JPH06170208A - Particle treating device - Google Patents

Particle treating device

Info

Publication number
JPH06170208A
JPH06170208A JP24938092A JP24938092A JPH06170208A JP H06170208 A JPH06170208 A JP H06170208A JP 24938092 A JP24938092 A JP 24938092A JP 24938092 A JP24938092 A JP 24938092A JP H06170208 A JPH06170208 A JP H06170208A
Authority
JP
Japan
Prior art keywords
processing container
turntable
ring
diameter surface
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24938092A
Other languages
Japanese (ja)
Other versions
JP3320457B2 (en
Inventor
Yoshiro Funakoshi
嘉郎 船越
Shigeki Takeda
茂樹 竹田
Hiroshi Sakamoto
浩 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO FUNTAI GIJUTSU KENKYUSHO
KYOTO FUNTAI GIJUTSU KENKYUSHO KK
Powrex KK
Original Assignee
KYOTO FUNTAI GIJUTSU KENKYUSHO
KYOTO FUNTAI GIJUTSU KENKYUSHO KK
Powrex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO FUNTAI GIJUTSU KENKYUSHO, KYOTO FUNTAI GIJUTSU KENKYUSHO KK, Powrex KK filed Critical KYOTO FUNTAI GIJUTSU KENKYUSHO
Priority to JP24938092A priority Critical patent/JP3320457B2/en
Publication of JPH06170208A publication Critical patent/JPH06170208A/en
Application granted granted Critical
Publication of JP3320457B2 publication Critical patent/JP3320457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Abstract

PURPOSE:To surely prevent the cross contamination of particles irrespective of the time when air flow is introduced into an annular gap. CONSTITUTION:An annular duct 33 whose upper surface is opened is freely attachably and detachably provided just below an annular gap 13. A V-ring 41 which hermetically comes into slidable contact with the underside of a turntable 3 is fitted to the upper end of the inner peripheral surface on the inside diameter side of the annular duct 33. And the inner peripheral surface on the outside diameter side of the annular duct 33 is connected to the lower part of a treating vessel 1, located on the same vertical surface as the outside diameter part of the annular gap 13. A lower nozzle directed tangentially and in the same direction as the rotating direction of the turntable 3 is fitted to the annular duct 33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医薬、農薬、食品、電
子材料、化成品等の製造分野で粉体粒子処理を目的とし
て使用される粒子処理装置に関し、詳しくは各種原料粉
体粒子に造粒・コーティング等の処理を施して粉体粒子
の付加価値を向上させるための装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle processing apparatus used for the purpose of processing powder particles in the fields of manufacturing pharmaceuticals, agricultural chemicals, foods, electronic materials, chemical products and the like. The present invention relates to an apparatus for improving the added value of powder particles by performing processing such as granulation and coating.

【0002】[0002]

【従来の技術】原料粉体粒子に造粒、コーティング等の
処理を施すための装置として、遠心転動流動式と呼ばれ
る粒子処理装置が従来から多数提案されている(特公昭
61-5770号、特開昭62-258734号等公報参照)。これらの
装置は、円筒型をなす処理容器の下部に水平回転する円
形の回転盤を設けると共に、この回転盤と処理容器との
間に形成されたリング状の隙間から主に垂直方向のガス
流、例えば、上昇空気流を噴出させる点を要旨とするも
のである。
2. Description of the Related Art As a device for subjecting raw material powder particles to processing such as granulation and coating, a number of particle processing devices called centrifugal tumbling flow type have been proposed in the past (Japanese Patent Publication No.
61-5770, JP-A-62-258734, etc.). In these devices, a circular rotating disk that horizontally rotates is provided at the bottom of a cylindrical processing container, and a gas flow mainly in the vertical direction is generated from a ring-shaped gap formed between the rotating disk and the processing container. For example, the gist is that the rising air flow is ejected.

【0003】具体的にこの装置の作用を説明すると、処
理容器内に供給された粉体粒子(以下、単に「粒子」と
呼ぶ)は、回転盤の回転に伴う遠心力により、回転盤上
を径方向に転動する。次に粒子は、リング状の隙間を通
過した上昇空気流に吹き上げられて処理容器の内径面に
沿って上昇しながら流動し、やがて、処理容器の中心付
近に向かって落下する。このような粒子の転動・流動中
に、処理容器内の所定位置に設けたスプレーノズルから
バインダー液やコーティング液を噴霧することにより、
粒子の造粒・コーティング等の処理作業がなされる。
The operation of this apparatus will be described in detail. The powder particles (hereinafter, simply referred to as “particles”) supplied into the processing container are moved on the rotary disk by centrifugal force generated by the rotation of the rotary disk. Rolls in the radial direction. Next, the particles are blown up by the rising airflow passing through the ring-shaped gap and flow while rising along the inner diameter surface of the processing container, and eventually fall toward the vicinity of the center of the processing container. By spraying a binder liquid or a coating liquid from a spray nozzle provided at a predetermined position in the processing container during the rolling and flowing of such particles,
Processing operations such as granulation and coating of particles are performed.

【0004】[0004]

【発明が解決しようとする課題】ところで、今日、粒子
処理装置の開発にあたっては、如何に粒子の循環的な転
動・流動運動を活発化させるか、また、如何にGMP
(Good ManufacturingPractice)的に優れた装置を提供
するかが重要な課題となっている。このような課題達成
を阻害するものとして、従来装置には以下の問題点があ
った。
By the way, in developing a particle processing apparatus today, how to activate cyclic rolling and flow motion of particles and how to use GMP
An important issue is how to provide excellent equipment in terms of (Good Manufacturing Practice). In order to prevent the achievement of such a problem, the conventional device has the following problems.

【0005】GMP的に優れた装置を提供するために
は、処理容器内の粒子が、回転盤と処理容器の間の隙間
を通過し、回転盤の下方空間に落下するのを確実に防止
する必要がある。落下により回転盤の下方空間に滞留し
た粒子は、粒子の入れ替え後、再始動時に異種粒子中に
混入し、いわゆるクロスコンタミネーションを生じるか
らである。
In order to provide a device excellent in terms of GMP, particles in the processing container are reliably prevented from passing through the gap between the rotating disk and the processing container and falling into the space below the rotating disk. There is a need. This is because the particles that have stayed in the space below the rotating disk due to being dropped are mixed into different kinds of particles at the time of restarting after replacement of the particles, and so-called cross contamination occurs.

【0006】このクロスコンタミネーションの防止策の
一例が、特公昭61−5770号等に開示されている。この装
置は、回転盤の外径面と対向する処理容器の内径面に、
リング状の中空チューブ体を配設し、この中空チューブ
体を膨張させて回転盤の外径面と密着させることにより
粒子の落下を阻止するものである。しかし、この装置
は、装置の停止時、即ち、隙間への空気流の非導入時お
ける粒子の落下阻止を主目的としており、装置の作動
時、即ち、空気流の導入時における粒子の落下阻止につ
いては考慮されていない。この場合、あえて粒子の落下
を阻止しようとすれば、隙間の幅を極端に狭くしたり
(0.5mm程度)、上昇空気流の風速を極端に大きくする
(10m/sec以上)等の非現実的な対策が必要となり、好
ましくない。
An example of the measures for preventing this cross contamination is disclosed in Japanese Patent Publication No. 61-5770. This device, on the inner diameter surface of the processing container facing the outer diameter surface of the turntable,
A ring-shaped hollow tube body is provided, and the hollow tube body is expanded and brought into close contact with the outer diameter surface of the rotating disk to prevent particles from falling. However, the main purpose of this device is to prevent the particles from falling when the device is stopped, that is, when the air flow is not introduced into the gap, and when the device is operating, that is, when the air flow is introduced, the particles are prevented from falling. Is not considered. In this case, if you dare to prevent the particles from falling, it is unrealistic to narrow the width of the gap extremely (about 0.5 mm) or increase the wind speed of the rising air flow extremely (10 m / sec or more). It is not preferable because various measures are required.

【0007】一方、装置の作動時における粒子の落下を
阻止し得る構造として、特開昭62−258734号公報に開示
されたものが挙げられる。この装置では、隙間から落下
した粒子を隙間の下方に配置した通気性の漏れ止め手段
(例えば金網)で回収し、回収した粒子を通気空気流に
よって処理容器内に再び戻すようにしている。しかし、
この構造では、漏れ止め手段での圧損が大きくなるた
め、上昇空気圧の低下を招きやすく、粒子の流動性の低
下を招くおそれがある。
On the other hand, a structure disclosed in Japanese Patent Laid-Open No. 62-258734 can be cited as a structure capable of preventing the particles from falling during the operation of the apparatus. In this device, particles that have fallen from the gap are collected by a gas permeable leak preventer (for example, a wire mesh) arranged below the gap, and the collected particles are returned to the inside of the processing container by a ventilation air flow. But,
In this structure, since the pressure loss in the leak prevention means becomes large, the rising air pressure tends to be lowered, and the fluidity of the particles may be lowered.

【0008】また、従来装置では、処理容器の内径面
の、流動粒子の最上昇位置付近に粒子が付着しやすく、
GMP的に問題となっていた。これは、処理容器の下方
に位置する粒子が上昇空気流により活発な流動運動を行
なうのに対し、最上昇位置に達した粒子には上昇空気流
がそれほど作用せず、粒子が滞留することに基づく。従
来装置では、このような粒子の付着に対して適切な対策
を施したものはほとんど見受けられず、改善が要望され
ている。
Further, in the conventional apparatus, particles tend to adhere to the inner diameter surface of the processing container in the vicinity of the highest rising position of the fluid particles,
It was a problem for GMP. This is because the particles located below the processing vessel make a vigorous flow motion due to the rising air flow, while the particles reaching the maximum rising position are not affected by the rising air flow so much that the particles accumulate. Based on. In conventional devices, almost no suitable measures have been taken against such particle adhesion, and improvement is desired.

【0009】そこで、本発明の主な目的は、粒子の活発
な流動運動を確保しつつ、粒子のクロスコンタミネーシ
ョンを確実に防止すること、および、処理容器の内径面
への粒子の付着を低減させることによりGMP的に優れ
た粒子処理装置を提供することにある。
Therefore, the main object of the present invention is to reliably prevent cross-contamination of particles while ensuring active flow motion of particles, and to reduce adhesion of particles to the inner diameter surface of the processing container. The object of the present invention is to provide a particle processing device excellent in GMP.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、略円筒状をなす処理容器と、この処理
容器内の底部近傍で水平回転する回転盤とを有し、系外
より回転盤の下方に供給されたガス流を、回転盤の外径
面とこれに対向する処理容器の内径面との間に形成され
たリング状隙間から上方に噴出させ、この上昇ガス流と
回転盤の回転運動との相乗作用により、処理容器内の粒
子に転動流動を行なわせて造粒・コーティングなどの粒
子処理作業を施す装置において、前記リング状隙間の直
下部に、内径側内周面の上端部に前記回転盤の下面との
間でシールを行なうシール部を有すると共に、外径側内
周面が処理容器の内径面と連結され、かつ、前記リング
状隙間との対向部位を開口させたリング状ダクトを設
け、このリング状ダクトに、接線方向でかつ前記回転盤
の回転方向と同一方向に向けて下部ノズルを装着した。
In order to achieve the above object, according to the present invention, a processing container having a substantially cylindrical shape and a turntable that horizontally rotates in the vicinity of the bottom of the processing container are provided from outside the system. The gas flow supplied below the rotary disk is jetted upward through the ring-shaped gap formed between the outer diameter surface of the rotary disk and the inner diameter surface of the processing container facing the rotary disk, and this gas flow and rotation In a device that performs particle processing operations such as granulation and coating by causing particles in the processing container to rotatively flow by synergistic action with the rotating motion of the board, the inner diameter side inner circumference is located just below the ring-shaped gap. The upper end of the surface has a seal portion for sealing with the lower surface of the rotating disk, the outer diameter side inner peripheral surface is connected to the inner diameter surface of the processing container, and a portion facing the ring-shaped gap is formed. An open ring-shaped duct is provided, and this ring-shaped duct In, fitted with a lower nozzle toward the same direction as the rotation direction of the tangential direction a and the rotating disk.

【0011】略円筒状をなす処理容器と、この処理容器
内の底部近傍で水平回転する回転盤とを有し、系外より
回転盤の下方に供給されたガス流を、回転盤の外径面と
これに対向する処理容器の内径面との間に形成されたリ
ング状隙間から上方に噴出させ、この上昇ガス流と回転
盤の回転運動との相乗作用により、処理容器内の粒子に
転動流動を行なわせて造粒・コーティングなどの粒子処
理作業を施す装置において、前記リング状隙間の直下部
に、内径側内周面の上端部に前記回転盤の下面との間で
シールを行なうシール部を有すると共に、外径側内周面
が処理容器の内径面と連結され、かつ、前記リング状隙
間との対向部位を開口させたリング状ダクトを設け、こ
のリング状ダクトに、接線方向でかつ前記回転盤の回転
方向と同一方向に向けて下部ノズルを装着し、前記処理
容器の、回転盤の外径面との対向部位を、周方向の複数
箇所で分割し、この分割により形成された円弧状の分割
体を、それぞれ処理容器から独立して径方向に進退移動
自在に構成した。
The processing container has a substantially cylindrical shape, and a rotating disk that horizontally rotates in the vicinity of the bottom of the processing container. The gas flow supplied from the outside of the system to the lower part of the rotating disk is the outer diameter of the rotating disk. It is jetted upward from a ring-shaped gap formed between the surface and the inner diameter surface of the processing container which faces the surface, and is transferred to particles in the processing container by the synergistic effect of this rising gas flow and the rotary motion of the rotating disk. In an apparatus that performs particle processing operations such as granulation and coating by performing dynamic flow, sealing is performed immediately below the ring-shaped gap and at the upper end of the inner peripheral surface on the inner diameter side with the lower surface of the rotating disk. A ring-shaped duct having a seal portion, an inner peripheral surface on the outer diameter side connected to the inner diameter surface of the processing container, and an opening at a portion facing the ring-shaped gap is provided, and the ring-shaped duct has a tangential direction. And in the same direction as the rotating direction of the turntable On the other hand, a lower nozzle is attached, and a portion of the processing container facing the outer diameter surface of the rotating disk is divided at a plurality of positions in the circumferential direction, and arc-shaped divided bodies formed by this division are respectively processed. It is configured to move back and forth independently in the radial direction.

【0012】略円筒状をなす処理容器と、この処理容器
内の底部近傍で水平回転する回転盤とを有し、系外より
回転盤の下方に供給されたガス流を、回転盤の外径面と
これに対向する処理容器の内径面との間に形成されたリ
ング状隙間から上方に噴出させ、この上昇ガス流と回転
盤の回転運動との相乗作用により、処理容器内の粒子に
転動流動を行なわせて造粒・コーティングなどの粒子処
理作業を施す装置において、前記リング状隙間の直下部
に、内径側内周面の上端部に前記回転盤の下面との間で
シールを行なうシール部を有すると共に、外径側内周面
が処理容器の内径面と連結され、かつ、前記リング状隙
間との対向部位を開口させたリング状ダクトを設け、こ
のリング状ダクトに、接線方向でかつ前記回転盤の回転
方向と同一方向に向けて下部ノズルを装着し、前記リン
グ状隙間を構成する回転盤の外径面と、これに対向する
処理容器の内径面とを略平行な傾斜面に形成し、かつ、
回転盤の外径面と処理容器の傾斜面とを垂直方向に相対
移動させる。
It has a substantially cylindrical processing container and a rotary disk that horizontally rotates near the bottom of the processing container. The gas flow supplied from outside the system to the lower part of the rotary disk is the outer diameter of the rotary disk. It is jetted upward from a ring-shaped gap formed between the surface and the inner diameter surface of the processing container which faces the surface, and is transferred to particles in the processing container by the synergistic effect of this rising gas flow and the rotary motion of the rotating disk. In an apparatus that performs particle processing operations such as granulation and coating by performing dynamic flow, sealing is performed immediately below the ring-shaped gap and at the upper end of the inner peripheral surface on the inner diameter side with the lower surface of the rotating disk. A ring-shaped duct having a seal portion, an inner peripheral surface on the outer diameter side connected to the inner diameter surface of the processing container, and an opening at a portion facing the ring-shaped gap is provided, and the ring-shaped duct has a tangential direction. And in the same direction as the rotating direction of the turntable Only the lower nozzle and mounted, and formed into a substantially parallel inclined surfaces and inner surface of the outer diameter surface of the turntable constituting the ring gap, the processing vessel opposed thereto, and,
The outer diameter surface of the turntable and the inclined surface of the processing container are moved relative to each other in the vertical direction.

【0013】略円筒状をなす処理容器と、この処理容器
内の底部近傍で水平回転する回転盤とを有し、系外より
回転盤の下方に供給されたガス流を、回転盤の外径面と
これに対向する処理容器の内径面との間に形成されたリ
ング状隙間から上方に噴出させ、この上昇ガス流と回転
盤の回転運動との相乗作用により、処理容器内の粒子に
転動流動を行なわせて造粒・コーティングなどの粒子処
理作業を施す装置において、前記処理容器の内径面の、
流動粒子の平均最上昇位置付近に、処理容器の内部空間
に向けてガス流を供給する帯状のガス噴出部を設けた。
A processing container having a substantially cylindrical shape and a rotary disk which horizontally rotates near the bottom of the processing container are provided. A gas flow supplied from the outside of the system to the lower part of the rotary disk has an outer diameter of the rotary disk. It is jetted upward from a ring-shaped gap formed between the surface and the inner diameter surface of the processing container which faces the surface, and is transferred to particles in the processing container by the synergistic effect of this rising gas flow and the rotary motion of the rotating disk. In a device for performing particle processing work such as granulation / coating by performing dynamic flow, in the inner diameter surface of the processing container,
A strip-shaped gas jetting portion for supplying a gas flow toward the internal space of the processing container was provided near the average highest rising position of the fluidized particles.

【0014】また、回転盤の中央部を略円錐型に隆起さ
せた。
Further, the central portion of the turntable is raised in a substantially conical shape.

【0015】処理容器の側面壁に、処理液供給用ノズル
と粉末供給用ノズルを設けた。
A processing liquid supply nozzle and a powder supply nozzle were provided on the side wall of the processing container.

【0016】処理容器の側面壁に、粒子の流動範囲内を
狙って粉末供給用ノズルを設けると共に、この粉末供給
用ノズル内に同芯状態で処理液供給用ノズルを収容し
た。
A powder supply nozzle was provided on the side wall of the processing container aiming at the flow range of the particles, and the processing liquid supply nozzle was housed concentrically in the powder supply nozzle.

【0017】処理容器の側面壁に、粒子の流動範囲内に
検出部を位置させて湿潤度検出手段を設けた。
On the side wall of the processing container, the wettability detecting means was provided by locating the detecting portion within the flow range of the particles.

【0018】[0018]

【作用】リング状隙間から落下した粒子は、リング状ダ
クトで回収され、下部ノズルから供給される接線方向の
ガス流によって当該ダクト内を回転盤と同方向に旋回す
る。ここで、リング状ダクトが、その内径側内周面に設
けたシール部により回転盤に対してシールされているた
め、ダクト内の粒子が外部に漏れることはない。やが
て、この粒子は、旋回しながらリング状隙間を経て回転
盤の上方に吹き上げられ、処理容器内を旋回・上昇す
る。また、回転盤上を転動してリング状隙間に達した粒
子も、この旋回ガス流を受けて処理容器内を旋回しなが
ら上昇する。このように、粒子に旋回ガス流を作用させ
た場合には、単に垂直方向のガス流のみを作用させる場
合に比べて、粒子の流動運動がより活発化する。
The particles dropped from the ring-shaped gap are collected in the ring-shaped duct and swirled in the duct in the same direction as the turntable by the tangential gas flow supplied from the lower nozzle. Here, since the ring-shaped duct is sealed to the rotary disk by the seal portion provided on the inner peripheral surface of the inner diameter side, particles in the duct do not leak to the outside. Eventually, the particles are blown up through the ring-shaped gap while swirling, and swirl and rise in the processing container. Further, the particles rolling on the rotating disk and reaching the ring-shaped gap also rise while swirling in the processing container by receiving the swirling gas flow. As described above, when the swirling gas flow is applied to the particles, the flow motion of the particles becomes more active than when only the vertical gas flow is applied.

【0019】処理容器の、少なくとも回転盤の外径面と
の対向部位を、周方向で複数に分割し、この分割によっ
て形成された円弧状の分割体を、それぞれ処理容器から
独立して径方向に進退移動自在に構成することにより、
リング状隙間の幅を縮小・拡大させることが可能とな
り、円滑な隙間調整が行なえる。
At least a portion of the processing container facing the outer diameter surface of the rotating disk is divided into a plurality of pieces in the circumferential direction, and the arc-shaped divided bodies formed by the division are independently provided in the processing container in the radial direction. By configuring it to move back and forth freely,
The width of the ring-shaped gap can be reduced or expanded, allowing smooth gap adjustment.

【0020】処理容器の内径面の、流動粒子の平均最上
昇位置付近に、処理容器の内部空間に向けてガス流を供
給するガス噴出部を形成することにより、処理容器の内
径面に付着した粒子は、ガス噴出部から供給されたガス
流によって処理容器の内部方向に吹き飛ばされる。これ
により、処理容器の内径面に付着する粒子を低減させる
ことが可能となる。また、このガス流により、処理容器
の上部に生じる粒子の滞留域が消滅するので、粒子の流
動運動をより活発化させることが可能となる。
By adhering to the inner diameter surface of the processing container, a gas ejection portion for supplying a gas flow toward the inner space of the processing container is formed in the vicinity of the average highest rising position of the fluidized particles on the inner diameter surface of the processing container. The particles are blown toward the inside of the processing container by the gas flow supplied from the gas ejection portion. This makes it possible to reduce the amount of particles attached to the inner diameter surface of the processing container. In addition, this gas flow eliminates the particle retention region generated in the upper part of the processing container, so that the flow motion of the particles can be further activated.

【0021】[0021]

【実施例】以下、本発明の実施例を図1乃至図8に基づ
いて説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0022】図1は、本発明にかかる粒子処理装置の断
面図である。但し、図1では、粒子処理装置の上部構
造、例えば排気設備等の図示を省略している。
FIG. 1 is a sectional view of a particle processing apparatus according to the present invention. However, in FIG. 1, an upper structure of the particle processing apparatus, for example, an exhaust facility is not shown.

【0023】ほぼ円筒状をなす処理容器(1)の底部に
は、処理容器(1)の下端縁に近接させて円形の回転盤
(3)が水平に配置される。この回転盤(3)は、下方
に配置した無段可変速式のモータ(図示省略)により駆
動され、任意の速度で一定方向、例えば図面右回りに回
転する。この回転盤(3)の外周部は、漸次薄肉化しな
がら上方に向けてカーブを描くように形成され、かつ、
その外径面は略垂直に形成されている。回転盤(3)の
中心部には、略円錐型の隆起部材(5)が装着されてお
り、この隆起部材(5)の外周面と回転盤(3)の上面
とは、滑らかな曲面で連続している。これにより、上方
から落下した粒子は、隆起部材(5)を滑り落ちながら
円滑にその運動方向を径方向に変換する。従って、粒子
の流動運動が円滑化され、効率的な粒子処理作業が可能
となる。
At the bottom of the substantially cylindrical processing container (1), a circular turntable (3) is horizontally arranged close to the lower edge of the processing container (1). The turntable (3) is driven by a continuously variable speed motor (not shown) arranged below and rotates at a given speed in a certain direction, for example, clockwise in the drawing. The outer peripheral portion of the turntable (3) is formed so as to curve upward while gradually thinning, and
The outer diameter surface is formed substantially vertically. A substantially conical raised member (5) is attached to the center of the turntable (3), and the outer peripheral surface of the raised member (5) and the upper surface of the turntable (3) are smooth curved surfaces. It is continuous. As a result, the particles that have fallen from above smoothly convert their movement direction to the radial direction while sliding down the raised member (5). Therefore, the flow motion of particles is smoothed, and efficient particle processing work is possible.

【0024】上記回転盤(3)の周囲でかつ回転盤
(3)とほぼ同一平面上には、隙間調整機構(7)が設
けられる。この隙間調整機構(7)は、円弧状をなす複
数の分割体(9)を薄型のエアシリンダ(11)でそれぞ
れ径方向に進退運動させることにより、分割体(9)の
内径面と、回転盤(3)の外径面との間に形成されたリ
ング状隙間(13)を縮小・拡大させるためのものであ
る。
A clearance adjusting mechanism (7) is provided around the rotary disk (3) and on substantially the same plane as the rotary disk (3). The gap adjusting mechanism (7) rotates a plurality of arc-shaped divided bodies (9) in a radial direction by a thin air cylinder (11) to rotate the divided body (9) and the inner diameter surface of the divided body (9). It is for reducing / enlarging the ring-shaped gap (13) formed between the outer diameter surface of the board (3).

【0025】分割体(9)は、図2の断面図に示すよう
に、適当なリング体を周方向に4等分することにより形
成され、各分割体(9)の中央部でかつ外径側には4つ
のエアシリンダ(11)がそれぞれ連結されている。各分
割体(9)間には、基板(19)に固設した二等辺三角形
型をなすガイド(15)が配置されており、このガイド
(15)によって各分割体(9)の移動方向が径方向に規
制される。
As shown in the sectional view of FIG. 2, the divided body (9) is formed by dividing an appropriate ring body into four equal parts in the circumferential direction, and the divided body (9) is at the central portion and has an outer diameter. Four air cylinders (11) are connected to each side. A guide (15) having an isosceles triangle shape fixed to the substrate (19) is arranged between the divided bodies (9), and the guide (15) controls the moving direction of each divided body (9). It is restricted in the radial direction.

【0026】図3は、隙間調整機構(7)の周辺構造を
示す拡大断面図である。同図に示すように、分割体
(9)は、案内部材(17)と基板(19)との間に配置さ
れる。前記案内部材(17)は、処理容器(1)の下端部
に装着されており、その内径面は、回転盤(3)の外周
側上面および処理容器(1)の内径面と連続したカーブ
を描く曲面状に形成されている。また、案内部材(17)
には、分割体(9)および案内部材(17)間の接触部
と、外部空間とを連通するパージエアー流路(21)が形
成されている。このパージエアー流路(21)にエアーを
吹き込むことにより、案内部材(17)および分割体
(9)間の隙間への粒子の侵入を防止することができ
る。基板(19)には、突部(23)が設けられると共に、
この突部(23)より外径側に規制部材(25)が装着され
ている。突部(23)の外径面と規制部材(25)の内径面
とで構成された凹部(27)には、分割体(9)の下面に
突設した係合部(29)が径方向の隙間(s)をもって嵌
め込まれている。これにより、分割体(9)は、隙間
(s)の範囲内で径方向に移動可能となる。前記エアシ
リンダ(11)は、基板(19)上に装着されており、その
ピストンロッド(31)は案内部材(17)を貫通して分割
体(9)内に嵌入固定されている。分割体(9)と基板
(19)との間の内径側には、分割体(9)の径方向移動
を円滑ならしめるべく、低摩擦性を有するテフロンリン
グ(32)が装着されている。
FIG. 3 is an enlarged sectional view showing the peripheral structure of the gap adjusting mechanism (7). As shown in the figure, the divided body (9) is arranged between the guide member (17) and the substrate (19). The guide member (17) is attached to the lower end of the processing container (1), and the inner diameter surface of the guiding member (17) forms a curve continuous with the upper surface on the outer peripheral side of the rotating disk (3) and the inner diameter surface of the processing container (1). It is shaped like a curved surface. Guide members (17)
A purge air flow path (21) is formed in the contact space between the contact portion between the divided body (9) and the guide member (17) and the external space. By blowing air into the purge air flow path (21), it is possible to prevent particles from entering the gap between the guide member (17) and the divided body (9). The board (19) is provided with a protrusion (23),
A restricting member (25) is mounted on the outer diameter side of the protrusion (23). An engaging portion (29) protruding from the lower surface of the split body (9) is radially provided in the recess (27) formed by the outer diameter surface of the protrusion (23) and the inner diameter surface of the regulating member (25). It is fitted with a gap (s). Thereby, the divided body (9) can be moved in the radial direction within the range of the gap (s). The air cylinder (11) is mounted on the base plate (19), and the piston rod (31) thereof is fitted and fixed in the split body (9) by penetrating the guide member (17). A Teflon ring (32) having low friction is mounted on the inner diameter side between the split body (9) and the substrate (19) so as to smooth the radial movement of the split body (9).

【0027】このような構成により、各エアシリンダ
(11)を進出・縮退させると、各分割体(9)が径方向
に進退動作を行い、リング状隙間(13)の幅(t)が縮
小・拡大する。これにより、処理作業中における所望の
隙間量(t)が簡単に得られる。また、各エアシリンダ
(11)を独立して進出・縮退させることにより、必要箇
所のみで隙間調整を行なうことも可能である。即ち、例
えば回転盤(3)と処理容器(1)との偏心により、リ
ング状隙間(13)に幅広部分および幅狭部分が生じた場
合であっても、当該幅広部分および幅狭部分のみを所定
の幅に調整することができる。
With such a structure, when each air cylinder (11) is moved in and out, each divided body (9) moves forward and backward in the radial direction, and the width (t) of the ring-shaped gap (13) is reduced. ·Expanding. This makes it possible to easily obtain the desired gap amount (t) during the processing operation. In addition, it is possible to adjust the clearance only at a necessary portion by advancing and retracting each air cylinder (11) independently. That is, for example, even when a wide portion and a narrow portion are generated in the ring-shaped gap (13) due to the eccentricity between the turntable (3) and the processing container (1), only the wide portion and the narrow portion are formed. It can be adjusted to a predetermined width.

【0028】なお、本実施例では、規制部材(25)およ
び係合部(29)間の隙間の幅(s)と、分割体(9)の
最進出時(図3に示す状態をいう)におけるリング状隙
間の幅(t)とを何れも1mm程度としている。従って、
リング状隙間の幅(t)は、1mm〜2mmの範囲内で調整可
能となっている。
In this embodiment, the width (s) of the gap between the regulating member (25) and the engaging portion (29) and the maximum advance of the divided body (9) (refer to the state shown in FIG. 3). The width (t) of the ring-shaped gap in each is about 1 mm. Therefore,
The width (t) of the ring-shaped gap can be adjusted within the range of 1 mm to 2 mm.

【0029】図4に隙間調整機構(7)の他の実施例を
示す。これは、リング状隙間(13)を、回転盤(3)の
外径面と、これに対向させて処理容器(1)の内径面に
装着したリング状の隙間構成部材(30)の内径面とで構
成し、回転盤(3)を昇降機構(図示省略)で上下動さ
せることにより、垂直方向の隙間調整を行なうものであ
る。この時、回転盤(3)の外径面、および、隙間構成
部材(30)の内径面は、リング状隙間(13)の断面が外
径側に向けて昇り傾斜となる傾斜面に形成されている。
これにより、昇降機構を起動して回転盤(3)を昇降さ
せると、リング状隙間(13)の幅を拡大・縮小させるこ
とが可能となる。なお、前記隙間調整は、回転盤(3)
を固定して隙間構成部材(30)を昇降させたり、リング
状隙間(13)の断面を外径側に向けて下り傾斜とした場
合でも同様に行なえる。
FIG. 4 shows another embodiment of the gap adjusting mechanism (7). This is the inner diameter surface of the ring-shaped gap forming member (30) in which the ring-shaped clearance (13) is attached to the outer diameter surface of the turntable (3) and the inner diameter surface of the processing container (1) so as to face it. The vertical gap is adjusted by vertically moving the rotating disk (3) by an elevating mechanism (not shown). At this time, the outer diameter surface of the turntable (3) and the inner diameter surface of the gap forming member (30) are formed as inclined surfaces in which the cross section of the ring-shaped gap (13) is inclined upward toward the outer diameter side. ing.
As a result, when the raising / lowering mechanism is activated to raise / lower the turntable (3), the width of the ring-shaped gap (13) can be enlarged or reduced. In addition, the clearance adjustment is performed by the rotating disk (3).
The same can be done even when the above is fixed and the gap forming member (30) is moved up and down, or when the cross section of the ring-shaped gap (13) is inclined downward toward the outer diameter side.

【0030】回転盤(3)の下方には、上面を開放させ
たリング状ダクト(33)が設けられる。このリング状ダ
クト(33)は、外径側に配した外方部材(35)と内径側
に配した断面L型の内方部材(37)とを組み合わせて構
成され、外方部材(35)および内方部材(37)の内面
は、連続した滑らかな曲面状に形成されている。外方部
材(35)は、シールリング(39)を介して基板(19)の
内径面に装着される。この時、外方部材(35)、基板
(19)、テフロンリング(32)、最進出時における分割
体(9)の各内径面は、それぞれ同一垂直面上に位置さ
せる。また、案内部材(17)の内径側の最突出部と、最
退入時における分割体(9)の内径面も同一垂直面上に
位置させる。内方部材(37)の上端部には、回転盤
(3)の下面と気密に摺接するシール部(41)、例えば
Vリングが装着されている。
A ring-shaped duct (33) having an open upper surface is provided below the turntable (3). The ring-shaped duct (33) is configured by combining an outer member (35) arranged on the outer diameter side and an inner member (37) arranged on the inner diameter side and having an L-shaped cross section, and the outer member (35). The inner surface of the inner member (37) is formed into a continuous smooth curved surface. The outer member (35) is attached to the inner diameter surface of the substrate (19) via the seal ring (39). At this time, the outer member (35), the substrate (19), the Teflon ring (32), and the inner diameter surfaces of the split body (9) at the time of the most advance are positioned on the same vertical surface. Further, the most projecting portion on the inner diameter side of the guide member (17) and the inner diameter surface of the split body (9) at the time of retreating are also positioned on the same vertical plane. At the upper end of the inner member (37), a seal portion (41), for example, a V ring, which is in airtight sliding contact with the lower surface of the rotating disk (3) is mounted.

【0031】前記リング状ダクト(33)には、図5に示
すように、接線方向でかつ回転盤(3)の回転方向と同
一方向に向けて下部ノズル(43)が連結される。この下
部ノズル(43)からは、図示しない加熱給気源から供給
された高温のガス流、例えば空気流が噴出する。なお、
下部ノズル(43)は、図示のようにリング状ダクト(3
3)の一ヶ所のみに設ける他、複数箇所に設けておいて
もよい。
As shown in FIG. 5, a lower nozzle (43) is connected to the ring-shaped duct (33) in a tangential direction and in the same direction as the rotating direction of the rotating disk (3). From this lower nozzle (43), a high-temperature gas stream, for example, an air stream, supplied from a heating air supply source (not shown) is ejected. In addition,
The lower nozzle (43) has a ring-shaped duct (3
3) Not only at one place but also at multiple places.

【0032】図1中の参照番号(45)は、前記リング状
ダクト(33)を処理容器(1)の底部に固定するための
クランプ機構である。このクランプ機構(45)を解除す
ることにより、リング状ダクト(33)を処理容器(1)
の底部から取り外すことができる。このように、リング
状ダクト(33)を処理容器(1)の底部に着脱自在に装
着することにより、リング状ダクト(33)の洗浄作業が
容易にかつ確実に行なえるようになる。
Reference numeral (45) in FIG. 1 is a clamp mechanism for fixing the ring-shaped duct (33) to the bottom of the processing container (1). By releasing the clamp mechanism (45), the ring-shaped duct (33) is removed from the processing container (1).
Can be removed from the bottom of the. As described above, the ring-shaped duct (33) is detachably attached to the bottom of the processing container (1), whereby the ring-shaped duct (33) can be easily and surely cleaned.

【0033】上記構成により、リング状隙間(13)から
落下した粒子は、下部ノズル(43)から供給される接線
方向の空気流により、リング状ダクト(33)内で回転盤
(3)と同方向に旋回する。やがて、粒子は、旋回しな
がら遠心力によってリング状ダクト(33)内を外径側に
移動し、外方部材(35)と内方部材(37)の連結部に形
成された滑らかな連続曲面に案内されて円滑に上昇運動
を開始する。そして、この粒子は、リング状隙間(13)
を経て回転盤(3)の上方に吹き上げられ、処理容器
(1)内を旋回しながら上昇する。この時、処理容器
(1)の内径がリング状隙間(13)の最大径よりも大き
くされ、しかも、案内部材(17)および処理容器(1)
の内径面が滑らかな曲面で連続していることから、リン
グ状隙間(13)を通過した粒子は、遠心力によって効率
よく処理容器(1)の内径面の近傍に移動し、上昇運動
を開始することができる。一方、回転盤(3)上を径方
向に転動した粒子は、リング状隙間(13)に達したとこ
ろで旋回空気流を受け、同様に処理容器(1)内を旋回
しながら上昇する。この時、回転盤(3)の外周側上面
から案内部材(17)及び処理容器(1)の内径面にかけ
ては滑らかな曲面状に形成されているので、回転盤
(3)上の粒子は、リング状隙間(13)を越えて処理容
器(1)の内径面まで円滑に転動し、効率よく上昇運動
を開始することができる。
With the above structure, the particles dropped from the ring-shaped gap (13) are moved in the ring-shaped duct (33) into the same shape as the rotating disk (3) by the tangential air flow supplied from the lower nozzle (43). Turn in the direction. Eventually, the particles move to the outer diameter side in the ring-shaped duct (33) by centrifugal force while swirling, and a smooth continuous curved surface formed at the connecting portion between the outer member (35) and the inner member (37). Guided by and smoothly start the ascending movement. And, this particle has a ring-shaped gap (13).
It is blown up above the turntable (3) through the and goes up while swirling in the processing container (1). At this time, the inner diameter of the processing container (1) is made larger than the maximum diameter of the ring-shaped gap (13), and further, the guide member (17) and the processing container (1).
Since the inner diameter surface of is continuous with a smooth curved surface, the particles that have passed through the ring-shaped gap (13) are efficiently moved to the vicinity of the inner diameter surface of the processing container (1) by centrifugal force, and the ascending motion is started. can do. On the other hand, the particles rolling in the radial direction on the rotating disk (3) receive a swirling air flow when reaching the ring-shaped gap (13) and similarly rise while swirling in the processing container (1). At this time, since a smooth curved surface is formed from the outer peripheral upper surface of the turntable (3) to the inner diameter surface of the guide member (17) and the processing container (1), particles on the turntable (3) are It is possible to smoothly roll over the ring-shaped gap (13) to the inner diameter surface of the processing container (1) and efficiently start the upward movement.

【0034】上記構成では、リング状ダクト(33)が、
内方部材(37)の上部に設けたシール部(41)により、
回転盤(3)に対してシールされているため、リング状
ダクト(33)に回収された粒子が外部に漏れることはな
い。従って、装置の作動時・停止時、即ち、旋回空気流
の導入時・非導入時を問わず、リング状隙間(13)から
落下した粒子が、外部に漏れることはない。また、リン
グ状ダクト(33)の内部が滑らかな曲面に形成されてい
るので、リング状ダクト(33)内に付着する粒子の量が
比較的少なくなり、かつ、その付着力も低くなる。従っ
て、所定の処理作業完了後、クランプ機構(45)を解除
し、リング状ダクト(33)を取り外して洗浄作業を行な
う際にも、容易に且つ確実に付着粒子を除去することが
できる。これにより、粒子のコンタミネーションが確実
に回避され、GMPの問題も完全に解消される。
In the above structure, the ring-shaped duct (33) is
By the seal part (41) provided on the upper part of the inner member (37),
Since the rotation disk (3) is sealed, the particles collected in the ring-shaped duct (33) do not leak outside. Therefore, the particles that have fallen from the ring-shaped gap (13) do not leak to the outside regardless of whether the device is operating or stopped, that is, whether the swirling airflow is introduced or not introduced. Moreover, since the inside of the ring-shaped duct (33) is formed into a smooth curved surface, the amount of particles adhering to the inside of the ring-shaped duct (33) is relatively small, and its adhesion is also low. Therefore, even when the clamp mechanism (45) is released and the ring-shaped duct (33) is removed to perform the cleaning operation after the predetermined processing operation is completed, the adhered particles can be easily and surely removed. This ensures that particle contamination is avoided and the GMP problem is completely eliminated.

【0035】また、リング状隙間(13)から落下した粒
子および回転盤(3)上を転動した粒子の何れにも回転
盤(3)の回転方向と同方向の旋回空気流が作用するの
で、従来装置のように垂直方向の空気流のみを作用させ
る場合に比べ、粒子の流動運動をより活発化させること
が可能である。
Further, since the swirling air flow in the same direction as the rotating direction of the rotating disk (3) acts on both the particles dropped from the ring-shaped gap (13) and the particles rolling on the rotating disk (3). It is possible to further activate the flow motion of particles, as compared with the case where only a vertical air flow is applied as in the conventional device.

【0036】さらに、リング状隙間(13)に空気流を流
通させるための空気流供給部が、比較的厚みの薄いリン
グ状ダクト(33)で構成されており、従来装置のそれに
比べてコンパクトな構造となっている。従って、リング
状ダクト(33)の取り外し作業やその後の洗浄作業も容
易に且つ迅速に行なうことができる。
Further, the air flow supply portion for circulating the air flow through the ring-shaped gap (13) is composed of the ring-shaped duct (33) having a relatively small thickness, which is more compact than that of the conventional device. It has a structure. Therefore, the removal work of the ring-shaped duct (33) and the subsequent cleaning work can be performed easily and quickly.

【0037】なお、図4に示す隙間調整機構(7)、即
ち、回転盤(3)を昇降させて隙間調整を行なう機構を
採用する場合には、回転盤(3)の昇降によって回転盤
(3)とシール部(41)との間に隙間が形成され、粒子
の漏れが生じるおそれがある。従って、この場合には、
リング状ダクト(33)の気密性を確保すべくシール部
(41)の舌片(41a)の長さを通常より若干長くさせて
おくのが望ましい。但し、舌片(41a)の長さが短く、
これによって回転盤(3)とシール部(41)の間に若干
の隙間が形成されている場合にも、リング状ダクト(3
3)内のほとんどの粒子が遠心力によって外径側に飛ば
されているため、内径側の隙間から粒子が外部に漏れだ
すおそれはほとんどない。
When the gap adjusting mechanism (7) shown in FIG. 4, that is, the mechanism for adjusting the gap by raising and lowering the rotating disc (3) is adopted, the rotating disc (3) is lifted to move the rotating disc (3). A gap may be formed between 3) and the seal part (41), and particles may leak. So in this case,
In order to ensure the airtightness of the ring-shaped duct (33), it is desirable to make the length of the tongue piece (41a) of the seal part (41) slightly longer than usual. However, the length of the tongue piece (41a) is short,
As a result, even when a slight gap is formed between the rotating disk (3) and the seal portion (41), the ring-shaped duct (3
Most of the particles in 3) are blown to the outer diameter side by centrifugal force, so there is almost no risk of particles leaking out from the gap on the inner diameter side.

【0038】処理容器(1)の内径面の、流動粒子の平
均的な最上昇位置には、帯状のガス噴出部、例えば空気
噴出部(50)が設けられる。以下、この空気噴出部(5
0)の構造を図6および図7に基づいて説明する。
A strip-shaped gas jetting portion, for example, an air jetting portion (50) is provided at the average highest position of the fluidized particles on the inner diameter surface of the processing container (1). Below, this air ejection part (5
The structure of (0) will be described with reference to FIGS. 6 and 7.

【0039】図6に示すように、処理容器(1)の外径
面には、2つのカバー(51)(51)が略半周ごとに装着
されている。このカバー(51)と処理容器(1)の外径
面とで囲繞された空間が空気流路(53)(53)となる。
両空気流路(53)(53)の一端部には、図示しない加熱
給気源と接続した上部ノズル(54)(54)が、接線方向
でかつ回転盤(3)の回転方向と同一方向に向けて連結
されている。
As shown in FIG. 6, two covers (51) and (51) are attached to the outer diameter surface of the processing container (1) approximately every half circumference. The space surrounded by the cover (51) and the outer diameter surface of the processing container (1) becomes the air flow paths (53) (53).
Upper end nozzles (54) (54) connected to a heating air supply source (not shown) are tangential to one end of both air flow paths (53) (53) and in the same direction as the rotating direction of the rotating disk (3). Are linked towards.

【0040】図7に示すように、処理容器(1)の側面
壁(1a)の、カバー(51)で覆われた部分の内径面に
は、環状溝(55)が形成されている。側面壁(1a)の内
径面には、この環状溝(55)を塞ぐようにして焼結金網
からなる抵抗板(57)が装着されている。この抵抗板
(57)としては、焼結金網の他、粒子の通過を阻止し、
且つ、一定の通気抵抗を有する通気性材料が利用でき
る。また、側面壁(1a)には、環状溝(55)と空気流路
(53)とを連通する吐出口(60)が円周等配位置の複数
箇所に設けられている。
As shown in FIG. 7, an annular groove (55) is formed on the inner surface of the side wall (1a) of the processing container (1) covered with the cover (51). A resistance plate (57) made of a sintered wire mesh is mounted on the inner diameter surface of the side wall (1a) so as to close the annular groove (55). As the resistance plate (57), in addition to the sintered wire mesh, the passage of particles is blocked,
Moreover, a breathable material having a certain breathing resistance can be used. Further, the side wall (1a) is provided with discharge ports (60) communicating with the annular groove (55) and the air flow path (53) at a plurality of positions at equal intervals on the circumference.

【0041】このような構成により、上部ノズル(54)
から供給された空気流は、空気流路(53)、吐出口(6
0)、環状溝(55)、抵抗板(57)を順次通過し、空気
噴出部(50)から処理容器(1)の内部に噴出する。こ
の空気流により、処理容器(1)の内径面に付着しよう
とする粒子が吹き飛ばされるので、粒子の付着量の低減
を図ることが可能になる。また、この空気流の作用によ
り粒子の滞留域も消滅するので、粒子の流動運動の活発
化および乾燥作業の迅速化が達成される。
With this structure, the upper nozzle (54)
The air flow supplied from the air flow path (53) and the discharge port (6
0), the annular groove (55) and the resistance plate (57) in this order, and jets from the air jetting section (50) into the processing container (1). This air flow blows away particles that tend to adhere to the inner diameter surface of the processing container (1), so that the amount of particles attached can be reduced. Further, since the retention area of the particles disappears by the action of the air flow, the flow motion of the particles is activated and the drying operation is speeded up.

【0042】なお、図6に示すように、カバー(51)の
一端部には蝶番(62)が装着され、また、他端部には適
当なロック機構(図示省略)が装着されている。従っ
て、ロック機構を解除すれば、二点鎖線で示すようにカ
バー(51)を開放することができ、これによって空気流
路(53)や吐出口(60)等の洗浄作業を容易に且つ確実
に行うことができる。また、上述のように空気流路(5
3)と処理容器(1)の内部空間との間に、一定の通気
抵抗を有する抵抗板(57)を介在させることにより、空
気流を、上部ノズル(54)の近傍のみからだけなく、空
気流路(53)の全域から均等に噴出させることができ
る。
As shown in FIG. 6, a hinge (62) is attached to one end of the cover (51), and an appropriate lock mechanism (not shown) is attached to the other end. Therefore, if the lock mechanism is released, the cover (51) can be opened as shown by the chain double-dashed line, which makes it easy and reliable to clean the air flow path (53) and the discharge port (60). Can be done. In addition, as described above, the air flow path (5
By interposing a resistance plate (57) having a constant ventilation resistance between the processing space (3) and the inner space of the processing container (1), the air flow is generated not only from the vicinity of the upper nozzle (54) but also the air flow. It is possible to uniformly eject from the entire area of the flow path (53).

【0043】図1に示すように、処理容器(1)内の回
転盤(3)と空気噴出部(50)との間には、バインダー
液やコーティング液を供給するための処理液供給ノズル
(65)が設けられる。この位置に処理液供給ノズル(6
5)を設けることにより、バインダー液等が流動粒子の
最上昇位置と最下降位置の間、即ち、粒子の流動範囲内
に直接噴霧されることとなる。従って、これらの材料を
処理容器(1)内の粒子全体に満遍無く行き渡せること
ができ、効率的なコーティング、造粒作業を行なうこと
が可能となる。
As shown in FIG. 1, a treatment liquid supply nozzle (for supplying a binder liquid or a coating liquid) between the rotary disk (3) and the air jetting portion (50) in the treatment container (1) ( 65) is provided. At this position, the processing liquid supply nozzle (6
By providing 5), the binder liquid or the like is directly sprayed between the highest position and the lowest position of the fluidized particles, that is, within the flow range of the particles. Therefore, these materials can be evenly distributed over the entire particles in the processing container (1), and efficient coating and granulation operations can be performed.

【0044】また、処理容器(1)内の空気噴出部(5
0)の上方には、修飾造粒用の粉末を供給するための粉
末供給用ノズル(67)が設けられる。造粒作業中にこの
粉末供給用ノズル(67)から適当な粉末を供給すること
により、粉末が流動粒子の表面に付着して層状の修飾造
粒が施される。
Further, the air jetting part (5
A powder supply nozzle (67) for supplying the powder for the modified granulation is provided above 0). By supplying an appropriate powder from the powder supplying nozzle (67) during the granulating operation, the powder adheres to the surface of the fluidized particles and the layered modified granulation is performed.

【0045】前記処理液供給用ノズル(65)および粉末
供給用ノズル(67)は、本出願人が特開平4-145937号で
提案したように、一体化させておいてもよい。具体的に
は、図8に示すように、粉末供給用ノズル(67)内に、
先端部を当該粉末供給用ノズル(67)の先端開口からや
や後退させて処理液供給用ノズル(65)を同芯状態で収
納する。また、粉末供給用ノズル(67)の基端部側の外
径面に粉末供給用のホッパー(71)と空気供給口(73)
とを設けると共に、先端部側の内径面に所定の間隔で多
数の空気吹き出し口(75)を設けたリング状部材(77)
を装着する。この処理液供給用ノズル(65)および粉末
供給用ノズル(67)は、その開口部を回転盤(3)と空
気噴出部(50)との間に位置させて、接線方向で且つ回
転盤(3)の回転方向と同一方向に向けて処理容器
(1)の側面壁に装着する。
The treatment liquid supply nozzle (65) and the powder supply nozzle (67) may be integrated as proposed by the present applicant in Japanese Patent Laid-Open No. 4-145937. Specifically, as shown in FIG. 8, in the powder supply nozzle (67),
The tip portion is slightly retracted from the tip opening of the powder supply nozzle (67) to house the treatment liquid supply nozzle (65) in the concentric state. Further, a powder supply hopper (71) and an air supply port (73) are provided on the outer diameter surface of the powder supply nozzle (67) on the base end side.
And a ring-shaped member (77) provided with a large number of air outlets (75) at predetermined intervals on the inner diameter surface on the tip side.
Put on. The treatment liquid supply nozzle (65) and the powder supply nozzle (67) have their openings located between the rotary disk (3) and the air jetting section (50), and are tangential to the rotary disk ( It is attached to the side wall of the processing container (1) in the same direction as the rotating direction of 3).

【0046】以下、上述の一体化させた処理液供給用ノ
ズル(65)および粉末供給用ノズル(67)の作用・効果
を説明する。
The operation and effect of the above-mentioned integrated treatment liquid supply nozzle (65) and powder supply nozzle (67) will be described below.

【0047】空気供給口(73)に圧縮空気を供給し、リ
ング状部材(77)の空気吹き出し口(75)から空気を噴
出させながら、処理液供給用ノズル(65)からコーティ
ング液やバインダー液を噴霧する。すると、空気吹き出
し口(75)から吹き出す空気により、粉末供給用ノズル
(67)の前方に粒子密度の低い空間が現出する。従っ
て、処理液供給用ノズル(65)から供給された、分散、
霧化した液滴が効率よく流動粒子と接触できるようにな
り、粗大粒子や団粒のない良好なコーティングや造粒を
施すことが可能となる。
While supplying compressed air to the air supply port (73) and ejecting air from the air blowing port (75) of the ring-shaped member (77), the coating liquid or binder liquid is discharged from the treatment liquid supply nozzle (65). To spray. Then, the air blown out from the air blowing port (75) causes a space having a low particle density to appear in front of the powder supply nozzle (67). Therefore, the dispersion liquid supplied from the treatment liquid supply nozzle (65),
The atomized droplets can efficiently come into contact with the fluidized particles, and good coating or granulation without coarse particles or aggregates can be performed.

【0048】また、修飾造粒を施す場合は、処理液供給
用ノズル(65)からバインダー液を噴霧すると共に、粉
末供給用ホッパー(71)に粉末を供給する。この粉末
は、空気供給口(73)から供給された空気流により、リ
ング状部材(77)の空気吹き出し口(75)から分散状態
で噴出する。従って、粉末が効率よく且つ迅速に流動粒
子に付着できるようになり、粒子の表面に良好な層状の
修飾造粒を施すことが可能となる。
When the modified granulation is performed, the binder liquid is sprayed from the treatment liquid supply nozzle (65) and the powder is supplied to the powder supply hopper (71). This powder is jetted in a dispersed state from the air blowout port (75) of the ring-shaped member (77) by the air flow supplied from the air supply port (73). Therefore, the powder can be efficiently and quickly attached to the fluidized particles, and the surface of the particles can be subjected to favorable layered modified granulation.

【0049】粒子の湿潤度を検出するための湿潤度検出
手段(78)は、その検出部(79)を回転盤(3)と空気
噴出部(50)との間、即ち、粒子の流動範囲内に位置さ
せて処理容器(1)の側壁に設けらる。これにより、流
動粒子の湿潤度が直接的に検知できるので、より一層正
確な湿潤度が検出できる。この湿潤度検出手段(78)の
出力は、前記処理液供給ノズル(65)の給液ポンプ(図
示省略)を制御する制御装置(図示省略)に入力させ
る。
The wettability detecting means (78) for detecting the wettability of the particles has a detecting section (79) between the rotary disk (3) and the air jetting section (50), that is, a flow range of the particles. It is located inside and provided on the side wall of the processing container (1). Accordingly, the wetness of the fluidized particles can be directly detected, so that the wettability can be detected more accurately. The output of the wetness degree detecting means (78) is input to a control device (not shown) that controls a liquid supply pump (not shown) of the treatment liquid supply nozzle (65).

【0050】[0050]

【発明の効果】本発明装置によれば以下のような各種効
果が得られる。
According to the device of the present invention, the following various effects can be obtained.

【0051】リング状隙間の直下部にリング状ダクト
を設けているので、装置の作動・停止時を問わず、リン
グ状隙間から落下した粒子を確実に回収することができ
る。しかも、一旦回収された粒子は、下部ノズルから供
給されたガス流により、外部に漏れることなく確実にリ
ング状隙間を経て回転盤の上方空間に戻される。従っ
て、粒子のコンタミネーションを確実に回避することが
できる。また、リング状隙間を通過したガス流が、回転
盤の回転方向に旋回しているので、流動粒子に旋回力を
作用させることができ、粒子の流動運動をより活発化さ
せることが可能になる。
Since the ring-shaped duct is provided immediately below the ring-shaped gap, particles dropped from the ring-shaped gap can be reliably recovered regardless of whether the apparatus is operating or stopped. Moreover, the particles once recovered are surely returned to the space above the rotary disk through the ring-shaped gap without leaking to the outside by the gas flow supplied from the lower nozzle. Therefore, it is possible to reliably avoid particle contamination. In addition, since the gas flow passing through the ring-shaped gap is swirling in the rotation direction of the turntable, swirling force can be applied to the fluidized particles, and the flow motion of the particles can be more activated. .

【0052】分割体を径方向に進退移動させることに
より、容易にリング状隙間の調整が行なえる。また、処
理容器と回転盤の偏心等により、リング状隙間に幅広部
分や幅狭部分が生じている場合にも、必要箇所のみで精
密な隙間調整を行なうことが可能になる。
The ring-shaped clearance can be easily adjusted by moving the divided bodies forward and backward in the radial direction. Further, even when a wide portion or a narrow portion is formed in the ring-shaped gap due to eccentricity between the processing container and the turntable, it is possible to perform precise gap adjustment only at a necessary portion.

【0053】流動粒子の平均最上昇位置に設けた帯状
のガス噴出部から、処理容器の内部空間に向けてガス流
を供給することにより、処理容器の内径面に付着する粒
子が低減する。また、処理容器内の粒子の滞留域が消滅
し、流動運動の活発化や乾燥作業の迅速化も達成され
る。
By supplying the gas flow toward the inner space of the processing container from the strip-shaped gas jetting portion provided at the average highest position of the fluidized particles, particles adhering to the inner diameter surface of the processing container are reduced. In addition, the retention area of the particles in the processing container disappears, and the flow motion is activated and the drying operation is speeded up.

【0054】上記〜の効果に基づき、本発明によれ
ば、GMP的に優れ、且つ、造粒作業やコーティング作
業等の粒子処理作業を効率的になし得る装置の提供が可
能となった。
Based on the above-mentioned effects (1) to (4), the present invention makes it possible to provide an apparatus which is excellent in terms of GMP and which can efficiently perform a particle processing operation such as a granulating operation or a coating operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の断面図である。FIG. 1 is a cross-sectional view of the device of the present invention.

【図2】図1中のA−A線での断面図である。FIG. 2 is a sectional view taken along the line AA in FIG.

【図3】隙間調整機構付近の拡大断面図である。FIG. 3 is an enlarged cross-sectional view near a gap adjusting mechanism.

【図4】隙間調整機構の他の実施例を示す断面図であ
る。
FIG. 4 is a sectional view showing another embodiment of the gap adjusting mechanism.

【図5】リング状ダクトの全体斜視図である。FIG. 5 is an overall perspective view of a ring-shaped duct.

【図6】図1中のB−B線での断面図である。6 is a cross-sectional view taken along the line BB in FIG.

【図7】空気噴出部付近の断面図である。FIG. 7 is a cross-sectional view of the vicinity of an air ejection portion.

【図8】本出願人が既に提案したスプレーノズルの断面
図である。
FIG. 8 is a cross-sectional view of a spray nozzle already proposed by the applicant.

【符号の説明】[Explanation of symbols]

1 処理容器 3 回転盤 5 隆起部材 9 分割体 13 リング状隙間 33 リング状ダクト 41 シール部 50 ガス噴出部(空気噴出部) 65 処理液供給用ノズル 67 粉末供給用ノズル 78 湿潤度検出手段 79 検出部 1 Processing Container 3 Rotating Disk 5 Raised Member 9 Divided Body 13 Ring-shaped Gap 33 Ring-shaped Duct 41 Sealed Part 50 Gas Jet (Air Jet) 65 Treatment Liquid Supply Nozzle 67 Powder Supply Nozzle 78 Wetness Detection Unit 79 Detection Department

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 略円筒状をなす処理容器と、この処理容
器内の底部近傍で水平回転する回転盤とを有し、系外よ
り回転盤の下方に供給されたガス流を、回転盤の外径面
とこれに対向する処理容器の内径面との間に形成された
リング状隙間から上方に噴出させ、この上昇ガス流と回
転盤の回転運動との相乗作用により、処理容器内の粒子
に転動流動を行なわせて造粒・コーティングなどの粒子
処理作業を施す装置において、 前記リング状隙間の直下部に、内径側内周面の上端部に
前記回転盤の下面との間でシールを行なうシール部を有
すると共に、外径側内周面が処理容器の内径面と連結さ
れ、かつ、前記リング状隙間との対向部位を開口させた
リング状ダクトが設けられ、このリング状ダクトに、接
線方向でかつ前記回転盤の回転方向と同一方向に向けて
下部ノズルが装着されていることを特徴とする粒子処理
装置。
1. A processing container having a substantially cylindrical shape and a turntable that horizontally rotates in the vicinity of the bottom of the process vessel. A gas flow supplied from outside the system to the lower side of the turntable is controlled by the turntable of the turntable. Particles in the processing container are ejected upward from a ring-shaped gap formed between the outer diameter surface and the inner diameter surface of the processing container facing the outer diameter surface, and the rising gas flow and the rotary motion of the rotary disk synergize with each other. In a device that performs particle processing operations such as granulation and coating by performing rolling flow on the inner surface of the ring-shaped gap, a seal is formed between the lower surface of the turntable and the upper end of the inner peripheral surface on the inner diameter side. A ring-shaped duct is provided which has a seal portion for carrying out the above-mentioned, the inner peripheral surface on the outer diameter side is connected to the inner diameter surface of the processing container, and the portion facing the ring-shaped gap is opened. , Tangential direction and same as the rotating direction of the turntable Particle processing apparatus characterized by lower nozzle is mounted toward the direction.
【請求項2】 略円筒状をなす処理容器と、この処理容
器内の底部近傍で水平回転する回転盤とを有し、系外よ
り回転盤の下方に供給されたガス流を、回転盤の外径面
とこれに対向する処理容器の内径面との間に形成された
リング状隙間から上方に噴出させ、この上昇ガス流と回
転盤の回転運動との相乗作用により、処理容器内の粒子
に転動流動を行なわせて造粒・コーティングなどの粒子
処理作業を施す装置において、 前記リング状隙間の直下部に、内径側内周面の上端部に
前記回転盤の下面との間でシールを行なうシール部を有
すると共に、外径側内周面が処理容器の内径面と連結さ
れ、かつ、前記リング状隙間との対向部位を開口させた
リング状ダクトが設けられ、このリング状ダクトに、接
線方向でかつ前記回転盤の回転方向と同一方向に向けて
下部ノズルが装着され、 前記処理容器の、回転盤の外径面との対向部位が、周方
向の複数箇所で分割され、この分割により形成された円
弧状の分割体が、それぞれ処理容器から独立して径方向
に進退移動自在に構成されていることを特徴とする粒子
処理装置。
2. A processing container having a substantially cylindrical shape and a turntable that horizontally rotates in the vicinity of the bottom of the process vessel. A gas flow supplied from below the turntable to the outside of the turntable is supplied to the turntable. Particles in the processing container are ejected upward from a ring-shaped gap formed between the outer diameter surface and the inner diameter surface of the processing container facing the outer diameter surface, and the rising gas flow and the rotary motion of the rotary disk synergize with each other. In a device that performs particle processing operations such as granulation and coating by performing rolling flow on the inner surface of the ring-shaped gap, a seal is formed between the lower surface of the turntable and the upper end of the inner peripheral surface on the inner diameter side. A ring-shaped duct is provided which has a seal portion for carrying out the above-mentioned, the inner peripheral surface on the outer diameter side is connected to the inner diameter surface of the processing container, and the portion facing the ring-shaped gap is opened. , Tangential direction and same as the rotating direction of the turntable The lower nozzle is mounted toward the direction, the portion of the processing container facing the outer diameter surface of the rotating disk is divided at a plurality of positions in the circumferential direction, and arc-shaped divided bodies formed by this division are respectively formed. A particle processing apparatus, which is configured to be movable back and forth in a radial direction independently of a processing container.
【請求項3】 略円筒状をなす処理容器と、この処理容
器内の底部近傍で水平回転する回転盤とを有し、系外よ
り回転盤の下方に供給されたガス流を、回転盤の外径面
とこれに対向する処理容器の内径面との間に形成された
リング状隙間から上方に噴出させ、この上昇ガス流と回
転盤の回転運動との相乗作用により、処理容器内の粒子
に転動流動を行なわせて造粒・コーティングなどの粒子
処理作業を施す装置において、 前記リング状隙間の直下部に、内径側内周面の上端部に
前記回転盤の下面との間でシールを行なうシール部を有
すると共に、外径側内周面が処理容器の内径面と連結さ
れ、かつ、前記リング状隙間との対向部位を開口させた
リング状ダクトが設けられ、このリング状ダクトに、接
線方向でかつ前記回転盤の回転方向と同一方向に向けて
下部ノズルが装着され、 前記リング状隙間を構成する回転盤の外径面と、これに
対向する処理容器の内径面とが略平行な傾斜面に形成さ
れ、かつ、回転盤の外径面と処理容器の傾斜面とが垂直
方向に相対移動するよう構成した粒子処理装置。
3. A processing container having a substantially cylindrical shape and a turntable that horizontally rotates in the vicinity of the bottom of the process vessel. A gas flow supplied from outside the system to the lower side of the turntable is controlled by the turntable. Particles in the processing container are ejected upward from a ring-shaped gap formed between the outer diameter surface and the inner diameter surface of the processing container facing the outer diameter surface, and the rising gas flow and the rotary motion of the rotary disk synergize with each other. In a device that performs particle processing operations such as granulation and coating by performing rolling flow on the inner surface of the ring-shaped gap, a seal is formed between the lower surface of the turntable and the upper end of the inner peripheral surface on the inner diameter side. A ring-shaped duct is provided which has a seal portion for carrying out the above-mentioned, the inner peripheral surface on the outer diameter side is connected to the inner diameter surface of the processing container, and the portion facing the ring-shaped gap is opened. , Tangential direction and same as the rotating direction of the turntable The lower nozzle is attached toward the direction, the outer diameter surface of the rotary disk that constitutes the ring-shaped gap, and the inner diameter surface of the processing container that faces the outer surface are formed into inclined surfaces that are substantially parallel to each other, and A particle processing apparatus configured such that an outer diameter surface and an inclined surface of a processing container are relatively moved in a vertical direction.
【請求項4】 略円筒状をなす処理容器と、この処理容
器内の底部近傍で水平回転する回転盤とを有し、系外よ
り回転盤の下方に供給されたガス流を、回転盤の外径面
とこれに対向する処理容器の内径面との間に形成された
リング状隙間から上方に噴出させ、この上昇ガス流と回
転盤の回転運動との相乗作用により、処理容器内の粒子
に転動流動を行なわせて造粒・コーティングなどの粒子
処理作業を施す装置において、 前記処理容器の内径面の、流動粒子の平均最上昇位置付
近に、処理容器の内部空間に向けてガス流を供給する帯
状のガス噴出部が設けられていることを特徴とする粒子
処理装置。
4. A processing container having a substantially cylindrical shape and a turntable that horizontally rotates in the vicinity of the bottom of the process vessel. A gas flow supplied from outside the system to the lower side of the turntable is controlled by the turntable. Particles in the processing container are ejected upward from a ring-shaped gap formed between the outer diameter surface and the inner diameter surface of the processing container facing the outer diameter surface, and the rising gas flow and the rotary motion of the rotary disk synergize with each other. In a device for performing particle processing operations such as granulation and coating by tumbling flow, the gas flow toward the internal space of the processing container near the average highest position of the fluidized particles on the inner diameter surface of the processing container. A particle processing apparatus, characterized in that a strip-shaped gas jetting section for supplying the gas is provided.
【請求項5】 回転盤の中央部を略円錐型に隆起させた
ことを特徴とする請求項1、2、3又は4記載の粒子処
理装置。
5. The particle processing apparatus according to claim 1, 2, 3 or 4, wherein a central portion of the rotating disk is raised in a substantially conical shape.
【請求項6】 処理容器の側面壁に、処理液供給用ノズ
ルと粉末供給用ノズルが設けられたことを特徴とする請
求項1、2、3又は4記載の粒子処理装置。
6. The particle processing apparatus according to claim 1, wherein the side wall of the processing container is provided with a processing liquid supply nozzle and a powder supply nozzle.
【請求項7】 処理容器の側面壁に、粒子の流動範囲内
を狙って粉末供給用ノズルが設けられると共に、この粉
末供給用ノズル内に同芯状態で処理液供給用ノズルが収
容されたことを特徴とする請求項1、2、3又は4記載
の粒子処理装置。
7. A powder supply nozzle is provided on a side wall of a processing container aiming at a flow range of particles, and the processing liquid supply nozzle is housed in the powder supply nozzle in a concentric state. The particle processing device according to claim 1, 2, 3, or 4.
【請求項8】 処理容器の側面壁に、粒子の流動範囲内
に検出部を位置させて湿潤度検出手段を設けたことを特
徴とする請求項1、2、3又は4記載の粒子処理装置。
8. The particle processing apparatus according to claim 1, wherein a wettability detecting means is provided on a side wall of the processing container by arranging a detecting portion within a flow range of the particles. .
JP24938092A 1992-09-18 1992-09-18 Particle processing equipment Expired - Fee Related JP3320457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24938092A JP3320457B2 (en) 1992-09-18 1992-09-18 Particle processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24938092A JP3320457B2 (en) 1992-09-18 1992-09-18 Particle processing equipment

Publications (2)

Publication Number Publication Date
JPH06170208A true JPH06170208A (en) 1994-06-21
JP3320457B2 JP3320457B2 (en) 2002-09-03

Family

ID=17192156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24938092A Expired - Fee Related JP3320457B2 (en) 1992-09-18 1992-09-18 Particle processing equipment

Country Status (1)

Country Link
JP (1) JP3320457B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4392928T1 (en) * 1992-06-26 1995-05-11 Komatsu Mfg Co Ltd Device for detecting a quantity of metal powder in a hydraulic circuit
JP2015533629A (en) * 2012-09-06 2015-11-26 シーメンス ピーエルシー Dry slag granulation system
CN115501814A (en) * 2022-10-28 2022-12-23 山东恩宝生物科技有限公司 Granulator for preparing environment-friendly three-dimensional synergistic fertilizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4392928T1 (en) * 1992-06-26 1995-05-11 Komatsu Mfg Co Ltd Device for detecting a quantity of metal powder in a hydraulic circuit
AU679445B2 (en) * 1992-06-26 1997-07-03 Kabushiki Kaisha Komatsu Seisakusho Device for detecting amount of metallic powder for hydraulic circuit
DE4392928C2 (en) * 1992-06-26 2000-02-24 Komatsu Mfg Co Ltd Device for detecting an amount of contamination in a hydraulic circuit
JP2015533629A (en) * 2012-09-06 2015-11-26 シーメンス ピーエルシー Dry slag granulation system
CN115501814A (en) * 2022-10-28 2022-12-23 山东恩宝生物科技有限公司 Granulator for preparing environment-friendly three-dimensional synergistic fertilizer
CN115501814B (en) * 2022-10-28 2024-03-29 山东恩宝生物科技有限公司 Granulator for preparing environment-friendly three-dimensional synergistic fertilizer

Also Published As

Publication number Publication date
JP3320457B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US6579365B1 (en) Apparatus for coating tablets
JPH0234652B2 (en)
EP1724820B1 (en) Two-fluid nozzle for cleaning substrate and substrate cleaning device
US7802376B2 (en) Apparatus for treating particulate material
US5106025A (en) Coating product sprayer device with rotary sprayer member
JP4464850B2 (en) Substrate cleaning two-fluid nozzle and substrate cleaning device
JPH0329464B2 (en)
JP2763806B2 (en) Granulation coating method and apparatus
JPS62227437A (en) Device and method of executing pelletizing of granular material or similar treatment
JPH07241452A (en) Pan coating device
JPH05245358A (en) Coating device
JPH06170208A (en) Particle treating device
CA2492299A1 (en) Atomisation nozzle with rotating annular gap
WO2000058017A1 (en) Method and device for spiral spray coating
JPH0919651A (en) Spray gun and granulation coating method using same
JPH10309498A (en) Atomization-pattern variable rotary atomization coater
JP4253200B2 (en) Wet cleaning device and nozzle used therefor
JPH09122560A (en) Spin coater
JPH06170316A (en) Spinner device
JP3633958B2 (en) Particle processing equipment
US7798092B2 (en) Process and apparatus for treating a particulate material
JPH03284343A (en) Fluidized bed treatment apparatus
JPH08196946A (en) Rotary atomization type coating apparatus and method
JP3910748B2 (en) Container rotation type mixing dryer
JPH0615030B2 (en) Powder processing equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees