については機
械的強度は小さい。また、この側面に対して垂直方向に
壊れる際、図3のように四分割される場合が多い。これ
は、同心円のリング状構造からくるものであり、四分割
されることで触媒間隙が減少し、かつ、小破片、微粉及
び粉塵が生じ、圧力降下を生じる。そこで、同心円のリ
ング状構造にあらかじめ構造的に弱い部分を持たせるこ
とで、側面に対して垂直方向に過剰の力がかかって壊れ
る際、二分割される場合が多くなるようにすることで、
小破片、微粉及び粉塵の発生を最小限にし、その結果、
圧力降下の増大が低減するため目的とする生成物の選択
性への悪影響が抑えられる。
In the concentric ring-shaped structure, the mechanical strength of the catalyst body is excellent in the direction perpendicular to the cross section, but the mechanical strength is small in the direction perpendicular to the side surface. Moreover, when it breaks in the direction perpendicular to this side surface, it is often divided into four as shown in FIG. This comes from a concentric ring-shaped structure, and when divided into four, the catalyst gap is reduced, and small fragments, fine powder and dust are generated, resulting in a pressure drop. Therefore, by giving a structurally weak portion to the concentric ring-shaped structure in advance, by increasing excessive force in the direction perpendicular to the side surface and breaking it, it is often divided into two.
Minimize the generation of small debris, fines and dust, resulting in
Since the increase in pressure drop is reduced, the adverse effect on the selectivity of the desired product is suppressed.

【0006】本発明は、貫通孔を有するシリンダー状形
態を有し、その断面が外周又は内周のいずれか一方が本
質的には楕円形状を有し、他方が円であり、外周及び内
周の中心が一致し、中心より該楕円形状上の最短距離に
対する最長距離の比が1.2〜4.0である触媒粒であ
って、触媒成分として少なくともモリブデン及びバナジ
ウムを含む不飽和アルデヒドの気相接触酸化による不飽
和カルボン酸製造用触媒である。
The present invention has a cylindrical shape having a through hole, the cross section of which has either an outer circumference or an inner circumference having an essentially elliptical shape, and the other has a circular shape. Of the catalyst, the centers of which coincide with each other, and the ratio of the longest distance to the shortest distance on the elliptical shape from the center is 1.2 to 4.0, and the gas of unsaturated aldehyde containing at least molybdenum and vanadium as catalyst components. It is a catalyst for the production of unsaturated carboxylic acids by phase contact oxidation.

【0007】また、本発明による本質的に楕円形状と
は、数学的根拠による楕円はもちろんのこと、長方形に
内接しうる本質的に楕円形状を有するもの及び菱形に外
接しうる本質的に楕円形状を有するものも含んでいる。
本発明では、中心より本質的には楕円形状上の最短距離
に対する最長距離の比が1.2未満の場合、同心円のリ
ング状形態とほとんど変わらず、側面に対して垂直方向
に過剰に力が加わった場合、四分割される場合が多くな
り、本発明の効果がない。また、この比が4.0を超え
た場合、触媒断面において貫通孔の占める割合が低下
し、圧力降下の低減あるいは拡散効率の向上といったよ
うな貫通孔の効果が減少してしまう。
The essentially elliptical shape according to the present invention means not only an ellipse based on mathematical grounds but also an essentially elliptical shape that can inscribe a rectangle and an essentially elliptical shape that can circumscribe a rhombus. It also includes those with.
In the present invention, when the ratio of the longest distance to the shortest distance on the elliptical shape from the center is less than 1.2, there is almost no difference from the concentric ring-shaped form, and excessive force is exerted in the direction perpendicular to the side surface. When it is added, it is often divided into four, and the effect of the present invention is not obtained. On the other hand, if this ratio exceeds 4.0, the proportion of the through holes in the catalyst cross section decreases, and the effects of the through holes such as reduction of pressure drop or improvement of diffusion efficiency are reduced.

【0008】本発明において、貫通孔を有し外周又は内
周のいずれか一方が本質的には楕円形状を有し、他方が
円であることが重要である。外周又は内周のいずれか一
方が本質的には楕円形状を有することで、側面に対して
垂直方向に過剰に力が加わった場合、構造的に弱い部分
が割れる(図1及び図2)。つまり、二分割される場合
が多いため触媒間隙の減少、小破片、微粉及び粉塵の発
生を最小限に抑えることができる。
In the present invention, it is important that either the outer circumference or the inner circumference has a through hole and has an essentially elliptical shape, and the other is a circle. Either the outer circumference or the inner circumference has an essentially elliptical shape, so that when a force is excessively applied in a direction perpendicular to the side surface, a structurally weak portion is cracked (FIGS. 1 and 2). In other words, since it is often divided into two, the reduction of the catalyst gap and the generation of small fragments, fine powder and dust can be minimized.

【0009】本発明では、外周が本質的に楕円形状であ
る場合、中心より内周の半径に対する外周上の最短距離
の比が1.1〜8.0であることが好ましい。この比が
1.1未満の場合、側面に対して垂直方向の機械的強度
の低下が大きく好ましくない。また、この比が8.0を
超えた場合、触媒体断面において貫通孔の占める割合が
低下し、圧力降下の低減あるいは拡散効率の向上といっ
たような貫通孔の効果が減少してしまうため好ましくな
い。逆に、内周が本質的に楕円形状である場合、中心よ
り内周上の最長距離に対する外周の半径の比は1.1〜
8.0が好ましい。この比が1.1未満の場合、側面に
対して垂直方向の機械的強度の低下が大きく好ましくな
い。また、8.0を超えた場合、触媒体の貫通孔の占め
る割合が低下し、圧力降下の低減あるいは拡散効率の向
上といったような中心孔の効果が減少してしまうため好
ましくない。
In the present invention, when the outer circumference is essentially elliptical, the ratio of the shortest distance on the outer circumference to the radius of the inner circumference from the center is preferably 1.1 to 8.0. If this ratio is less than 1.1, the mechanical strength in the direction perpendicular to the side surface is significantly reduced, which is not preferable. Further, if this ratio exceeds 8.0, the proportion of the through holes in the cross section of the catalyst body decreases, and the effect of the through holes such as reduction of pressure drop or improvement of diffusion efficiency decreases, which is not preferable. . Conversely, if the inner circumference is essentially elliptical, the ratio of the outer radius to the longest distance on the inner circumference from the center is 1.1-
8.0 is preferable. If this ratio is less than 1.1, the mechanical strength in the direction perpendicular to the side surface is significantly reduced, which is not preferable. On the other hand, when it exceeds 8.0, the ratio of the through holes of the catalyst body decreases, and the effect of the central hole such as reduction of pressure drop or improvement of diffusion efficiency decreases, which is not preferable.

【0010】本発明において、触媒体の長さ(高さ)は
中心より外周上の最短距離の1.0〜5.0倍であるこ
とが好ましい。該触媒の長さが中心より外周上の最短距
離の1.0倍未満の場合、触媒体の機械的強度が著しく
低下するため好ましくない。また、長さが中心より外周
上の最短距離の5.0倍を超えた場合、拡散効率の向上
といったような貫通孔の効果が減少してしまうため好ま
しくない。本発明において、触媒の形状において、具体
的には触媒断面の中心より外周の最短距離が1〜10m
m、長さが2〜15mmの範囲が好ましい。
In the present invention, the length (height) of the catalyst body is preferably 1.0 to 5.0 times the shortest distance on the outer circumference from the center. When the length of the catalyst is less than 1.0 times the shortest distance on the outer circumference from the center, the mechanical strength of the catalyst body is significantly reduced, which is not preferable. Further, if the length exceeds 5.0 times the shortest distance on the outer circumference from the center, the effect of the through hole such as the improvement of diffusion efficiency is reduced, which is not preferable. In the present invention, in the shape of the catalyst, specifically, the shortest distance from the center of the catalyst cross section to the outer periphery is 1 to 10 m.
The range of m and the length of 2 to 15 mm is preferable.

【0011】本触媒は通常の押出し成型機又は打錠成型
機により成型することができる。本触媒を成型する際に
は、従来公知の添加剤、例えば、ポリビニルアルコー
ル、カルボキシメチルセルロース等の有機化合物、グラ
ファイトやケイソウ土等の無機化合物、無機ファイバー
等をさらに添加しても差し支えない。このようにして得
られた成型触媒は、次いで熱処理される。本発明におい
ては、この処理条件には特に限定はなく、公知の処理条
件を適用することができる。通常、熱処理は300〜5
00℃で行なわれる。
The catalyst can be molded by a usual extrusion molding machine or tablet molding machine. When molding the present catalyst, conventionally known additives, for example, organic compounds such as polyvinyl alcohol and carboxymethyl cellulose, inorganic compounds such as graphite and diatomaceous earth, and inorganic fibers may be further added. The shaped catalyst thus obtained is then heat treated. In the present invention, the processing conditions are not particularly limited, and known processing conditions can be applied. Generally, heat treatment is 300-5
It is carried out at 00 ° C.

【0012】本発明に用いられる触媒を調製する方法と
しては特殊な方法に限定する必要はなく、成分の著しい
偏在を伴わない限り、従来からよく知られている蒸発乾
固法、沈殿法、酸化物混合法等の種々の方法を用いるこ
とができる。触媒の調製に用いる原料としては各元素の
酸化物、硝酸塩、炭酸塩、アンモニウム塩、ハロゲン化
物などを組合せて使用することができる。例えば、モリ
ブデン原料としてはパラモリブデン酸アンモニウム、三
酸化モリブデン、塩化モリブデン等、バナジウム原料と
してはメタバナジン酸アンモニウム、五酸化バナジウ
ム、塩化バナジウム等が使用できる。
The method for preparing the catalyst used in the present invention does not have to be limited to a special method, and the evaporation dryness method, the precipitation method, the oxidation method, which are well known in the art, can be used unless significant uneven distribution of the components is involved. Various methods such as a material mixing method can be used. As a raw material used for preparing the catalyst, an oxide of each element, a nitrate, a carbonate, an ammonium salt, a halide or the like can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdenum chloride, etc. can be used as the molybdenum raw material, and ammonium metavanadate, vanadium pentoxide, vanadium chloride, etc. can be used as the vanadium raw material.

【0013】本発明の方法により得られた触媒はシリ
カ、アルミナ、シリカ・アルミナ、マグネシア、チタニ
ア、シリコンカーバイト等の不活性担体で希釈して用い
ることもできる。本発明の方法により得られた触媒を用
いて不飽和カルボン酸を製造する際には、原料ガス中の
不飽和アルデヒドの濃度は広い範囲で変えることができ
るが、容量で1〜20%が適当であり、特に3〜10%
が好ましい。
The catalyst obtained by the method of the present invention may be diluted with an inert carrier such as silica, alumina, silica-alumina, magnesia, titania or silicon carbide before use. When the unsaturated carboxylic acid is produced using the catalyst obtained by the method of the present invention, the concentration of the unsaturated aldehyde in the raw material gas can be varied over a wide range, but the volume is preferably 1 to 20%. And especially 3-10%
Is preferred.

【0014】原料不飽和アルデヒドは、水、低級飽和ア
ルデヒド等の不純物を少量含んでいてもよく、これらの
不純物は反応に実質的な影響を与えない。酸素源として
は空気を用いるのが経済的であるが、必要ならば純酸素
で富化した空気も用いうる。原料ガス中の酸素濃度は不
飽和アルデヒドに対するモル比で規定され、この値は
0.3〜4、特に0.4〜2.5が好ましい。原料ガス
は窒素、水蒸気、炭酸ガス等の不活性ガスを加えて希釈
してもよい。反応圧力は常圧から数気圧までがよい。反
応温度は200〜450℃の範囲で選ぶことができる
が、特に210〜400℃が好ましい。
The starting unsaturated aldehyde may contain a small amount of impurities such as water and lower saturated aldehyde, and these impurities do not substantially affect the reaction. It is economical to use air as the oxygen source, but if necessary, air enriched with pure oxygen can also be used. The oxygen concentration in the raw material gas is defined by the molar ratio to the unsaturated aldehyde, and this value is preferably 0.3 to 4, and particularly 0.4 to 2.5. The raw material gas may be diluted by adding an inert gas such as nitrogen, steam or carbon dioxide gas. The reaction pressure is preferably atmospheric pressure to several atmospheres. The reaction temperature can be selected in the range of 200 to 450 ° C, but 210 to 400 ° C is particularly preferable.

【0015】本発明における不飽和アルデヒドの気相接
触酸化による不飽和カルボン酸製造の例としては、アク
ロレインの酸化によるアクリル酸製造やメタクロレイン
の酸化によるメタクリル酸製造等が挙げられる。
Examples of the production of unsaturated carboxylic acid by vapor phase catalytic oxidation of unsaturated aldehyde in the present invention include production of acrylic acid by oxidation of acrolein and production of methacrylic acid by oxidation of methacrolein.

【0016】アクロレインの酸化によるアクリル酸製造
用触媒としては、一般式 Moa b c d e f (ここで式中 Mo、V及びOはそれぞれモリブデン、
バナジウム及び酸素を示し、Aは鉄、コバルト、クロ
ム、アルミニウム及びストロンチウムからなる群より選
ばれた少なくとも一種の元素を示し、Xはゲルマニウ
ム、ホウ素、ヒ素、セレン、銀、ケイ素、ナトリウム、
テルル、リチウム、アンチモン、リン、カリウム及びバ
リウムからなる群より選ばれた少なくとも一種の元素を
示し、Yはマグネシウム、チタン、マンガン、銅、亜
鉛、ジルコニウム、ニオブ、タングステン、タンタル、
カルシウム、スズ及びビスマスからなる群より選ばれた
少なくとも一種の元素を示す。a、b、c、d、e及び
fは各元素の原子比率を表し、a=12のときb=0.
01〜6、c=0.1〜5、d=0〜10、e=0〜5
であり、fは前記各成分の原子価を満足するのに必要な
酸素原子数である。)で表される組成を有するものが挙
げられる。
[0016] As the catalyst for production of acrylic acid by oxidation of acrolein, the general formula Mo a V b A c X d Y e O f ( wherein wherein Mo, V and O represent molybdenum,
Represents vanadium and oxygen, A represents at least one element selected from the group consisting of iron, cobalt, chromium, aluminum and strontium, X represents germanium, boron, arsenic, selenium, silver, silicon, sodium,
At least one element selected from the group consisting of tellurium, lithium, antimony, phosphorus, potassium and barium is shown, and Y is magnesium, titanium, manganese, copper, zinc, zirconium, niobium, tungsten, tantalum,
At least one element selected from the group consisting of calcium, tin and bismuth is shown. a, b, c, d, e and f represent the atomic ratio of each element, and when a = 12, b = 0.
01-6, c = 0.1-5, d = 0-10, e = 0-5
And f is the number of oxygen atoms required to satisfy the valence of each component. ) The thing which has a composition represented by these is mentioned.

【0017】また、メタクロレインの酸化によるメタク
リル酸製造用触媒としては、一般式 Pa Mob c Cud e f g h (ここで式中P、Mo、V、Cu及びOはそれぞれリ
ン、モリブデン、バナジウム、銅及び酸素を示し、Xは
ヒ素、アンチモン、ビスマス、ゲルマニウム、ジルコニ
ウム、テルル、銀、セレン、ケイ素、タングステン及び
ホウ素からなる群より選ばれた少なくとも1種の元素を
示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタ
ル、マンガン、コバルト、バリウム、ガリウム、セリウ
ム及びランタンからなる群より選ばれた少なくとも1種
の元素を示し、Zはカリウム、ルビジウム、セシウム及
びタリウムからなる群より選ばれた少なくとも1種の元
素を示す。a、b、c、d、e、f、g及びhは各元素
の原子比率を表し、b=12のときa=0.5〜3、c
=0.01〜3、d=0〜2、e=0〜3、f=0〜
3、g=0.01〜3であり、hは前記各成分の原子価
を満足するのに必要な酸素原子数である。)で表される
組成を有するものが挙げられる。
Further, as a catalyst for producing methacrylic acid by oxidation of methacrolein, a compound represented by the general formula P a Mo b V c Cu d X e Y f Z g O h (wherein P, Mo, V, Cu and O are used) Represents phosphorus, molybdenum, vanadium, copper and oxygen, and X represents at least one element selected from the group consisting of arsenic, antimony, bismuth, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron. , Y represents at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, manganese, cobalt, barium, gallium, cerium and lanthanum, and Z represents potassium, rubidium, cesium and thallium. At least one element selected from the group consisting of a, b, c, d, e, f, g and h is Atomic ratio, a = 0.5 to 3, c when b = 12
= 0.01 to 3, d = 0 to 2, e = 0 to 3, f = 0
3, g = 0.01 to 3, and h is the number of oxygen atoms required to satisfy the valence of each component. ) The thing which has a composition represented by these is mentioned.

【0018】[0018]

【実施例】以下、本発明による触媒の製造法及び、それ
を用いての反応例を具体的に説明する。実施例、比較例
中、不飽和アルデヒドの反応率、生成する不飽和カルボ
ン酸の選択率は以下のように定義される。
EXAMPLES The method for producing the catalyst according to the present invention and the reaction examples using the same will be specifically described below. In Examples and Comparative Examples, the reaction rate of unsaturated aldehyde and the selectivity of unsaturated carboxylic acid produced are defined as follows.

【0019】[0019]

【数1】 [Equation 1]

【0020】また、成型触媒の充填粉化率及び形状変化
率は以下のように定義する。成型触媒100部を秤量
し、この時成型触媒の個数をX個とする。次に、水平方
向に対して垂直に設置した内径30mmφ、長さ5mか
らなるステンレス管に、秤量した成型触媒をステンレス
管上部より充填し、充填後ステンレス管下部より回収す
る。回収した触媒のうち、8メッシュのふるいを通過し
ない触媒がa部であり、かつ、この時8メッシュのふる
いを通過しなかった触媒の個数をY個とすると、充填粉
化率及び形状変化率は次のように表される。
Further, the filling powdering rate and the shape change rate of the molded catalyst are defined as follows. 100 parts of the molded catalyst is weighed, and the number of molded catalysts is X at this time. Next, a weighed molded catalyst is filled from the upper portion of the stainless steel tube into a stainless steel tube having an inner diameter of 30 mmφ and a length of 5 m installed vertically to the horizontal direction, and after the filling, the recovered catalyst is collected from the lower portion of the stainless steel tube. Of the recovered catalysts, the catalyst that does not pass through the 8-mesh sieve is part a, and the number of catalysts that did not pass through the 8-mesh sieve at this time is Y, and the packing powdering rate and the shape change rate are Is represented as follows.

【0021】[0021]

【数2】 下記実施例、比較例中の部は重量部であり、分析はガス
クロマトグラフィーによった。
[Equation 2] Parts in the following Examples and Comparative Examples are parts by weight, and analysis was by gas chromatography.

【0022】実施例1 パラモリブデン酸アンモニウム100部、メタバナジン
酸アンモニウム2.2部及び硝酸カリウム4.8部を純
水400部に溶解した。これを攪拌しながら、85%リ
ン酸8.2部を純水10部に溶解した溶液を加え、さら
に硝酸銅0.6部を純水10部に溶解した溶液を加え
た。次に硝酸亜鉛2.8部を純水10部に溶解した溶液
を加えた後、95℃に昇温した。これに60%ヒ酸2.
2部を純水10部に溶解した溶液を加え、つづいて三酸
化アンチモン2.1部、二酸化ゲルマニウム1.0部を
加えた。この混合液を加熱攪拌しながら蒸発乾固した
後、得られた固形物を130℃で16時間乾燥した。
Example 1 100 parts of ammonium paramolybdate, 2.2 parts of ammonium metavanadate and 4.8 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring the solution, a solution prepared by dissolving 8.2 parts of 85% phosphoric acid in 10 parts of pure water was added, and further a solution prepared by dissolving 0.6 parts of copper nitrate in 10 parts of pure water was added. Next, after adding a solution of 2.8 parts of zinc nitrate dissolved in 10 parts of pure water, the temperature was raised to 95 ° C. 60% arsenic acid 2.
A solution prepared by dissolving 2 parts in 10 parts of pure water was added, followed by 2.1 parts of antimony trioxide and 1.0 part of germanium dioxide. The mixture was evaporated to dryness with heating and stirring, and then the obtained solid was dried at 130 ° C. for 16 hours.

【0023】この乾燥粉100部に対して重合度500
のポリビニルアルコール3部及び水15部を混合し、押
出し成型機により、外周が半径3.0mmの円で、内周
が中心からの最長距離が2.0mm、最短距離が1.0
mmの楕円形状である平均長さが5.0mmの同心円の
シリンダー状に押出した。該賦型触媒を130℃で6時
間乾燥し、次いで空気流通下に380℃で5時間熱処理
したものを触媒として用いた。得られた触媒の酸素以外
の元素の組成(以下同じ)は、P1.5 Mo120.4 Cu
0.05Ge0.2 As0.2 Zn0.2 1 であった。本触媒を
反応管に充填し、メタクロレイン5%、酸素10%、水
蒸気30%、窒素55%(容量%)の混合ガスを反応温
度290℃、接触時間3.6秒で通じた。生成物を捕集
し、ガスクロマトグラフィーで分析したところ、メタク
ロレイン反応率85.8%、メタクリル酸選択率85.
2%であった。また、充填粉化率1.8%、形状変化率
7.2%であった。
The degree of polymerization is 500 with respect to 100 parts of this dry powder.
3 parts of polyvinyl alcohol and 15 parts of water are mixed, and the outer circumference is a circle with a radius of 3.0 mm and the inner circumference has a longest distance of 2.0 mm from the center and a shortest distance of 1.0 by an extruder.
It was extruded into a concentric cylinder having an average length of 5.0 mm, which is an elliptical shape of mm. The shaped catalyst was dried at 130 ° C. for 6 hours, and then heat-treated at 380 ° C. for 5 hours under air flow to be used as a catalyst. The composition of elements other than oxygen in the obtained catalyst (the same applies hereinafter) was P 1.5 Mo 12 V 0.4 Cu.
It was 0.05 Ge 0.2 As 0.2 Zn 0.2 K 1 . The catalyst was filled in a reaction tube, and a mixed gas of methacrolein 5%, oxygen 10%, water vapor 30%, and nitrogen 55% (volume%) was passed at a reaction temperature of 290 ° C. and a contact time of 3.6 seconds. When the product was collected and analyzed by gas chromatography, the reaction rate of methacrolein was 85.8% and the selectivity of methacrylic acid was 85.
It was 2%. In addition, the filling powder ratio was 1.8% and the shape change ratio was 7.2%.

【0024】実施例2 実施例1において触媒粒の形状を、外周が中心からの最
長距離が3.0mm、最短距離が2.5mmの楕円形状
で、内周が半径1.25mmの円である平均長さが5.
0mmの同心円のシリンダー状とした点以外は実施例1
と同様にして賦型及び反応を行なった。その結果、メタ
クロレイン反応率85.9%、メタクリル酸選択率8
5.4%であった。また、充填粉化率1.5%、形状変
化率6.8%であった。
Example 2 In Example 1, the catalyst particles had an elliptical shape with a maximum outer circumference of 3.0 mm and a shortest distance of 2.5 mm, and an inner circumference of a circle having a radius of 1.25 mm. Average length is 5.
Example 1 except that it was formed into a cylindrical shape of 0 mm concentric circles.
Molding and reaction were carried out in the same manner as in. As a result, the methacrolein conversion rate was 85.9% and the methacrylic acid selectivity was 8
It was 5.4%. In addition, the filling powder ratio was 1.5% and the shape change ratio was 6.8%.

【0025】比較例1 実施例1において触媒粒の形状を、外周が半径3.0m
mの円で、内周が半径1.5mmの円である平均長さが
5.0mmの同心円のシリンダー状とした点以外は実施
例1と同様にして賦型及び反応を行なった。その結果、
メタクロレイン反応率85.5%、メタクリル酸選択率
84.8%であった。また、充填粉化率4.5%、形状
変化率12.0%であった。
Comparative Example 1 The shape of the catalyst particles in Example 1 was 3.0 m on the outer circumference.
Molding and reaction were carried out in the same manner as in Example 1 except that the inner circumference was a circle having a radius of 1.5 mm and the concentric circles had an average length of 5.0 mm. as a result,
The methacrolein conversion was 85.5% and the methacrylic acid selectivity was 84.8%. In addition, the filling powder ratio was 4.5% and the shape change ratio was 12.0%.

【0026】実施例3 三酸化モリブデン100部、五酸化バナジウム4.2
部、ほう酸0.4部、五酸化アンチモン4.7部及び8
5%リン酸6.7部を純水800部と混合する。これを
還流下で3時間加熱攪拌した後、酸化銅0.5部、酸化
コバルト0.9部及び硝酸マンガン0.8部を加え、再
び還流下で2時間加熱攪拌した。このスラリーを50℃
まで冷却し、重炭酸セシウム11.2部を純水30部に
溶解したものを加え15分間攪拌する。つぎに、硝酸ア
ンモニウム10部を純水30部に溶解したものを加え、
混合液を100℃に加熱攪拌しながら蒸発乾固した。得
られた固形物を120℃で16時間乾燥した後、実施例
1において触媒粒の形状を、外周が半径3.0mmの円
で、内周が中心からの最長距離が1.5mm、最短距離
が1.0mmの楕円形状である平均長さが5.0mmの
同心円のシリンダー状とした点以外は実施例1と同様に
して賦型した。該賦型触媒を130℃で6時間乾燥し、
次いで空気流通下に380℃で5時間熱処理したものを
触媒として用いた。得られた触媒の組成は、P1 Mo12
0.0 Cu0.2 0.1 Sb0.5 Co0.2 Mn0.05Cs1
であった。この触媒を用い、反応温度を270℃とした
以外は実施例1と同一条件で反応を行なったところ、メ
タクロレイン反応率89.9%、メタクリル酸選択率8
8.3%であった。また、充填粉化率1.2%、形状変
化率6.3%であった。
Example 3 100 parts of molybdenum trioxide, 4.2 parts of vanadium pentoxide
Parts, boric acid 0.4 parts, antimony pentoxide 4.7 parts and 8 parts
6.7 parts of 5% phosphoric acid are mixed with 800 parts of pure water. After heating and stirring this for 3 hours under reflux, 0.5 part of copper oxide, 0.9 part of cobalt oxide and 0.8 part of manganese nitrate were added, and the mixture was again heated and stirred for 2 hours under reflux. This slurry at 50 ° C
After cooling to 11.2 parts of cesium bicarbonate dissolved in 30 parts of pure water, the mixture is stirred for 15 minutes. Next, a solution prepared by dissolving 10 parts of ammonium nitrate in 30 parts of pure water was added,
The mixed solution was evaporated to dryness with heating and stirring at 100 ° C. After drying the obtained solid matter for 16 hours at 120 ° C., the shape of the catalyst particles in Example 1 was determined such that the outer circumference was a circle with a radius of 3.0 mm, the inner circumference had a longest distance from the center of 1.5 mm, and the shortest distance. Was shaped in the same manner as in Example 1 except that it was in the form of a concentric cylinder having an average length of 5.0 mm and an elliptical shape of 1.0 mm. Drying the shaped catalyst at 130 ° C. for 6 hours,
Then, the one heat-treated at 380 ° C. for 5 hours under air flow was used as a catalyst. The composition of the resulting catalyst was P 1 Mo 12
V 0.0 Cu 0.2 B 0.1 Sb 0.5 Co 0.2 Mn 0.05 Cs 1
Met. When this catalyst was used and the reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 270 ° C., the methacrolein conversion rate was 89.9% and the methacrylic acid selectivity was 8%.
It was 8.3%. Further, the filling powdering rate was 1.2% and the shape change rate was 6.3%.

【0027】実施例4 実施例3において触媒粒の形状を、外周が中心からの最
長距離が3.0mm、最短距離が2.5mmの楕円形状
で、内周が半径1.0mmの円である平均長さが5.0
mmの同心円のシリンダー状とした点以外は実施例3と
同様にして賦型及び反応を行なった。その結果、メタク
ロレイン反応率89.8%、メタクリル酸選択率88.
1%であった。また、充填粉化率1.4%、形状変化率
7.0%であった。
Example 4 In Example 3, the shape of the catalyst particles was elliptical with the longest distance from the center being 3.0 mm and the shortest distance being 2.5 mm, and the inner circumference being a circle with a radius of 1.0 mm. Average length is 5.0
Molding and reaction were carried out in the same manner as in Example 3 except that the shape of the cylinder was concentric circles of mm. As a result, the methacrolein conversion rate was 89.8% and the methacrylic acid selectivity was 88.
It was 1%. In addition, the filling powder ratio was 1.4% and the shape change ratio was 7.0%.

【0028】比較例2 実施例3において触媒粒の形状を、外周が半径3.0m
mの円で、内周が半径1.0mmの円である平均長さが
5.0mmの同心円のシリンダー状とした点以外は実施
例3と同様にして賦型及び反応を行なった。その結果、
メタクロレイン反応率89.4%、メタクリル酸選択率
87.8%であった。また、充填粉化率4.0%、形状
変化率10.8%であった。
Comparative Example 2 The shape of the catalyst particles in Example 3 was 3.0 m on the outer circumference.
Molding and reaction were performed in the same manner as in Example 3 except that the inner circumference was a circle having a radius of 1.0 mm and the concentric circles had an average length of 5.0 mm. as a result,
The methacrolein conversion was 89.4% and the methacrylic acid selectivity was 87.8%. Further, the filling powdering rate was 4.0% and the shape change rate was 10.8%.

【0029】実施例5 パラモリブデン酸アンモニウム100部及びメタバナジ
ン酸アンモニウム16.6部を純水1000部に溶解し
た。これに硝酸第二鉄15.3部を純水200部に溶解
した溶液を加え、さらに、硝酸コバルト6.9部を純水
200部に溶解した溶液、硝酸銀0.6部を純水50部
に溶解した溶液を順次加えた。次に、一般式Na2 O・
2.2SiO2 ・2.2H2 Oで表される水ガラス4.
5部を純水30部に溶解した溶液を加え、さらに、20
%シリカゾル50.9部を加えた。この混合液を加熱攪
拌しながら蒸発乾固した後、得られた固形物を130℃
で16時間乾燥した。
Example 5 100 parts of ammonium paramolybdate and 16.6 parts of ammonium metavanadate were dissolved in 1000 parts of pure water. A solution prepared by dissolving 15.3 parts of ferric nitrate in 200 parts of pure water was added thereto, and a solution prepared by dissolving 6.9 parts of cobalt nitrate in 200 parts of pure water, and 0.6 parts of silver nitrate in 50 parts of pure water. The solution dissolved in was sequentially added. Next, the general formula Na 2 O.
Water glass 4, represented by 2.2SiO 2 · 2.2H 2 O.
A solution prepared by dissolving 5 parts in 30 parts of pure water was added, and further 20
% Silica sol 50.9 parts was added. The mixture was evaporated to dryness with heating and stirring, and the solid obtained was heated to 130 ° C.
And dried for 16 hours.

【0030】この乾燥粉100部に対してエチルアルコ
ール18部及び平均長さ200μmの無機ファイバー5
部を混合し、押出し成型機により、実施例1と同じ形状
に押出した。該賦型触媒を130℃で6時間乾燥し、次
いで空気流通下に380℃で5時間熱処理したものを触
媒として用いた。得られた触媒の組成は、Mo123
0.8 Si4.5 Na0.8 Co0.5 Ag0.08であった。本
触媒を反応管に充填し、アクロレイン5%、酸素10
%、水蒸気30%、窒素55%(容量%)の混合ガスを
反応温度270℃、接触時間3.6秒で通じた。生成物
を捕集し、ガスクロマトグラフィーで分析したところ、
アクロレイン反応率99.5%、アクリル酸選択率9
3.4%であった。また、充填粉化率1.7%、形状変
化率7.0%であった。
To 100 parts of this dry powder, 18 parts of ethyl alcohol and 5 inorganic fibers having an average length of 200 μm
The parts were mixed and extruded into the same shape as in Example 1 using an extruder. The shaped catalyst was dried at 130 ° C. for 6 hours, and then heat-treated at 380 ° C. for 5 hours under air flow to be used as a catalyst. The composition of the obtained catalyst was Mo 12 V 3 F
e 0.8 Si 4.5 Na 0.8 Co 0.5 Ag 0.08 . The reaction tube was filled with this catalyst, and acrolein 5%, oxygen 10
%, Steam 30%, and nitrogen 55% (volume%) were passed through at a reaction temperature of 270 ° C. and a contact time of 3.6 seconds. When the product was collected and analyzed by gas chromatography,
Acrolein conversion 99.5%, acrylic acid selectivity 9
It was 3.4%. In addition, the filling powder ratio was 1.7% and the shape change ratio was 7.0%.

【0031】実施例6 実施例5において触媒粒の形状を、実施例2と同じとし
た点以外は実施例5と同様にして賦型及び反応を行なっ
た。その結果、アクロレイン反応率99.5%、アクリ
ル酸選択率93.6%であった。また、充填粉化率1.
8%、形状変化率7.2%であった。
Example 6 Molding and reaction were carried out in the same manner as in Example 5 except that the shape of the catalyst particles in Example 5 was the same as in Example 2. As a result, the acrolein conversion was 99.5% and the acrylic acid selectivity was 93.6%. In addition, the filling powder ratio is 1.
It was 8% and the shape change rate was 7.2%.

【0032】比較例3 実施例5において触媒粒の形状を、比較例1と同じとし
た点以外は実施例5と同様にして賦型及び反応を行なっ
た。その結果、アクロレイン反応率99.3%、アクリ
ル酸選択率92.7%であった。また、充填粉化率4.
7%、形状変化率11.6%であった。
Comparative Example 3 Molding and reaction were carried out in the same manner as in Example 5 except that the shape of the catalyst particles was the same as in Comparative Example 1. As a result, the acrolein conversion was 99.3% and the acrylic acid selectivity was 92.7%. Further, the filling powder ratio is 4.
It was 7% and the shape change rate was 11.6%.

【0033】[0033]

【発明の効果】本発明の方法で調製した触媒は不飽和ア
ルデヒドの気相接触酸化反応において、生成する不飽和
カルボン酸の収率を向上させる効果を有する。
The catalyst prepared by the method of the present invention has the effect of improving the yield of unsaturated carboxylic acid produced in the gas phase catalytic oxidation reaction of unsaturated aldehydes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の触媒の横断面図FIG. 1 is a cross-sectional view of a catalyst of the present invention.

【図2】本願発明の別の触媒の横断面図FIG. 2 is a cross-sectional view of another catalyst of the present invention.

【図3】従来の触媒の横断面図FIG. 3 is a cross-sectional view of a conventional catalyst

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月11日[Submission date] May 11, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】実施例1 パラモリブデン酸アンモニウム100部、メタバナジン
酸アンモニウム2.2部及び硝酸カリウム4.8部を純
水400部に溶解した。これを攪拌しながら、85%リ
ン酸8.2部を純水10部に溶解した溶液を加え、さら
に硝酸銅0.6部を純水10部に溶解した溶液を加え
た。次に硝酸亜鉛2.8部を純水10部に溶解した溶液
を加えた後、95℃に昇温した。これに60%ヒ酸2.
2部を純水10部に溶解した溶液を加え、つづいて二酸
化ゲルマニウム1.0部を加えた。この混合液を加熱攪
拌しながら蒸発乾固した後、得られた固形物を130℃
で16時間乾燥した。
Example 1 100 parts of ammonium paramolybdate, 2.2 parts of ammonium metavanadate and 4.8 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring the solution, a solution prepared by dissolving 8.2 parts of 85% phosphoric acid in 10 parts of pure water was added, and further a solution prepared by dissolving 0.6 parts of copper nitrate in 10 parts of pure water was added. Next, after adding a solution of 2.8 parts of zinc nitrate dissolved in 10 parts of pure water, the temperature was raised to 95 ° C. 60% arsenic acid 2.
A solution prepared by dissolving 2 parts in 10 parts of pure water was added, followed by 1.0 part of germanium dioxide. The mixture was evaporated to dryness with heating and stirring, and the solid obtained was heated to 130 ° C.
And dried for 16 hours.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】実施例3 三酸化モリブデン100部、五酸化バナジウム4.2
部、ほう酸0.4部、五酸化アンチモン4.7部及び8
5%リン酸6.7部を純水800部と混合する。これを
還流下で3時間加熱攪拌した後、酸化銅0.5部、酸化
コバルト0.9部及び硝酸マンガン0.8部を加え、再
び還流下で2時間加熱攪拌した。このスラリーを50℃
まで冷却し、重炭酸セシウム11.2部を純水30部に
溶解したものを加え15分間攪拌する。つぎに、硝酸ア
ンモニウム10部を純水30部に溶解したものを加え、
混合液を100℃に加熱攪拌しながら蒸発乾固した。得
られた固形物を120℃で16時間乾燥した後、実施例
1において触媒粒の形状を、外周が半径3.0mmの円
で、内周が中心からの最長距離が1.5mm、最短距離
が1.0mmの楕円形状である平均長さが5.0mmの
同心円のシリンダー状とした点以外は実施例1と同様に
して賦型した。該賦型触媒を130℃で6時間乾燥し、
次いで空気流通下に380℃で5時間熱処理したものを
触媒として用いた。得られた触媒の組成は、P1 Mo12
0.8 Cu0.2 0.1 Sb0.5 Co0.2 Mn0.05Cs1
であった。この触媒を用い、反応温度を270℃とした
以外は実施例1と同一条件で反応を行なったところ、メ
タクロレイン反応率89.9%、メタクリル酸選択率8
8.3%であった。また、充填粉化率1.2%、形状変
化率6.3%であった。
Example 3 100 parts of molybdenum trioxide, 4.2 parts of vanadium pentoxide
Parts, boric acid 0.4 parts, antimony pentoxide 4.7 parts and 8 parts
6.7 parts of 5% phosphoric acid are mixed with 800 parts of pure water. After heating and stirring this for 3 hours under reflux, 0.5 part of copper oxide, 0.9 part of cobalt oxide and 0.8 part of manganese nitrate were added, and the mixture was again heated and stirred for 2 hours under reflux. This slurry at 50 ° C
After cooling to 11.2 parts of cesium bicarbonate dissolved in 30 parts of pure water, the mixture is stirred for 15 minutes. Next, a solution prepared by dissolving 10 parts of ammonium nitrate in 30 parts of pure water was added,
The mixed solution was evaporated to dryness with heating and stirring at 100 ° C. After drying the obtained solid matter for 16 hours at 120 ° C., the shape of the catalyst particles in Example 1 was determined such that the outer circumference was a circle with a radius of 3.0 mm, the inner circumference had a longest distance from the center of 1.5 mm, and the shortest distance. Was shaped in the same manner as in Example 1 except that it was in the form of a concentric cylinder having an average length of 5.0 mm and an elliptical shape of 1.0 mm. Drying the shaped catalyst at 130 ° C. for 6 hours,
Then, the one heat-treated at 380 ° C. for 5 hours under air flow was used as a catalyst. The composition of the resulting catalyst was P 1 Mo 12
V 0.8 Cu 0.2 B 0.1 Sb 0.5 Co 0.2 Mn 0.05 Cs 1
Met. When this catalyst was used and the reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 270 ° C., the methacrolein conversion rate was 89.9% and the methacrylic acid selectivity was 8%.
It was 8.3%. Further, the filling powdering rate was 1.2% and the shape change rate was 6.3%.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 貫通孔を有するシリンダー状形態を有
し、その断面が外周又は内周のいずれか一方が本質的に
は楕円形状を有し、他方が円であり、外周及び内周の中
心が一致し、中心より該楕円形状上の最短距離に対する
最長距離の比が1.2〜4.0である触媒粒であって、
触媒成分として少なくともモリブデン及びバナジウムを
含む不飽和アルデヒドの気相接触酸化による不飽和カル
ボン酸製造用触媒成型体。
1. A cylindrical shape having a through-hole, the cross section of which has either an outer circumference or an inner circumference having an essentially elliptical shape, and the other is a circle, and the center of the outer circumference and the inner circumference. And the ratio of the longest distance to the shortest distance on the elliptical shape from the center is 1.2 to 4.0,
A catalyst molded body for producing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde containing at least molybdenum and vanadium as a catalyst component.
【請求項2】 請求項1記載の触媒成型体を用いて、不
飽和アルデヒドの気相接触酸化により不飽和カルボン酸
を合成することを特徴とする製造法。
2. A process for producing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde using the molded catalyst according to claim 1.
JP33205692A 1992-12-11 1992-12-11 Molded catalyst for producing unsaturated carboxylic acid and use thereof Expired - Fee Related JP3260186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33205692A JP3260186B2 (en) 1992-12-11 1992-12-11 Molded catalyst for producing unsaturated carboxylic acid and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33205692A JP3260186B2 (en) 1992-12-11 1992-12-11 Molded catalyst for producing unsaturated carboxylic acid and use thereof

Publications (2)

Publication Number Publication Date
JPH06170237A true JPH06170237A (en) 1994-06-21
JP3260186B2 JP3260186B2 (en) 2002-02-25

Family

ID=18250652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33205692A Expired - Fee Related JP3260186B2 (en) 1992-12-11 1992-12-11 Molded catalyst for producing unsaturated carboxylic acid and use thereof

Country Status (1)

Country Link
JP (1) JP3260186B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3309977A1 (en) * 1982-10-28 1984-09-20 Hetal-Werke Franz Hettich Gmbh & Co, 7297 Alpirsbach Fitting for the pivotable fastening of a front flap to a cupboard
JP2005288365A (en) * 2004-04-01 2005-10-20 Mitsubishi Rayon Co Ltd Production method for catalyst for methacrylic acid production
GB2541052A (en) * 2015-04-14 2017-02-08 Johnson Matthey Plc Shaped catalyst particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3309977A1 (en) * 1982-10-28 1984-09-20 Hetal-Werke Franz Hettich Gmbh & Co, 7297 Alpirsbach Fitting for the pivotable fastening of a front flap to a cupboard
JP2005288365A (en) * 2004-04-01 2005-10-20 Mitsubishi Rayon Co Ltd Production method for catalyst for methacrylic acid production
GB2541052A (en) * 2015-04-14 2017-02-08 Johnson Matthey Plc Shaped catalyst particle
GB2541052B (en) * 2015-04-14 2019-10-16 Johnson Matthey Plc Shaped catalyst particle
US10913057B2 (en) 2015-04-14 2021-02-09 Johnson Matthey Public Limited Company Shaped catalyst particle

Also Published As

Publication number Publication date
JP3260186B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
EP0102641B1 (en) Catalyst for manufacturing methacrolein
KR20000077433A (en) A process for producing acrylic acid
EP0024954B1 (en) Catalyst for production of unsaturated carboxylic acid, preparation thereof and production of unsaturated carboxylic acid
JP5030438B2 (en) Method for producing catalyst and method for producing methacrylic acid
US5550095A (en) Process for producing catalyst used for synthesis of methacrylic acid
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
JPH06170237A (en) Catalyst formed body for production of unsaturated carboxylic acid and use thereof
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JPH06210184A (en) Catalytic molding for production of unsaturated carboxylic acid and production of unsaturated carboxylic acid using the same
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
KR900002454B1 (en) Process for producing methacrylic acid and catalysts for the process
JP4947753B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP3251642B2 (en) Preparation of catalyst for unsaturated carboxylic acid production
JPH06134316A (en) Catalyst for producing unsaturated carboxylic acid and use thereof
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JPS6048143A (en) Manufacture of catalyst for manufacturing unsaturated acid
JP3260174B2 (en) Catalyst for producing unsaturated carboxylic acid and use thereof
JPH06190286A (en) Molded catalyst for synthesizing unsaturated carboxylic acid and its use
JPH07299369A (en) Preparation of catalyst for producing unsaturated carboxylic acid and production of unsaturated carboxylic acid using the catalyst
JPH0479697B2 (en)
JP4902991B2 (en) Method for producing oxide catalyst
JPH06170239A (en) Catalytic formed body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and its use
JP3260187B2 (en) Molded catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof
JP4301484B2 (en) Method for producing methacrylic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees