JP3633958B2 - Particle processing equipment - Google Patents

Particle processing equipment Download PDF

Info

Publication number
JP3633958B2
JP3633958B2 JP16081694A JP16081694A JP3633958B2 JP 3633958 B2 JP3633958 B2 JP 3633958B2 JP 16081694 A JP16081694 A JP 16081694A JP 16081694 A JP16081694 A JP 16081694A JP 3633958 B2 JP3633958 B2 JP 3633958B2
Authority
JP
Japan
Prior art keywords
rotating disk
gas flow
ring
flow
shaped gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16081694A
Other languages
Japanese (ja)
Other versions
JPH0824617A (en
Inventor
嘉郎 船越
平治 坂本
保 栗原
勇人 三ツ木
将史 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powrex KK
Original Assignee
Powrex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powrex KK filed Critical Powrex KK
Priority to JP16081694A priority Critical patent/JP3633958B2/en
Publication of JPH0824617A publication Critical patent/JPH0824617A/en
Application granted granted Critical
Publication of JP3633958B2 publication Critical patent/JP3633958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Glanulating (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、医薬、農薬、食品、電子材料、化成品等の製造分野で粒子加工を目的として使用される粒子加工装置に関し、詳しくは各種原料粒子に造粒・コーティング等の粒子加工を施して粉体粒子の付加価値を向上させるための装置に関するものである。
【0002】
【従来の技術】
原料粉体粒子に造粒、コーティング等の加工を施すための装置として、遠心転動流動式と呼ばれる粒子加工装置が従来から多数提案されている。これらの装置は、円筒状の加工容器の下部に水平回転する円形の回転盤を設けると共に、この回転盤と加工容器との間に形成されたリング状の隙間から主に垂直方向のガス流を噴出させる点を要旨とするものである。
【0003】
具体的にこの装置の作用を説明すると、加工容器内に供給された粉体粒子は、回転盤の回転に伴う遠心力により、回転盤上を転動しながら径方向に移動する。次に粒子は、リング状の隙間を通過した上昇空気流に吹き上げられて加工容器の内径面に沿って上昇流動しつつ適当に乾燥され、やがて、加工容器内の中心付近に向かって落下する。こうして転動及び流動を規則正しく繰り返す循環流動が行なわれる。このような粒子の転動・流動中に、加工容器内の所定位置に設けたスプレーノズルからバインダー液やコーティング液を噴霧することにより、粒子の造粒・コーティング等の加工作業がなされる。
【0004】
同タイプの装置の一例として、特公平6−16827 号(特開昭62−68536 号)及び特公平6−187号(特開昭62−68535 号)には、環状通気部材を介して相互に所定間隔で多層に配置した回転盤を有する装置が開示されている。この装置は、環状通気部材を通して半径方向外方にガスを噴出させ、このガス流の作用と回転盤の回転による遠心転動作用との協働により、粒子を加工容器の内壁方向に押圧しながら粒子処理を行なうものである。
【0005】
【発明が解決しようとする課題】
ところで、遠心転動流動式の加工装置は、主に、粒子が回転盤上を転動する際に受ける面剪断による転動作用と、リング状隙間を通じて吹き込まれた上昇ガス流による流動作用とを利用して粒子を加工するものである。従って、当該加工装置の開発にあたっては、加工条件に合致する最適な転動作用及び流動作用を繰り返す最適転動流動状態を実現することが重要である。
【0006】
ここで、上昇ガス流による流動作用を調整するには、上昇ガス流の流量を増減さればよい。一方、回転盤による転動作用を調整するには、回転盤上の転動部の面積、回転速度及び半径方向に噴出するガス流の流量のすべて、またはその何れかを調整すればよい。ここで重要となるのは、転動作用を付与する転動面を確保することである。
【0007】
しかし、特公平6−16827号及び特公平6−187号では、転動の助勢という立場を殆ど考慮せず、多層になった回転盤間の隙間から多重にガス吹き込みが行なわれている。従って、容器内が流動支配になると共に、規則正しい循環流動は行なわれ難い。また、該公報では、回転盤と容器の間を通して吹き込まれる垂直方向のガス流路と、環状通気部材を通して吹き込まれる半径方向のガス流路とが、回転盤下部に位置する同一のガス室に接続されているため、両ガス流路を流れるガス流量を独立して調整できない。このため、回転盤による転動作用と上昇ガス流による流動作用とを独自に調整することはできず、最適な転動流動状態を得るのは困難である。
【0008】
その一方、本出願人は、粒子のクロスコンタミネーションを確実に防止すると共に、粒子の流動状態をより活発化させる目的で、リング状隙間の直下部に、リング状隙間との対向部位を開口させたリング状ダクトを設け、このリング状ダクトに接線方向で且つ回転盤の回転方向と同一方向に向けて下部ノズルを装着した粒子処理装置を開示している(特願平4−249380号)。
【0009】
しかし、この装置では、容器をスケールアップやスケールダウンする場合に不具合が生じる。即ち、リング状隙間の幅を一定にしたまま容器の径を変更させると、回転盤の面積が容器の相当径の二乗に比例するのに対し、リング状隙間の面積は容器の相当径の一乗に比例する。このため、転動作用の変化量と流動作用の変化量に大きな差異が生じ、そのままでは最適な流動転動状態を得ることができない。このような点から、従来装置では、スケールアップ等する際に容器や回転盤の寸法決定に多大な労力を要する点が問題となっていた。
【0010】
そこで、本発明は、ガス流による流動作用が殆どない転動作用域を確保しながら、粒子群の循環流動を粒子の加工目的に合った最適状態に調整することができる粒子加工装置の提供を目的とする。
【0011】
上記目的を達成するため、本発明では、略円筒状の加工容器と、この加工容器内の底部近傍で水平回転する回転盤とを有し、系外より回転盤の下方に供給されたガス流を、回転盤の外径面とこれに対向する加工容器の内径面との間に形成されたリング状隙間から上方に噴出させ、この上昇ガス流と回転盤の回転運動との相乗作用により、加工容器内の粒子に転動流動を行なわせて造粒・コーティング等の粒子加工を施す装置において、前記回転盤の中央上面に隆起部を突設して転動部を形成すると共に、隆起部と回転盤上面との間に外径側に向けて噴出口を設け、この噴出口に前記リング状隙間に導入されガス流とは独立して流量調整可能とした導気路を連通させ、前記導気路に、前記リング状隙間に導入されるガス流の一部を分流させ、前記回転盤の下方に昇降部材を配置してこの昇降部材の上面と回転盤の下面との間に導気路を形成すると共に、この導気路を回転盤に設けた貫通孔を介して前記噴出口に連通させ、前記昇降部材の昇降動作により導気路の幅を変化させて当該導気路のガス分流量を調整することとした。
【0012】
また、略円筒状の加工容器と、この加工容器内の底部近傍で水平回転する回転盤とを有し、系外より回転盤の下方に供給されたガス流を、回転盤の外径面とこれに対向する加工容器の内径面との間に形成されたリング状隙間から上方に噴出させ、この上昇ガス流と回転盤の回転運動との相乗作用により、加工容器内の粒子に転動流動を行なわせて造粒・コーティング等の粒子加工を施す装置において、前記回転盤の中央上面に隆起部を突設して転動部を形成すると共に、隆起部と回転盤上面との間に外径側に向けて噴出口を設け、この噴出口に前記リング状隙間に導入されるガス流とは独立して流量調整可能とした導気路を連通させ、前記導気路に、前記リング状隙間に導入されるガス流とは独立した別系統のガス供給系を接続することとした。
【0015】
リング状隙間の直下部に、リング状隙間との対向部位を開口させたリング状ダクトを設け、このリング状ダクトに、接線方向で且つ前記回転盤の回転方向と同一方向に向けて導気する気流取入口を設けてもよい。
【0016】
【作用】
回転盤中央部に適当な裾野を有する隆起部を設けることによって隆起部外周面で粒子に転動作用を与えることができる。さらに、隆起部下面と回転盤上面との間に容器半径方向にガスを噴出する噴出口を設け、この噴出口から外径側に向けてガス流を噴出することによって、隆起部で転動作用を受けた粒子に回転盤の回転運動とガス流との協働によって転動流動を及ぼすことができる。噴出口にリング状隙間に導入されるガス流(上昇ガス流)とは独立して流量調整可能とした導気路を連通させれば、最適流量に調整した径方向ガス流を噴出することができ、上昇ガス流との協働で理想的な転動流動状態を実現することが可能となる。
【0017】
導気路にリング状隙間に導入されたガス流の一部を分流させれば、単一のガス流供給源で上昇ガス流と径方向ガス流の二種類のガス流を得ることができる。
【0018】
回転盤の下方に昇降部材を配置してこの昇降部材の上面と回転盤の下面との間に導気路を形成すると共に、この導気路を回転盤に設けた貫通孔を介して噴出口に連通させ、昇降部材の昇降動作により導気路の幅を変化させると、その流路面積が変化する。従って、径方向ガス流の流量調整が可能となる。
【0019】
導気路に、リング状隙間に導入されるガス流とは独立した別系統のガス供給系を接続すれば、上昇ガス流と径方向ガス流の流量をそれぞれ完全に独立して調整することができ、最適な流動転動状態を容易に実現することができる。
【0020】
リング状隙間の直下部に、リング状隙間との対向部位を開口させたリング状ダクトを設け、このリング状ダクトに、接線方向で且つ前記回転盤の回転方向と同一方向に向けて導気する気流取入口を設ければ、サイクロン効果によってリング状ダクト内に粒子は落下することなく、またリング状隙間から容器内に入ったガス流は旋回流となって加工容器内を上昇する。
【0021】
即ち、本発明によれば、隆起部形状、噴出口からのガス流及びリング状隙間からのガス流を、それぞれ最適値に調整することによって粒子加工に重要な、転動−転動流動−流動−転動−転動流動−…の最適循環流動が容易に実現できる。
【0022】
【実施例】
以下、本発明装置の実施例を図1乃至図5に基づいて説明する。
【0023】
図1は、本発明にかかる粒子加工装置の断面図である。但し、図1では、排気設備や、粒子の供給口及び排出口等の図示が省略されている。
【0024】
加工容器(1)は、導電性の金属材料でほぼ円筒状に形成されており、その底部には、円形の回転盤(2)が水平に配置されている。この回転盤(2)は、無断可変速式の式のモータ(図示省略)に連結した垂直方向の回転軸(3)に固定されており、任意の速度で一定方向、例えば右回りに回転する。
【0025】
回転盤(2)は、加工容器(1)の内径よりも小さい径寸法とされており、この回転盤(2)の外径面と、加工容器(1)の内径面との間には、上昇ガス流の導入路となる断面三角形型のリング状隙間(5)が形成されている。
【0026】
回転盤(2)の中心部には、上部を切除した形状の略円錐型をなし且つ内部を中空とした隆起部材(6)が装着される。この隆起部材(6)は、回転軸(3)の上端部に螺合した締付ナット(7)によって回転軸(3)に締付け固定されている。隆起部材(6)の外周面は、粒子に転動作用を付与する転動部となる。
【0027】
回転盤(2)上面のうち隆起部材(6)の下面直下の円周等配位置には、複数のスペーサ(9)が装着されている。このスペーサ(9)により、回転盤(2)の上面と隆起部材(6)の下面との間に、隆起部材(6)の中空部(10)と連通する複数の噴出口(11)が形成される。回転盤(2)の円周等配位置で且つ隆起部材(6)の下面よりも内径側には、円弧状の貫通孔(12)が複数個形成されている。回転盤(2)の下面には、内径側及び外径側に離隔させて一対の環状突出部(14)(15)が装着若しくは一体成形されており、両突出部(14)(15)の下面は同一高さに設定されている。(16)は、回転盤(2)の取り外し時に当該回転盤(2)を持ち上げるために取付けられた把手(16)である。
【0028】
回転盤の下方には、上面を開放させ且つ内壁面を滑らかな連続曲面上に形成したリング状ダクト(19)が配置される。このリング状ダクト(19)は、環状の隙間構成部材(20)及び取付け部材(21)を介して加工容器(1)の底部に固定されており、その外径側の内壁面は、回転盤(2)の外周面の略直下に位置している。リング状ダクト(19)の内径面は、その内径側に配した昇降部材(22:後述する)の外径面に対して摺動自在であり、両部材(19)(22)の摺動面は、Oリング(25)で気密にシールされている。
【0029】
リング状ダクト(19)には、その接線方向に向けて且つ回転盤(2)の回転方向と同方向に向けて、一つ若しくは複数個の気流取入口(図示省略)が設けられる。この気流取入口から導入されたガス流(例えば、空気流)は、リング状ダクト(19)内を回転盤(2)と同方向に旋回し、リング状隙間(5)及び導気路(30:後述する)にそれぞれ分流する。リング状隙間(5)に流入したガス流は、旋回流となって加工容器(1)内を上昇し、粒子の流動運動を活発化させる。
【0030】
流動中にリング状隙間(5)を通ってリング状ダクト(19)内に落下した粒子は、気流取入口から導入された旋回ガス流にのってダクト(19)内で旋回し、次いで、リング状隙間(5)を通って加工容器(1)内に戻される。このように、リング状隙間(5)から落下した粒子がリング状ダクト(19)内で停留することなく速やかに加工容器(1)内に戻されるので、処理する粒子を異種粒子に交換した場合も、残留粒子が異種粒子中に混入するいわゆるクロスコンタミネーションを招くことはなく、GMP(Good Manufacturing Practice )的に優れた特性を有するものとなる。
【0031】
昇降部材(22)は、上面を平面とする中空状をなし、回転軸(3)の周囲にドーナツ状に形成されている。この昇降部材(22)は、モータやシリンダ等からなる昇降駆動源(図示省略)に駆動されて昇降する。昇降部材(22)の内径面には、舌片状のシール部材(23)が装着されており、このシール部材(23)は、回転盤(2)の内径部に装着され且つ回転軸(3)に嵌合させた基部(24)の外径面に接触して昇降時には当該基部(24)の外径面と気密に摺接する。昇降部材(22)の外径面には、外径側に屈曲させた段部(26)を有する係止部材(27)が装着される。この係止部材(27)の内径面と昇降部材(22)の外径面との間には、下部を開口させた袋状の収容部(28)が環状に形成されており、この収容部(28)には、リング状ダクト(19)の内径側の壁面上部に設けた係合部(29)が収容されている。昇降部材(22)を降下させると、係合部(29)の上端部がこれに対向する係止部材(27)の内壁面と当接し、これにより、昇降部材(22)のそれ以上の降下動作が規制される(図1に示す)。一方、昇降部材(22)を上昇させると、その上面が回転盤(2)の下面に設けた両突出部(14)(15)と当接し、これにより昇降部材(22)の上昇動作が規制される。
【0032】
回転盤(2)の下面と昇降部材(22)の上面との間には、リング状ダクト(19)と連通し且つ貫通孔(12)を介して隆起部材(6)の中空部(10)と連通するリング状の導気路(30)が形成される。リング状ダクト(19)から導気路(30)内に分流したガス流は、貫通孔(12)及び隆起部材(6)内の中空部(10)を経て隆起部材(6)の裾に設けられた噴出口(11)から半径方向に噴出し、回転盤(2)上を転動する粒子を外径方向に吹き飛ばす。
【0033】
この導気路(30)を流れるガス流の流量調整は、昇降部材(22)を昇降させて昇降部材(22)の上面と、外径側の突出部(14)下面との間の距離を変更することによって行なわれる。具体的には、昇降部材(22)を降下させ、突出部(14)と昇降部材(22)の上面との間の隙間を大きくすれば、流路断面積が増大するため、ガス流量を増加させることができ、その逆に、昇降部材(22)を上昇させて当該隙間を小さくすれば、ガス流量を減少させることができる。そして、昇降部材(22)の上面を突出部(14)の下面に当接させれば、ガス流量を殆ど無くすることができる。
【0034】
このようにリング状隙間(5)に上昇ガス流を導入すると共に、回転盤(2)上に外径方向に向けて径方向ガス流を導入することにより、粒子は、加工容器(1)を旋回しながら上下に流動し、全体として見れば加工容器(1)の底部で縄をよじったような流動層が形成される。この流動層中にスプレーノズル(32)からバインダー液やコーティング液等の加工液を噴霧することにより、造粒やコーティング等の所定の粒子加工がなされる。加工容器(1)の中心部では、粒子がガス流の影響を殆ど受けずに隆起部材(6)の外周面を転動するので、流動作用の殆ど作用しない転動作用域が確保される。
【0035】
本発明では、隆起部材(6)下面と回転盤(2)上面との間に外径側に向けて噴出口(11)を設けると共に、この噴出口(11)に、リング状隙間(5)に導入されるガス流とは独立して流量調整可能とした導気路(30)を連通させているので、最適流量に調整した径方向ガス流を噴出することができる。従って、容器や回転盤の寸法とは無関係に、理想的な転動流動状態を実現することが可能となる。また、上述のように、導気路(30)に、リング状ダクト(19)に導入されたガス流の一部を分流させれば、単一のガス流供給源で二方向のガス流を得ることができ、構造の簡素化が図れるようになる。
【0036】
図2は、本発明の他の実施例であり、導気路(30)に、前記リング状隙間(5)に導入されるガス流とは独立した別系統のガス供給系(35)を接続したことを特徴とするものである。具体的に説明すると、回転盤(2)の下方に、前記昇降部材(22)と同形状であり且つ上面の複数箇所に開口部(36)を設けたリング状の導気ダクト(37)を配置し、この導気ダクト(37)を、その上面を回転盤(2)の突出部(14)(15)に接触させて図示しない静止部材に固定する。導気ダクト(37)には、経路途中に流量制御弁等の流量制御手段を設けた供給管(図示省略)を接続する。
【0037】
このような構成により、流量制御手段を制御すれば、導気路(30)に導入されるガス流を独立して最適量に調整することができ、図1に示す装置と同様に、上昇ガス流との協働で最適な転動流動状態を実現することができる。図1に示す装置では、昇降部材(22)を昇降させてガス流の分流量調整を行なうと、これに連動して上昇ガス流の流量も変化するため、きめ細かな流量調整を行なうことが困難であるが、図2に示す装置では、上昇ガス流と径方向ガス流のガス流量を完全に独立して制御できるので、このような不具合は生じず、容易に最適な転動流動状態を実現することができる。
【0038】
図5(a)(b)は、噴出口(11)の形状の他の実施例である。このうち、(a)図は、隆起部材(6)の下端部を水平方向に延設して環状の延在部(38)を形成すると共に、貫通孔(12)よりも内径側にスペーサ(9)を介在させて噴出口(11)をリング状に形成したものである。一方、(b)図は、延在部(38)に上方外径側に向けて斜めに丸穴若しくは楕円穴等を穿設して第2の噴出口(39)を形成したもので、特に大型の装置に有効な構成である。この構成によれば、経方向のガス流に加えて第2の噴出口(39)から上方外径側に向けてガス流が供給されるので、加工容器(1)内の流動状態をより一層多様化させることが可能となる。
【0039】
加工容器(1)の側面底部には、粒子の加工状況を検出する検出器(40)が組み込まれる。この検出器(40)は、図3に示すように、加工容器(1)の側面壁に嵌め込まれたゴム等の弾性を有し且つ絶縁性を有する基体(41)と、両端部を突出させて基体(41)に水平に挿通した棒状の受圧体(42)と、加工容器(1)外に配置され、一端部を静止部材(43)に連結すると共に、他端部を受圧体(42)の外径側端部に連結した弾性部材(44)(バネ)とで構成される。受圧体(42)は、導電性及び耐蝕性に優れた材料、例えばステンレスで形成され、その内径側端部は、粒子の流動域内に突出するよう加工容器(1)の内部で且つ回転盤(2)よりも僅かに上方に配置されている。受圧体(42)と加工容器(1)との間には、抵抗計が電気的に接続され、また、加工容器(1)外には、受圧体(42)の外径側端部の位置変位を検知する変位検出手段(例えば距離センサ)が配置されている(前記抵抗計及び変位検出手段の図示は省略する)。
【0040】
この検出器(40)は、粒子表面の湿潤度を検出する湿潤度検出器として、また、団粒の発生や回転盤(2)上への粒子の付着といったトラブルを検出する検出器として機能する。以下、それぞれの場合について、この検出器(40)の作用を説明する。
【0041】
加工容器(1)内では、湿潤粒子が流動しているため、導電材料で形成された加工容器(1)及び受圧体(42)間はある程度の電流が流れ得る状態になっている。この場合において、粒子表面の湿潤度Aと加工容器(1)及び受圧体間の抵抗値Rとの間には、図4に示すように双曲線的関係が成り立ち、また、表面水分量の僅かな相違によっても抵抗値が大きく変化する。従って、抵抗計の指す抵抗値から粒子表面の相対的な湿潤度を正確に特定することが可能となる。検知した湿潤度に過不足がある場合は、作業者の手作業で上昇ガス流や径方向ガス流の流量、さらにはスプレーノズル(32)からの液体噴霧量等を調節して粒子の湿潤度をコントロールし、粉体飛散、団粒の発生や粒子の器壁付着といったトラブルを未然に回避する。さらには、抵抗計の検出データを制御装置にフィードバックさせ、当該制御装置で湿潤度が一定値になるよう径方向ガス流や上昇ガス流、若しくは加工液供給量等をシーケンス制御すれば作業者の経験や勘に頼ることなく製品の湿潤度を上記トラブルの生じない最適値に自動的に維持することが可能となる。
【0042】
加工容器(1)内に団粒が発生したり、回転盤(2)上に多量の粒子が付着すると、受圧体(42)に団粒や付着粒子が衝突する。受圧体(42)は、図3に示すように、衝突時の衝撃力に応じて水平面上で傾動し、団粒等の通過後にバネ(44)の弾性力で初期位置に弾性復帰する。受圧体(42)が傾動すると、その外径側端部に位置変位が生じるので、この変位量を変位検出手段で計測し、当該計測値が設定値よりも大きければ団粒の発生とみて検知信号を発し、作業者に警告する。これにより作業者は、装置内に手を入れたり、サンプリングすることなく団粒の発生等を認識することができ、作業者に過度の負担を強いることなく迅速にトラブルに対処することが可能となる。
【0043】
この他、受圧体(42)に歪みゲージを貼着し、この歪みゲージで団粒衝突に伴う受圧体(42)の撓み量を測定しても同様の作用効果を得ることができる。
【0044】
【発明の効果】
以上述べたように、本発明によれば、回転盤の中央上面に隆起部を突設して転動部を形成すると共に、この隆起部下面と回転盤上面との間に外径側に向けて噴出口を設け、この噴出口に前記リング状隙間に導入されるガス流とは独立して流量調整可能とした導気路を連通させているので、最適流量に調整した径方向ガス流を噴出することができ、加工容器や回転盤の寸法とは無関係に簡単に理想的な転動流動状態を実現できる。従って、加工容器や回転盤の寸法決定作業を簡略化することができ、装置のスケールアップやスケールダウンにも容易に対応可能となる。また、隆起部の外周面が流動作用の殆ど作用しない転動作用域となるので、粒子群の最適循環流動を実現することができる。
【0045】
導気路にリング状隙間に導入されたガス流の一部を分流させれば、単一のガス流供給源で上昇ガス流と径方向ガス流の二種類のガス流を得ることができ、構造の簡素化が図れる。
【0046】
導気路に、リング状隙間に導入されるガス流とは独立した別系統のガス供給系を接続すれば、上昇ガス流と径方向ガス流の流量をそれぞれ完全に独立して調整することができ、最適な流動転動状態を容易に実現することができる。この場合には、径方向ガス流の流量調整によって上昇ガス流の流量が影響を受けることもないので、よりきめ細やかな流量調整が行なえる。
【0047】
リング状隙間の直下部に、リング状隙間との対向部位を開口させたリング状ダクトを設け、このリング状ダクトに、接線方向で且つ前記回転盤の回転方向と同一方向に向けて導気する気流取入口を設ければ、単に垂直方向のガス流のみを作用させる場合に比べて粒子の流動運動を活発化させることができ、径方向ガス流との相乗作用によってより活発な流動運動を実現することが可能となる。また、クロスコンタミネーションも確実に防止することができ、GMP的にも優れたものとなる。
【図面の簡単な説明】
【図1】本発明装置の垂直断面図である。
【図2】本発明装置の他の実施例を示す垂直断面図である。
【図3】検出器の水平断面図である。
【図4】水分量と抵抗値の関係を示すグラフである。
【図5】噴出口の他の実施例を示す垂直断面図である。
【符号の説明】
1 加工容器
2 回転盤
5 リング状隙間
6 隆起部材
11 噴出口
12 貫通孔
22 昇降部材
30 導気路
[0001]
[Industrial application fields]
The present invention relates to a particle processing apparatus used for the purpose of particle processing in the field of manufacturing pharmaceuticals, agricultural chemicals, foods, electronic materials, chemical products and the like, and more specifically, various raw material particles are subjected to particle processing such as granulation and coating. The present invention relates to an apparatus for improving the added value of powder particles.
[0002]
[Prior art]
As a device for subjecting raw material powder particles to processing such as granulation and coating, a number of particle processing devices called centrifugal rolling flow types have been proposed. These devices are provided with a circular turntable that rotates horizontally at the bottom of a cylindrical processing container, and a vertical gas flow is mainly generated from a ring-shaped gap formed between the turntable and the processing container. The gist is the point of ejection.
[0003]
Specifically, the operation of this apparatus will be described. The powder particles supplied into the processing container move in the radial direction while rolling on the rotating disk by centrifugal force accompanying the rotation of the rotating disk. Next, the particles are blown up by the rising air flow that has passed through the ring-shaped gap, are appropriately dried while flowing upward along the inner diameter surface of the processing container, and eventually drop toward the vicinity of the center in the processing container. In this way, a circulating flow in which rolling and flow are regularly repeated is performed. During such rolling / flowing of particles, the binder liquid and the coating liquid are sprayed from a spray nozzle provided at a predetermined position in the processing container, thereby performing processing operations such as granulation and coating of the particles.
[0004]
As an example of this type of device, Japanese Patent Publication No. 6-16827 (Japanese Patent Laid-Open No. Sho 62-68536) and Japanese Patent Publication No. 6-187 (Japanese Patent Publication No. Sho 62-68535) are mutually connected via an annular ventilation member. An apparatus having a rotating disk arranged in multiple layers at a predetermined interval is disclosed. This device ejects gas radially outward through the annular ventilation member, and presses the particles toward the inner wall of the processing container by cooperating with the action of this gas flow and the centrifugal operation by the rotation of the rotating disk. Particle processing is performed.
[0005]
[Problems to be solved by the invention]
By the way, the centrifugal rolling flow type processing apparatus mainly performs the rolling action by the surface shear that the particles receive when rolling on the rotating disk, and the flow action by the rising gas flow blown through the ring-shaped gap. It is used to process particles. Therefore, in developing the machining apparatus, it is important to realize an optimum rolling flow state that repeats the flow action and the optimum rolling action that matches the machining conditions.
[0006]
Here, in order to adjust the flow effect of the rising gas flow, the flow rate of the rising gas flow may be increased or decreased. On the other hand, in order to adjust the rolling operation by the rotating disk, the area of the rolling part on the rotating disk, the rotation speed, and / or all of the flow rate of the gas flow ejected in the radial direction may be adjusted. What is important here is to secure a rolling surface to which the rolling motion is applied.
[0007]
However, in Japanese Patent Publication No. 6-16827 and No. 6-187, gas is blown in multiple from the gaps between the rotating discs which are multilayered without considering the position of assisting rolling. Therefore, the inside of the container becomes flow-dominated and regular circulation flow is difficult to be performed. In this publication, the vertical gas flow path blown between the rotating disk and the container and the radial gas flow path blown through the annular ventilation member are connected to the same gas chamber located at the lower part of the rotating disk. Therefore, the flow rate of gas flowing through both gas passages cannot be adjusted independently. For this reason, it is difficult to independently adjust the rolling action by the rotating disk and the fluid action by the rising gas flow, and it is difficult to obtain an optimum rolling fluid state.
[0008]
On the other hand, for the purpose of preventing particle cross-contamination reliably and making the flow state of particles more active, the present applicant opens a portion facing the ring-shaped gap immediately below the ring-shaped gap. A particle processing apparatus is disclosed in which a ring-shaped duct is provided, and a lower nozzle is attached to the ring-shaped duct in the tangential direction and in the same direction as the rotation direction of the rotating disk (Japanese Patent Application No. Hei 4-249380).
[0009]
However, this apparatus has a problem when the container is scaled up or down. That is, if the diameter of the container is changed while the width of the ring-shaped gap is kept constant, the area of the rotating disk is proportional to the square of the equivalent diameter of the container, whereas the area of the ring-shaped gap is the square of the equivalent diameter of the container. Is proportional to For this reason, there is a large difference between the amount of change for the rolling operation and the amount of change of the fluid action, and an optimal fluid rolling state cannot be obtained as it is. From such a point, the conventional apparatus has a problem that much labor is required to determine the dimensions of the container and the rotating disk when scaling up.
[0010]
Therefore, the present invention provides a particle processing apparatus capable of adjusting the circulation flow of the particle group to an optimum state suitable for the processing purpose of the particle while ensuring a rolling operation region where there is almost no fluid action due to the gas flow. Objective.
[0011]
In order to achieve the above object, the present invention has a substantially cylindrical processing container and a rotating disk that rotates horizontally in the vicinity of the bottom of the processing container, and the gas flow supplied from outside the system to the lower part of the rotating disk. Is ejected upward from a ring-shaped gap formed between the outer diameter surface of the rotating disk and the inner diameter surface of the processing container opposite thereto, and by the synergistic effect of this rising gas flow and the rotational movement of the rotating disk, In an apparatus for subjecting particles in a processing vessel to rolling flow to perform particle processing such as granulation and coating, a protruding portion is formed on the central upper surface of the rotating disk to form a rolling portion, and the protruding portion the spout toward the outer diameter side between the turntable upper surface provided to communicate with the Shirubekiro which enables independent flow rate adjustment and the ring-shaped gap introduced Ru gas flow to the spout and, A part of the gas flow introduced into the ring-shaped gap is diverted to the air guide path, An elevating member is disposed below the rotating plate to form an air guide path between the upper surface of the elevating member and the lower surface of the rotating plate, and the air guide path is formed through a through hole provided in the rotating plate. The gas flow rate in the air guide passage is adjusted by changing the width of the air guide passage through the lifting and lowering operation of the lift member.
[0012]
Also, it has a substantially cylindrical processing container and a rotating disk that rotates horizontally near the bottom in the processing container, and the gas flow supplied from outside the system to the lower part of the rotating disk is changed to the outer diameter surface of the rotating disk. It is jetted upward from a ring-shaped gap formed between the inner diameter surface of the processing container opposite to this, and by the synergistic action of this ascending gas flow and the rotational movement of the rotating disk, rolling flow to the particles in the processing container In the apparatus for carrying out particle processing such as granulation and coating, a protruding portion is projected from the central upper surface of the rotating disc to form a rolling portion, and an outer portion is provided between the protruding portion and the upper surface of the rotating disc. An outlet is provided toward the radial side, and an air guide path that allows flow rate adjustment independently of the gas flow introduced into the ring-shaped gap is communicated with the outlet, and the ring shape is connected to the air guide path. A separate gas supply system independent of the gas flow introduced into the gap should be connected. .
[0015]
A ring-shaped duct having an opening opposite to the ring-shaped gap is provided immediately below the ring-shaped gap, and air is guided to the ring-shaped duct in the tangential direction and in the same direction as the rotation direction of the rotating disk. An air flow inlet may be provided.
[0016]
[Action]
By providing a raised portion having an appropriate skirt at the center of the rotating disk, the particles can be given a rolling action on the outer peripheral surface of the raised portion. In addition, a jet outlet for jetting gas in the radial direction of the container is provided between the lower surface of the raised portion and the upper surface of the rotating disk, and a gas flow is jetted from the outlet toward the outer diameter side, thereby enabling rolling operation at the raised portion. Rolling flow can be exerted on the received particles by the cooperation of the rotary motion of the rotating disk and the gas flow. If a gas flow path that can be adjusted independently of the gas flow introduced into the ring-shaped gap (rising gas flow) is connected to the jet outlet, a radial gas flow adjusted to the optimum flow rate can be ejected. It is possible to realize an ideal rolling flow state in cooperation with the rising gas flow.
[0017]
If a part of the gas flow introduced into the ring-shaped gap is divided into the air guide path, two types of gas flows, that is, a rising gas flow and a radial gas flow can be obtained with a single gas flow supply source.
[0018]
An elevating member is disposed below the rotating disk to form an air guide path between the upper surface of the elevating member and the lower surface of the rotating disk, and the air outlet is formed through a through hole provided in the rotating disk. When the width of the air guide path is changed by the lifting / lowering operation of the lifting / lowering member, the flow path area changes. Therefore, the flow rate of the radial gas flow can be adjusted.
[0019]
If a separate gas supply system independent of the gas flow introduced into the ring-shaped gap is connected to the air guide path, the flow rates of the rising gas flow and the radial gas flow can be adjusted completely independently. And the optimum fluid rolling state can be easily realized.
[0020]
A ring-shaped duct having an opening opposite to the ring-shaped gap is provided immediately below the ring-shaped gap, and air is guided to the ring-shaped duct in the tangential direction and in the same direction as the rotation direction of the rotating disk. If an air flow inlet is provided, the particles do not fall into the ring-shaped duct due to the cyclone effect, and the gas flow entering the container through the ring-shaped gap rises in the processing container as a swirling flow.
[0021]
That is, according to the present invention, the rolling-rolling flow-flow, which is important for particle processing, is adjusted by adjusting the ridge shape, the gas flow from the ejection port, and the gas flow from the ring-shaped gap to optimum values, respectively. -Optimum circulation flow of rolling-rolling flow-can be easily realized.
[0022]
【Example】
Embodiments of the device of the present invention will be described below with reference to FIGS.
[0023]
FIG. 1 is a cross-sectional view of a particle processing apparatus according to the present invention. However, in FIG. 1, illustration of exhaust facilities, particle supply ports, discharge ports, and the like is omitted.
[0024]
The processing container (1) is formed of a conductive metal material in a substantially cylindrical shape, and a circular turntable (2) is horizontally disposed at the bottom thereof. The rotating disk (2) is fixed to a vertical rotating shaft (3) connected to a motor (not shown) of a variable speed type without permission, and rotates in a certain direction, for example, clockwise, at an arbitrary speed. .
[0025]
The turntable (2) has a diameter smaller than the inner diameter of the processing container (1). Between the outer diameter surface of the turntable (2) and the inner diameter surface of the processing container (1), A ring-shaped gap (5) having a triangular cross section serving as an introduction path for the rising gas flow is formed.
[0026]
A raised member (6) having a substantially conical shape with the upper part cut out and hollow inside is mounted at the center of the rotating disk (2). The raised member (6) is fastened and fixed to the rotating shaft (3) by a tightening nut (7) screwed into the upper end of the rotating shaft (3). The outer peripheral surface of the raised member (6) serves as a rolling part that imparts rolling action to the particles.
[0027]
A plurality of spacers (9) are mounted on a circumferentially equidistant position directly below the bottom surface of the raised member (6) on the top surface of the rotating disk (2). By this spacer (9), a plurality of jets (11) communicating with the hollow portion (10) of the raised member (6) are formed between the upper surface of the rotating disk (2) and the lower surface of the raised member (6). Is done. A plurality of arc-shaped through holes (12) are formed at equal circumferential positions of the rotating disk (2) and on the inner diameter side of the lower surface of the raised member (6). A pair of annular protrusions (14) and (15) are mounted on or integrally formed with the lower surface of the rotating disk (2) so as to be separated from the inner diameter side and the outer diameter side. The lower surface is set to the same height. (16) is a handle (16) attached to lift the turntable (2) when the turntable (2) is removed.
[0028]
A ring-shaped duct (19) having an upper surface opened and an inner wall surface formed on a smooth continuous curved surface is disposed below the rotating disk. The ring-shaped duct (19) is fixed to the bottom of the processing container (1) via an annular gap constituting member (20) and a mounting member (21), and the inner wall surface on the outer diameter side is a rotating disk. It is located almost directly below the outer peripheral surface of (2). The inner diameter surface of the ring-shaped duct (19) is slidable with respect to the outer diameter surface of an elevating member (22: described later) arranged on the inner diameter side, and the sliding surfaces of both members (19) and (22). Is hermetically sealed with an O-ring (25).
[0029]
The ring-shaped duct (19) is provided with one or a plurality of air flow inlets (not shown) in the tangential direction and in the same direction as the rotation direction of the rotating disk (2). The gas flow (for example, air flow) introduced from the air flow intake port swirls in the ring-shaped duct (19) in the same direction as the rotating disk (2), and the ring-shaped gap (5) and the air guide path (30). : To be described later). The gas flow that has flowed into the ring-shaped gap (5) becomes a swirling flow and rises in the processing container (1), thereby activating the fluid movement of the particles.
[0030]
Particles that fall into the ring duct (19) through the ring gap (5) during flow swirl in the duct (19) on the swirling gas flow introduced from the air flow inlet, and then It returns to the processing container (1) through the ring-shaped gap (5). As described above, since the particles dropped from the ring-shaped gap (5) are quickly returned to the processing container (1) without stopping in the ring-shaped duct (19), the particles to be processed are replaced with different types of particles. However, so-called cross-contamination in which residual particles are mixed into different types of particles is not caused, and the GMP (Good Manufacturing Practice) has excellent characteristics.
[0031]
The elevating member (22) has a hollow shape whose upper surface is a plane, and is formed in a donut shape around the rotation shaft (3). The elevating member (22) is moved up and down by being driven by an elevating drive source (not shown) including a motor, a cylinder, and the like. A tongue-like seal member (23) is attached to the inner diameter surface of the elevating member (22), and this seal member (23) is attached to the inner diameter portion of the rotating disk (2) and the rotating shaft (3). ) Is brought into contact with the outer diameter surface of the base portion (24), and is in air-tight sliding contact with the outer diameter surface of the base portion (24) when moving up and down. A locking member (27) having a step portion (26) bent toward the outer diameter side is mounted on the outer diameter surface of the elevating member (22). Between the inner diameter surface of the locking member (27) and the outer diameter surface of the elevating member (22), a bag-shaped accommodation portion (28) having an opening at the lower portion is formed in an annular shape. (28) accommodates an engaging portion (29) provided on the upper surface of the inner surface of the ring-shaped duct (19). When the elevating member (22) is lowered, the upper end portion of the engaging portion (29) comes into contact with the inner wall surface of the engaging member (27) facing the engaging member (29), thereby further lowering the elevating member (22). Operation is restricted (shown in FIG. 1). On the other hand, when the elevating member (22) is raised, the upper surface of the elevating member (22) comes into contact with both protrusions (14) (15) provided on the lower surface of the rotating disk (2), thereby restricting the ascending operation of the elevating member (22). Is done.
[0032]
Between the lower surface of the rotating disk (2) and the upper surface of the elevating member (22), the hollow portion (10) of the raised member (6) communicates with the ring-shaped duct (19) and through the through hole (12). A ring-shaped air passage (30) communicating with the air is formed. The gas flow divided from the ring-shaped duct (19) into the air guide path (30) is provided at the bottom of the raised member (6) through the through hole (12) and the hollow portion (10) in the raised member (6). The particles ejected in the radial direction from the jetted nozzle (11) and blown off on the rotating disk (2) are blown off in the outer diameter direction.
[0033]
The flow rate of the gas flow through the air guide path (30) is adjusted by moving the elevating member (22) up and down to change the distance between the upper surface of the elevating member (22) and the lower surface of the projecting portion (14) on the outer diameter side. This is done by changing. Specifically, if the elevating member (22) is lowered and the gap between the protrusion (14) and the upper surface of the elevating member (22) is increased, the cross-sectional area of the flow path increases, so the gas flow rate increases. Conversely, if the elevating member (22) is raised to reduce the gap, the gas flow rate can be reduced. If the upper surface of the elevating member (22) is brought into contact with the lower surface of the protrusion (14), the gas flow rate can be almost eliminated.
[0034]
In this way, by introducing the rising gas flow into the ring-shaped gap (5) and introducing the radial gas flow toward the outer radial direction on the rotating disk (2), the particles are allowed to enter the processing container (1). While swirling, it flows up and down, and as a whole, a fluidized bed formed by twisting a rope at the bottom of the processing container (1) is formed. By spraying a processing liquid such as a binder liquid or a coating liquid from the spray nozzle (32) into the fluidized bed, predetermined particle processing such as granulation or coating is performed. In the central portion of the processing container (1), the particles roll on the outer peripheral surface of the raised member (6) with almost no influence of the gas flow, so that a region for rolling operation in which the fluid action hardly acts is ensured.
[0035]
In this invention, while providing a spout (11) toward an outer diameter side between a lower surface of a protruding member (6) and a rotating disk (2), a ring-shaped gap (5) is provided at the spout (11). Since the air flow path (30) whose flow rate can be adjusted independently of the gas flow introduced to the gas flow is communicated, the radial gas flow adjusted to the optimum flow rate can be ejected. Therefore, it is possible to realize an ideal rolling flow state regardless of the dimensions of the container and the rotating disk. Further, as described above, if a part of the gas flow introduced into the ring-shaped duct (19) is divided into the air guide path (30), the gas flow in two directions can be generated by a single gas flow supply source. Can be obtained, and the structure can be simplified.
[0036]
FIG. 2 shows another embodiment of the present invention, in which a separate gas supply system (35) independent of the gas flow introduced into the ring-shaped gap (5) is connected to the air guide path (30). It is characterized by that. More specifically, a ring-shaped air duct (37) having the same shape as the elevating member (22) and having openings (36) at a plurality of locations on the upper surface is provided below the rotating disk (2). It arrange | positions and this air duct (37) is fixed to the stationary member which is not shown in figure by making the upper surface contact the protrusion part (14) (15) of a turntable (2). A supply pipe (not shown) provided with a flow rate control means such as a flow rate control valve is connected to the air guide duct (37) in the middle of the path.
[0037]
With such a configuration, if the flow rate control means is controlled, the gas flow introduced into the air guide path (30) can be independently adjusted to the optimum amount, and as in the apparatus shown in FIG. The optimal rolling flow state can be realized in cooperation with the flow. In the apparatus shown in FIG. 1, when the flow rate of the gas flow is adjusted by moving the lifting member (22) up and down, the flow rate of the rising gas flow is changed in conjunction with this, so that it is difficult to finely adjust the flow rate. However, in the apparatus shown in FIG. 2, the gas flow rate of the rising gas flow and the radial gas flow can be controlled completely independently, so that such a problem does not occur and the optimum rolling flow state is easily realized. can do.
[0038]
5 (a) and 5 (b) show another embodiment of the shape of the ejection port (11). Of these figures, (a) shows that the lower end of the raised member (6) extends in the horizontal direction to form an annular extension (38), and the spacer ( 9), and the ejection port (11) is formed in a ring shape. On the other hand, (b) is a drawing in which a round hole or an elliptical hole is formed in the extended portion (38) obliquely toward the upper outer diameter side to form the second jet port (39). This configuration is effective for large devices. According to this configuration, in addition to the gas flow in the warp direction, the gas flow is supplied from the second jet port (39) toward the upper outer diameter side, so that the flow state in the processing vessel (1) is further improved. It is possible to diversify.
[0039]
A detector (40) for detecting the processing status of particles is incorporated in the bottom of the side surface of the processing container (1). As shown in FIG. 3, the detector (40) has a base (41) having elasticity such as rubber fitted in the side wall of the processing container (1) and having insulation, and both ends protruding. The rod-shaped pressure receiving body (42) inserted horizontally through the base body (41) and the processing container (1) are disposed outside, and one end is connected to the stationary member (43) and the other end is received by the pressure receiving body (42). ) And an elastic member (44) (spring) connected to the outer diameter side end. The pressure receiving body (42) is made of a material having excellent conductivity and corrosion resistance, for example, stainless steel, and an inner diameter side end thereof is provided inside the processing container (1) and a rotating disk ( It is arranged slightly above 2). An ohmmeter is electrically connected between the pressure receiving body (42) and the processing container (1), and the position of the outer diameter side end of the pressure receiving body (42) is outside the processing container (1). Displacement detecting means (for example, a distance sensor) for detecting displacement is disposed (illustration of the resistance meter and the displacement detecting means is omitted).
[0040]
This detector (40) functions as a wetness detector that detects the wetness of the particle surface, and also as a detector that detects troubles such as generation of aggregates and adhesion of particles on the rotating disk (2). . Hereinafter, the operation of the detector (40) will be described for each case.
[0041]
Since the wet particles flow in the processing container (1), a certain amount of current can flow between the processing container (1) and the pressure receiving body (42) formed of the conductive material. In this case, a hyperbolic relationship is established as shown in FIG. 4 between the wetness A of the particle surface and the resistance value R between the processing container (1) and the pressure receiving body, and a slight amount of surface moisture is present. The resistance value varies greatly depending on the difference. Therefore, it is possible to accurately specify the relative wetness of the particle surface from the resistance value indicated by the resistance meter. If the detected wetness is excessive or insufficient, the wetness of the particles can be adjusted manually by adjusting the flow rate of the rising gas flow or radial gas flow, and the amount of liquid spray from the spray nozzle (32). To avoid problems such as powder scattering, aggregate formation, and particle wall adhesion. Furthermore, the detection data of the ohmmeter is fed back to the control device, and the control device can control the radial gas flow, the rising gas flow, or the amount of machining fluid supplied so that the wetness becomes a constant value. It becomes possible to automatically maintain the wetness of the product at the optimum value that does not cause the above trouble without depending on experience and intuition.
[0042]
When aggregates are generated in the processing container (1) or a large amount of particles adhere to the rotating disk (2), the aggregates and adhered particles collide with the pressure receiving body (42). As shown in FIG. 3, the pressure receiving body (42) tilts on the horizontal plane according to the impact force at the time of collision, and after passing through the aggregates, the pressure receiving body (42) is elastically returned to the initial position by the elastic force of the spring (44). When the pressure receiving body (42) tilts, a position displacement occurs at the outer diameter side end, and this displacement amount is measured by the displacement detecting means, and if the measured value is larger than the set value, it is detected that aggregates are generated. Send a signal to warn workers. As a result, the operator can recognize the occurrence of agglomeration without putting hands in the apparatus or sampling, and can quickly deal with troubles without imposing excessive burden on the operator. Become.
[0043]
In addition, a similar effect can be obtained by attaching a strain gauge to the pressure receiving body (42) and measuring the amount of deflection of the pressure receiving body (42) due to the collision of aggregates with the strain gauge.
[0044]
【The invention's effect】
As described above, according to the present invention, the protruding portion is formed on the center upper surface of the rotating disk to form the rolling portion, and the outer surface is directed between the lower surface of the protruding portion and the upper surface of the rotating disk. The air outlet is connected to the air outlet so that the flow rate can be adjusted independently of the gas flow introduced into the ring-shaped gap. It can be ejected, and an ideal rolling flow state can be easily realized regardless of the dimensions of the processing container and the rotating disk. Accordingly, it is possible to simplify the process of determining the dimensions of the processing container and the turntable, and it is possible to easily cope with scale-up and scale-down of the apparatus. In addition, since the outer peripheral surface of the raised portion is a region for rolling operation in which the fluid action hardly acts, the optimum circulating flow of the particle group can be realized.
[0045]
If a part of the gas flow introduced into the ring-shaped gap is diverted to the air guide path, two types of gas flow, an ascending gas flow and a radial gas flow, can be obtained with a single gas flow supply source, The structure can be simplified.
[0046]
If a separate gas supply system independent of the gas flow introduced into the ring-shaped gap is connected to the air guide path, the flow rates of the rising gas flow and the radial gas flow can be adjusted completely independently. And the optimum fluid rolling state can be easily realized. In this case, since the flow rate of the rising gas flow is not affected by the flow rate adjustment of the radial gas flow, the flow rate can be adjusted more finely.
[0047]
A ring-shaped duct having an opening opposite to the ring-shaped gap is provided immediately below the ring-shaped gap, and air is guided to the ring-shaped duct in the tangential direction and in the same direction as the rotation direction of the rotating disk. By providing an air flow inlet, the flow motion of particles can be activated compared to when only a vertical gas flow is applied, and a more active flow motion is realized by synergy with the radial gas flow It becomes possible to do. Further, cross contamination can be surely prevented, and the GMP is excellent.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of a device of the present invention.
FIG. 2 is a vertical sectional view showing another embodiment of the device of the present invention.
FIG. 3 is a horizontal sectional view of the detector.
FIG. 4 is a graph showing the relationship between moisture content and resistance value.
FIG. 5 is a vertical sectional view showing another embodiment of the ejection port.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing container 2 Turntable 5 Ring-shaped clearance 6 Raised member 11 Spout 12 Through hole 22 Elevating member 30 Air guide path

Claims (3)

略円筒状の加工容器と、この加工容器内の底部近傍で水平回転する回転盤とを有し、系外より回転盤の下方に供給されたガス流を、回転盤の外径面とこれに対向する加工容器の内径面との間に形成されたリング状隙間から上方に噴出させ、この上昇ガス流と回転盤の回転運動との相乗作用により、加工容器内の粒子に転動流動を行なわせて造粒・コーティング等の粒子加工を施す装置において、
前記回転盤の中央上面に隆起部を突設して転動部を形成すると共に、隆起部と回転盤上面との間に外径側に向けて噴出口を設け、この噴出口に前記リング状隙間に導入されるガス流とは独立して流量調整可能とした導気路を連通させ、
前記導気路に、前記リング状隙間に導入されガス流の一部を分流させ、
前記回転盤の下方に昇降部材を配置してこの昇降部材の上面と回転盤の下面との間に導気路を形成すると共に、この導気路を回転盤に設けた貫通孔を介して前記噴出口に連通させ、前記昇降部材の昇降動作により導気路の幅を変化させて当該導気路のガス分流量を調整することを特徴とする粒子加工装置。
It has a substantially cylindrical processing container and a rotating disk that rotates horizontally near the bottom in the processing container, and the gas flow supplied from outside the system to the lower part of the rotating disk is connected to the outer diameter surface of the rotating disk and this It is ejected upward from a ring-shaped gap formed between the opposed inner diameter surfaces of the processing vessel, and the particles in the processing vessel are caused to roll by the synergistic effect of this rising gas flow and the rotary motion of the rotating disk. In equipment that performs particle processing such as granulation and coating,
A protruding portion is formed on the central upper surface of the rotating disk to form a rolling portion, and an outlet is provided between the protruding portion and the upper surface of the rotating disk toward the outer diameter side. Communicating air passages that can adjust the flow rate independently of the gas flow introduced into the gap,
Wherein the Shirubekiro, divert part of the ring-shaped gap gas Ru is introduced into flow,
An elevating member is disposed below the rotating plate to form an air guide path between the upper surface of the elevating member and the lower surface of the rotating plate, and the air guide path is formed through a through hole provided in the rotating plate. A particle processing apparatus, wherein the particle processing apparatus is connected to a jet port and adjusts the gas flow rate of the air guide path by changing the width of the air guide path by the lifting operation of the lift member.
略円筒状の加工容器と、この加工容器内の底部近傍で水平回転する回転盤とを有し、系外より回転盤の下方に供給されたガス流を、回転盤の外径面とこれに対向する加工容器の内径面との間に形成されたリング状隙間から上方に噴出させ、この上昇ガス流と回転盤の回転運動との相乗作用により、加工容器内の粒子に転動流動を行なわせて造粒・コーティング等の粒子加工を施す装置において、
前記回転盤の中央上面に隆起部を突設して転動部を形成すると共に、隆起部と回転盤上面との間に外径側に向けて噴出口を設け、この噴出口に前記リング状隙間に導入されるガス流とは独立して流量調整可能とした導気路を連通させ、
前記導気路に、前記リング状隙間に導入されるガス流とは独立した別系統のガス供給系を接続することを特徴とする粒子加工装置。
It has a substantially cylindrical processing container and a rotating disk that rotates horizontally near the bottom in the processing container, and the gas flow supplied from outside the system to the lower part of the rotating disk is connected to the outer diameter surface of the rotating disk and this It is ejected upward from a ring-shaped gap formed between the opposed inner diameter surfaces of the processing vessel, and the particles in the processing vessel are caused to roll by the synergistic effect of this rising gas flow and the rotary motion of the rotating disk. In equipment that performs particle processing such as granulation and coating,
A protruding portion is formed on the central upper surface of the rotating disk to form a rolling portion, and an outlet is provided between the protruding portion and the upper surface of the rotating disk toward the outer diameter side. Communicating air passages that can adjust the flow rate independently of the gas flow introduced into the gap,
A particle processing apparatus, wherein a separate gas supply system independent of a gas flow introduced into the ring-shaped gap is connected to the air guide path.
前記リング状隙間の直下部に、リング状隙間との対向部位を開口させたリング状ダクトを設け、このリング状ダクトに、接線方向で且つ前記回転盤の回転方向と同一方向に向けて導気する気流取入口を設けたことを特徴とする請求項1または2記載の粒子加工装置。A ring-shaped duct having an opening opposite to the ring-shaped gap is provided immediately below the ring-shaped gap, and air is guided to the ring-shaped duct in a tangential direction and in the same direction as the rotation direction of the rotating disk. The particle processing apparatus according to claim 1, further comprising an air flow inlet for performing the operation.
JP16081694A 1994-07-13 1994-07-13 Particle processing equipment Expired - Fee Related JP3633958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16081694A JP3633958B2 (en) 1994-07-13 1994-07-13 Particle processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16081694A JP3633958B2 (en) 1994-07-13 1994-07-13 Particle processing equipment

Publications (2)

Publication Number Publication Date
JPH0824617A JPH0824617A (en) 1996-01-30
JP3633958B2 true JP3633958B2 (en) 2005-03-30

Family

ID=15723047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16081694A Expired - Fee Related JP3633958B2 (en) 1994-07-13 1994-07-13 Particle processing equipment

Country Status (1)

Country Link
JP (1) JP3633958B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749097B (en) * 2022-03-29 2023-01-20 浙江小伦智能制造股份有限公司 Wet process drying integral type granulator

Also Published As

Publication number Publication date
JPH0824617A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
US6579365B1 (en) Apparatus for coating tablets
US7802376B2 (en) Apparatus for treating particulate material
US5096744A (en) Granulating and coating apparatus and granulating and coating method using the same
US4740390A (en) Granule producing and/or processing apparatus and method
EP0423701B1 (en) Granulating and coating method and apparatus therefor
EP0191949B1 (en) Apparatus for introducing a process gas into a treatment chamber
US7278595B2 (en) Particle feed apparatus for jet mill
KR20150011381A (en) Gas feed device in powder/granular material feeder
JP3633958B2 (en) Particle processing equipment
CN100441310C (en) Atomizing nozzle with a rotary annular gap
GB1584390A (en) Apparatus for pulverising solid materials
JP3655005B2 (en) Spray gun and granulation coating method using the same
JPS6049018B2 (en) Rotating stratification device
JPH0226156B2 (en)
GB2258831A (en) Apparatus for applying a surface coating to granular material e.g. seeds
JP3405600B2 (en) Detector for particle processing equipment
JPH0638910B2 (en) Granule processing method and device
JPH03284343A (en) Fluidized bed treatment apparatus
JPH06170208A (en) Particle treating device
RU2394638C2 (en) Device to process powder material
JPH0454813Y2 (en)
JPH0615030B2 (en) Powder processing equipment
JPH04145937A (en) Grain processing device
TWI302851B (en)
US4241516A (en) Apparatus and process for treating pulverized granular material with a fluid stream

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees