JPH06168966A - Semiconductor device, die bonder and manufacture of semiconductor device - Google Patents

Semiconductor device, die bonder and manufacture of semiconductor device

Info

Publication number
JPH06168966A
JPH06168966A JP43A JP31977392A JPH06168966A JP H06168966 A JPH06168966 A JP H06168966A JP 43 A JP43 A JP 43A JP 31977392 A JP31977392 A JP 31977392A JP H06168966 A JPH06168966 A JP H06168966A
Authority
JP
Japan
Prior art keywords
solder
fine particles
magnetic
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Keiichiro Okubo
圭一郎 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP43A priority Critical patent/JPH06168966A/en
Publication of JPH06168966A publication Critical patent/JPH06168966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PURPOSE:To provide a semiconductor device having a structure wherein a semiconductor pellet is bonded to a heat dissipating plate via solder, and its manufacturing equipment and method. CONSTITUTION:A semiconductor pellet 3 is bonded to a heat-dissipating plate 1 via solder 4 containing magnetic fine particles 8. For manufacturing a semiconductor device, the following are arranged; a solder supply part 10 which supplies solder 4 containing magnetic fine particles 8 to a hot heat-dissipating plate 1, along a guide rail 9 which carries the heat-dissipating plate while heating it, a semiconductor pellet supply part 12 which supplies semiconductor pellets 3 to the fused solder 4 on the heat-dissipating plate 1, and a magnetism generating part 14 which applies a magnetic field to the fused solder 4 and exert moving force to the magnetic fine particles 8. When the solder 4 containing the magnetic fine particles 8 is supplied to the hot heat-dissipating plate 1, the semiconductor pellets 3 are supplied to the fused solder 4, and the solder 4 is bonded to the heat-dissipating plate 1, the magnetic field is applied to the magnetic fine particles 8 in the fused solder 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放熱板上に半田を介し
て半導体ペレットを接着した構造の半導体装置およびそ
の製造装置並びにその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a structure in which semiconductor pellets are adhered to a heat dissipation plate via solder, a manufacturing apparatus therefor, and a manufacturing method therefor.

【0002】[0002]

【従来の技術】図5は電力用半導体装置の一例を示す。
図において1は肉厚の放熱板、2は複数本一組のリード
で、一本のリード2aは放熱板1に接続されている。3
は放熱板1に半田4を介して接着された半導体ペレッ
ト、5は半導体ペレット3上の電極と他のリード(図示
例ではリード2b)とを電気的に接続した金属細線、6
は半導体ペレット3を含む放熱板1の全面を被覆した樹
脂を示す。
2. Description of the Related Art FIG. 5 shows an example of a power semiconductor device.
In the figure, 1 is a thick heat dissipation plate, 2 is a set of a plurality of leads, and one lead 2 a is connected to the heat dissipation plate 1. Three
Is a semiconductor pellet adhered to the heat sink 1 via solder 4; and 5 is a fine metal wire that electrically connects the electrode on the semiconductor pellet 3 and another lead (lead 2b in the illustrated example), 6
Indicates a resin that covers the entire surface of the heat dissipation plate 1 including the semiconductor pellets 3.

【0003】図5に示す電力用半導体装置は、半導体ペ
レット3で発生する熱を効率よく放熱するために半導体
ペレット3を熱伝導性の良好な半田4を用いて放熱板1
に接着している。
In the power semiconductor device shown in FIG. 5, in order to efficiently dissipate the heat generated in the semiconductor pellet 3, the semiconductor pellet 3 is radiated by using a solder 4 having good thermal conductivity.
Is glued to.

【0004】この半導体装置はオンオフ動作によって、
半導体ペレット3が発熱と、自然冷却を繰返し、熱膨
張、熱収縮を繰り返す。このとき、熱は半導体ペレット
3から半田4を介して放熱板1に伝わり外部に放熱され
るが、半導体ペレット3、半田4、放熱板1のそれぞれ
の熱膨張率が異なるため、各接続部で熱膨張率の差によ
るストレスがかかり、このストレスが半田4を疲労させ
クラックを生じさせる。
This semiconductor device is turned on and off by
The semiconductor pellet 3 repeats heat generation and natural cooling, and repeats thermal expansion and thermal contraction. At this time, heat is transferred from the semiconductor pellet 3 to the heat sink 1 through the solder 4 and is radiated to the outside. However, since the semiconductor pellet 3, the solder 4, and the heat sink 1 have different coefficients of thermal expansion, they are different at each connection portion. A stress is applied due to the difference in the coefficient of thermal expansion, and this stress fatigues the solder 4 and causes cracks.

【0005】一旦半田4にクラックを生じると、熱伝導
性が急激に低下し、半導体ペレット3の温度が急上昇し
て最終的に破損する。
Once the solder 4 is cracked, its thermal conductivity is drastically reduced, and the temperature of the semiconductor pellet 3 is sharply increased, resulting in damage.

【0006】このようにオンオフ動作を繰り返す目的で
使用される半導体装置は、半田4の厚みを規制すること
によって長寿命化が図れることが例えば、特開昭49−
51872号公報、特開昭53−59365号公報、特
開昭53−61973号公報などに開示されている。
In the semiconductor device used for the purpose of repeating the on / off operation as described above, it is possible to extend the service life by regulating the thickness of the solder 4, for example, Japanese Patent Laid-Open No. 49-
It is disclosed in JP-A-51872, JP-A-53-59365, JP-A-53-61973 and the like.

【0007】これらの公知技術には、半田4が供給され
る放熱板1に打刻または突起を設けること、半田4に
網、環または他の成形体を挿入すること、半田4にスペ
ーサとして作用する微粒子を混入することなどにより半
田の厚みを規制することが開示され、いずれの方法によ
っても相当の効果が得られることが知られている。
In these known techniques, the heat sink 1 to which the solder 4 is supplied is provided with stamps or protrusions, a net, a ring or another molded body is inserted into the solder 4, and the solder 4 acts as a spacer. It is disclosed that the thickness of the solder is regulated by mixing such fine particles, and it is known that a considerable effect can be obtained by any method.

【0008】図6は微粒子7を混入した半田4にて半導
体ペレット3を放熱板1に固定した半導体装置を示し、
微粒子7によって半田4に半導体ペレット3を供給する
際に半導体ペレット3に荷重が加えられても微粒子7が
スペーサの作用を果たし半田4の厚みを一定にすること
ができる。
FIG. 6 shows a semiconductor device in which a semiconductor pellet 3 is fixed to a heat radiating plate 1 with a solder 4 containing fine particles 7.
Even when a load is applied to the semiconductor pellet 3 when the semiconductor pellet 3 is supplied to the solder 4 by the fine particle 7, the fine particle 7 acts as a spacer and the thickness of the solder 4 can be made constant.

【0009】半田4に混入する微粒子としては、金や銀
などの貴金属や耐熱性のあるアルミナなどの非金属が考
えられるが、貴金属は熱伝導性が半田よりも良好である
という利点があるのに対して極めて高価であるという欠
点があるため。熱伝導性は劣るものの安価なアルミナな
どが用いられている。
The fine particles mixed in the solder 4 may be a noble metal such as gold or silver or a nonmetal such as heat-resistant alumina, but the noble metal has an advantage that it has better thermal conductivity than the solder. Because it has the drawback of being extremely expensive. Although the thermal conductivity is inferior, inexpensive alumina or the like is used.

【0010】[0010]

【発明が解決しようとする課題】ところで、アルミナな
どの非金属を半田に混入する場合、混入量が多いと上記
のとおり熱伝導性が低下し、混入量が少ないと半田内の
微粒子の分布が不均一になり部分的にスペーサのない部
分が出来、半田の厚みを規制できない虞もあるため、所
望する半田厚より小径の微粒子を用いて、半田のほぼ全
面に均等に分布する量を混入した半田を用いている。
By the way, when a non-metal such as alumina is mixed in the solder, if the mixing amount is large, the thermal conductivity is lowered as described above, and if the mixing amount is small, the distribution of fine particles in the solder is small. Since there is a possibility that the area will be non-uniform and there will be a part without spacers and the thickness of the solder cannot be regulated, fine particles with a diameter smaller than the desired solder thickness were used, and an amount evenly distributed over almost the entire surface of the solder was mixed. Uses solder.

【0011】この場合、半導体ペレットを溶融半田上に
供給する際にかかる荷重によって半導体ペレットは一旦
半田を押し退けて微粒子によって規制される深さまで半
田内に沈み込み、荷重が除去されると半導体ペレットは
半田の浮力によって浮上し半田厚を確保できる。
In this case, the load applied when the semiconductor pellets are supplied onto the molten solder causes the semiconductor pellets to once push the solder down and sink into the solder to a depth regulated by the fine particles. The buoyancy of the solder makes it possible to float and secure the solder thickness.

【0012】しかしながら、半田内の微粒子の分布の偏
りや浮力の偏りによって、半導体ペレットの浮上量が一
定せず、半導体装置をオンオフ動作させた場合、不良に
なるまでの保証動作回数は満足しても、動作回数のばら
つきが大きいという問題があった。
However, due to the uneven distribution of fine particles in the solder and the uneven buoyancy, the floating amount of the semiconductor pellets is not constant, and when the semiconductor device is turned on and off, the guaranteed number of operations until failure is satisfied. However, there is a problem in that the number of operations varies greatly.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題の解決
を目的として提案されたもので、放熱板上に磁性微粒子
を含有させた半田を介して半導体ペレットを接着したこ
とを特徴とする半導体装置を提供する。
The present invention has been proposed for the purpose of solving the above-mentioned problems, and is characterized in that a semiconductor pellet is bonded onto a heat sink through a solder containing magnetic fine particles. Provide a device.

【0014】また本発明は、上記半導体装置を製造する
ために、放熱板を加熱しつつ搬送するガイドレールに沿
って、磁性微粒子を含有する半田を加熱された放熱板上
に供給する半田供給部と、放熱板上で溶融した半田上に
半導体ペレットを供給する半導体ペレット供給部と、溶
融半田に磁界を印加し磁性微粒子に移動力を付与する磁
気発生部とを配置したことを特徴とするダイボンダを提
供する。
Further, according to the present invention, in order to manufacture the above-mentioned semiconductor device, a solder supply unit for supplying the solder containing the magnetic fine particles onto the heated heat dissipation plate along the guide rail which conveys while heating the heat dissipation plate. And a semiconductor pellet supply unit for supplying a semiconductor pellet onto the solder melted on the heat dissipation plate, and a magnetic generation unit for applying a magnetic field to the molten solder to give a moving force to the magnetic fine particles. I will provide a.

【0015】さらには、加熱された放熱板上に、磁性微
粒子を含有させた半田を供給し、溶融した半田上に半導
体ペレットを供給して放熱板に半田を接着するに当たっ
て、溶融半田内の磁性微粒子に磁界を付与することを特
徴とする半導体装置の製造方法をも提供する。
Further, when the solder containing the magnetic fine particles is supplied onto the heated heat sink and the semiconductor pellets are supplied onto the melted solder to bond the solder to the heat sink, the magnetic property in the molten solder is reduced. There is also provided a method for manufacturing a semiconductor device, which is characterized by applying a magnetic field to fine particles.

【0016】[0016]

【作用】本発明は上記手段により所望の半田厚より小さ
い径の微粒子を用いても、磁性微粒子によって所望の半
田厚を確保できるようにした半導体装置を実現できる。
The present invention can realize a semiconductor device in which the desired solder thickness can be ensured by the magnetic fine particles even if fine particles having a diameter smaller than the desired solder thickness are used by the above means.

【0017】[0017]

【実施例】以下に本発明の実施例を図1から説明する。
図において図5と同一符号は同一物を示し説明を省略す
る。図中相違するのは、半田4内に混入した微粒子のみ
で、この微粒子8は、所望する半田厚より径小で、磁界
により吸引される磁性体よりなり、半田層の半導体ペレ
ット3側に集中している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG.
In the figure, the same reference numerals as those in FIG. Only the fine particles mixed in the solder 4 are different in the figure. The fine particles 8 are made of a magnetic substance having a diameter smaller than a desired solder thickness and attracted by a magnetic field, and are concentrated on the semiconductor pellet 3 side of the solder layer. is doing.

【0018】図2は図1半導体装置を製造するダイボン
ダの一例を示す。図において9は加熱手段(図示せず)
を有し移動する放熱板1を加熱しつつ搬送する。10は
加熱された放熱板1上に一定量の半田4を供給する半田
供給部で、図示例ではコレット11によって吸着した半
田片4aを供給するようにしている。半田片4aは予め
磁性微粒子8を混入している。12は半導体ペレット3
をコレット13で吸着して放熱板1上の溶融半田4上に
供給する半導体ペレット供給部、14は半導体ペレット
3の上方に配置され、半田4内の磁性微粒子8に磁界を
付与し吸引する磁気発生部を示す。
FIG. 2 shows an example of a die bonder for manufacturing the semiconductor device shown in FIG. In the figure, 9 is a heating means (not shown)
The moving heat radiating plate 1 having the above is heated and conveyed. Reference numeral 10 denotes a solder supply unit for supplying a fixed amount of solder 4 onto the heated heat dissipation plate 1, and in the illustrated example, a solder piece 4a adsorbed by the collet 11 is supplied. The magnetic particles 8 are mixed in advance in the solder pieces 4a. 12 is a semiconductor pellet 3
A semiconductor pellet supply unit 14 which is sucked by the collet 13 and supplied onto the molten solder 4 on the heat dissipation plate 1, 14 is arranged above the semiconductor pellet 3, and a magnetic field is applied to the magnetic fine particles 8 in the solder 4 to attract the magnetic particles. The generation part is shown.

【0019】半田4内では磁性微粒子8は不規則に分布
しているが、加熱された放熱板1上で半田4が溶融する
と半田4と磁性微粒子8の比重の違いから磁性微粒子8
には浮力が作用する。
The magnetic fine particles 8 are irregularly distributed in the solder 4, but when the solder 4 melts on the heated radiator plate 1, the magnetic fine particles 8 are different because of the difference in specific gravity between the solder 4 and the magnetic fine particles 8.
Buoyancy acts on.

【0020】図2装置では、半田に外部から磁界を印加
するため、浮力を受けた磁性微粒子8は効率よく上方に
移動し、半導体ペレット3を持ち上げ、微粒子8の径よ
り大きい半田厚を確保できる。
In the apparatus shown in FIG. 2, since a magnetic field is applied to the solder from the outside, the buoyant magnetic fine particles 8 can be efficiently moved upward to lift the semiconductor pellet 3 and secure a solder thickness larger than the diameter of the fine particles 8. .

【0021】したがって、半導体ペレット3をコレット
13により溶融半田上に供給する際に半導体ペレット3
に荷重がかかって溶融半田内に沈み込み、その時点では
半田厚が十分に確保できなくても、次工程で磁性微粒子
8を自身の浮力と磁界発生部14による吸着力によって
上方に移動させ半導体ペレット3を持ち上げ所望の半田
厚を確保することが出来、オンオフ動作の繰返しによっ
て不良になるまでの動作回数を延長でき、しかも半導体
装置毎のばらつきを小さく出来、信頼性の高い半導体装
置を実現できる。
Therefore, when the semiconductor pellets 3 are supplied onto the molten solder by the collet 13, the semiconductor pellets 3
Even if a sufficient solder thickness cannot be secured at that time due to a load being applied to the molten solder, the magnetic fine particles 8 are moved upward by the buoyancy of themselves and the attractive force of the magnetic field generator 14 in the next step. The pellet 3 can be lifted to secure a desired solder thickness, the number of operations until failure can be extended by repeating the on / off operation, and the variation between semiconductor devices can be reduced, and a highly reliable semiconductor device can be realized. .

【0022】図1に示す半導体装置は磁性微粒子8が半
導体ペレット3側に一様に分布しているが、磁界発生部
14によって生じる磁界分布を制御することにより、図
3に示すように磁性微粒子8を半導体ペレット3の外周
部に密に分布させることができる。
In the semiconductor device shown in FIG. 1, the magnetic fine particles 8 are uniformly distributed on the semiconductor pellet 3 side. However, by controlling the magnetic field distribution generated by the magnetic field generator 14, the magnetic fine particles 8 are distributed as shown in FIG. 8 can be densely distributed on the outer peripheral portion of the semiconductor pellet 3.

【0023】これにより、磁性微粒子8それ自身の浮力
と磁界発生部14による吸着力により半導体ペレット3
を持ち上げて十分な半田厚を確保するとともに、半導体
ペレット3の中央部と放熱板1の間を半田4によって直
結し熱的結合も確保でき、図1半導体装置よりも高出力
で高品質の半導体装置を実現できる。
As a result, the buoyancy of the magnetic fine particles 8 themselves and the attraction of the magnetic field generator 14 cause the semiconductor pellet 3
To secure a sufficient solder thickness, and the central portion of the semiconductor pellet 3 and the heat radiating plate 1 can be directly connected by the solder 4 to secure thermal coupling, and a semiconductor with higher output and higher quality than the semiconductor device shown in FIG. The device can be realized.

【0024】また、図2に示すダイボンダにおいて、磁
界発生部14には、図4に示すように磁界発生部14と
半導体ペレット3の間に、磁性微粒子8によって持ち上
げられる半導体ペレット3と当接して高さ位置を規制す
るストッパ15を設けてもよい。
In the die bonder shown in FIG. 2, the magnetic field generator 14 is in contact with the semiconductor pellet 3 lifted by the magnetic fine particles 8 between the magnetic field generator 14 and the semiconductor pellet 3 as shown in FIG. You may provide the stopper 15 which regulates a height position.

【0025】これにより、磁性微粒子8の浮力と磁気吸
着力によって持ち上げられた半導体ペレット3の高さ位
置をストッパ15によって調整できるため、半田厚を任
意にかつ、より正確に制御できる。
As a result, the height position of the semiconductor pellet 3 lifted by the buoyancy of the magnetic fine particles 8 and the magnetic attraction can be adjusted by the stopper 15, so that the solder thickness can be controlled arbitrarily and more accurately.

【0026】また、磁気発生部14は、図2に示す実施
例では放熱板1の上方に配置したが、第1、第2の磁気
発生手段を放熱板1の上下両側に配置し各磁気発生手段
にて磁性微粒子8にかかる磁界を微調整し、磁性微粒子
8の吸着力を強化するとともに、より精密な制御をする
ことが出来る。
Although the magnetic field generator 14 is disposed above the heat sink 1 in the embodiment shown in FIG. 2, the first and second magnetic field generators are disposed above and below the heat sink 1, respectively. It is possible to finely adjust the magnetic field applied to the magnetic fine particles 8 by means to strengthen the adsorption force of the magnetic fine particles 8 and perform more precise control.

【0027】なお、磁界発生手段14の磁界は静磁界で
もよいし、交流磁界でもよく、交流磁界を付与すること
によって、磁性微粒子8を半田内で移動させるとともに
溶融半田内に残留した気泡を効率よく半田の外部にとり
だすことが出来、半導体ペレット3の裏面と溶融半田4
とを完全に濡らすことが出来、熱伝導性を最良にでき
る。
The magnetic field of the magnetic field generating means 14 may be a static magnetic field or an alternating magnetic field. By applying an alternating magnetic field, the magnetic fine particles 8 are moved in the solder and bubbles remaining in the molten solder are efficiently transferred. It can be easily taken out of the solder, and the back surface of the semiconductor pellet 3 and the molten solder 4
And can be completely wetted, and the thermal conductivity can be optimized.

【0028】[0028]

【発明の効果】以上のように、本発明によれば半導体ペ
レットを放熱板に接着する半田の厚さを十分確保でき、
信頼性の高い電力用半導体装置を実現できる。
As described above, according to the present invention, the thickness of the solder for bonding the semiconductor pellet to the heat sink can be sufficiently secured,
It is possible to realize a highly reliable power semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示す半導体装置の側断面図FIG. 1 is a side sectional view of a semiconductor device showing an embodiment of the present invention.

【図2】 本発明の実施例を示す半導体装置用ダイボン
ダの側断面図
FIG. 2 is a side sectional view of a semiconductor device die bonder showing an embodiment of the present invention.

【図3】 本発明の他の実施例を示す半導体装置の側断
面図
FIG. 3 is a side sectional view of a semiconductor device showing another embodiment of the present invention.

【図4】 本発明の他の実施例を示す半導体装置用ダイ
ボンダの要部側断面図
FIG. 4 is a side sectional view of a main part of a semiconductor device die bonder showing another embodiment of the present invention.

【図5】 電力用半導体装置の一例を示す側断面図FIG. 5 is a side sectional view showing an example of a power semiconductor device.

【図6】 図5に示す半導体装置の改良例を示す要部側
断面図
FIG. 6 is a side sectional view of an essential part showing an improved example of the semiconductor device shown in FIG.

【符号の説明】[Explanation of symbols]

1 放熱板 3 半導体ペレット 4 半田 8 磁性微粒子 9 ガイドレール 10 半田供給部 12 半導体ペレット供給部 14 磁界発生部 15 ストッパ DESCRIPTION OF SYMBOLS 1 Heat sink 3 Semiconductor pellet 4 Solder 8 Magnetic fine particles 9 Guide rail 10 Solder supply part 12 Semiconductor pellet supply part 14 Magnetic field generation part 15 Stopper

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】放熱板上に磁性微粒子を含む半田を介して
半導体ペレットを接着したことを特徴とする半導体装
置。
1. A semiconductor device in which a semiconductor pellet is bonded onto a heat dissipation plate through a solder containing magnetic fine particles.
【請求項2】半田層内の磁性微粒子を半導体ペレット側
に位置させたことを特徴とする請求項1に記載の半導体
装置。
2. The semiconductor device according to claim 1, wherein the magnetic fine particles in the solder layer are located on the semiconductor pellet side.
【請求項3】半田層内の磁性微粒子を半導体ペレットの
周辺部に位置させたことを特徴とする請求項2に記載の
半導体装置。
3. The semiconductor device according to claim 2, wherein the magnetic fine particles in the solder layer are located in the peripheral portion of the semiconductor pellet.
【請求項4】放熱板を加熱しつつ搬送するガイドレール
に沿って、加熱された放熱板上に半田と磁性微粒子とを
供給する半田供給部と、放熱板上で溶融した半田上に半
導体ペレットを供給する半導体ペレット供給部と、溶融
半田に磁界を印加し磁性微粒子に移動力を付与する磁気
発生部とを配置したことを特徴とするダイボンダ。
4. A solder supply unit for supplying solder and magnetic fine particles onto the heated radiator plate along a guide rail for transporting while heating the radiator plate, and a semiconductor pellet on the solder melted on the radiator plate. A die bonder characterized by arranging a semiconductor pellet supply section for supplying a magnetic flux and a magnetic generation section for applying a magnetic field to the molten solder to give a moving force to the magnetic fine particles.
【請求項5】磁気発生部によって半田内の磁性微粒子に
上向きの力を付与するようにしたことを特徴とする請求
項4に記載のダイボンダ。
5. The die bonder according to claim 4, wherein an upward force is applied to the magnetic fine particles in the solder by the magnetic field generator.
【請求項6】半導体ペレットと磁気発生部との間に、磁
気発生部によって上向きの力が付与された磁性粒子によ
って浮上する半導体ペレットに当接してその高さ位置を
規制し半田の厚みを設定するストッパを配置したことを
特徴とする請求項5に記載のダイボンダ。
6. A solder pellet is set between the semiconductor pellet and the magnetism generating portion by abutting against the semiconductor pellet floating by magnetic particles to which an upward force is applied by the magnetism generating portion to regulate the height position and set the solder thickness. The die bonder according to claim 5, further comprising a stopper that operates.
【請求項7】磁気発生部が半導体ペレットの外周部に集
中した磁界を発生することを特徴とする請求項5に記載
のダイボンダ。
7. The die bonder according to claim 5, wherein the magnetism generating portion generates a magnetic field concentrated on the outer peripheral portion of the semiconductor pellet.
【請求項8】磁性発生部を放熱板の上下両側に配置した
ことを特徴とする請求項4に記載のダイボンダ。
8. The die bonder according to claim 4, wherein the magnetism generating parts are arranged on both upper and lower sides of the heat dissipation plate.
【請求項9】加熱された放熱板上に、磁性微粒子を含有
させた半田を供給し、溶融した半田上に半導体ペレット
を供給して放熱板に半田を接着するに当たって、溶融半
田内の磁性微粒子に磁界を付与することを特徴とする半
導体装置の製造方法。
9. Magnetic fine particles in molten solder are supplied when solder containing magnetic particles is supplied onto a heated radiator plate and semiconductor pellets are supplied onto the melted solder to bond the solder to the radiator plate. A method for manufacturing a semiconductor device, which comprises applying a magnetic field to the semiconductor device.
【請求項10】溶融半田内の磁性微粒子に印加する磁界
が交流磁界であることを特徴とする請求項9に記載の半
導体装置の製造方法。
10. The method of manufacturing a semiconductor device according to claim 9, wherein the magnetic field applied to the magnetic fine particles in the molten solder is an alternating magnetic field.
JP43A 1992-11-30 1992-11-30 Semiconductor device, die bonder and manufacture of semiconductor device Pending JPH06168966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06168966A (en) 1992-11-30 1992-11-30 Semiconductor device, die bonder and manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06168966A (en) 1992-11-30 1992-11-30 Semiconductor device, die bonder and manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06168966A true JPH06168966A (en) 1994-06-14

Family

ID=18114024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06168966A (en) 1992-11-30 1992-11-30 Semiconductor device, die bonder and manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06168966A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278430A (en) * 1989-11-18 1994-01-11 Kabushiki Kaisha Toshiba Complementary semiconductor device using diamond thin film and the method of manufacturing this device
JPH06277871A (en) * 1993-02-22 1994-10-04 American Teleph & Telegr Co <Att> Solder material containing magnetic particle and its preparation
DE102010019276B4 (en) * 2009-05-07 2013-02-21 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method for producing an integrated part by means of a fastening material by means of a magnetic field
WO2011106421A3 (en) * 2010-02-24 2015-09-11 Ramirez Ainissa G Low melting temperature alloys with magnetic dispersions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278430A (en) * 1989-11-18 1994-01-11 Kabushiki Kaisha Toshiba Complementary semiconductor device using diamond thin film and the method of manufacturing this device
JPH06277871A (en) * 1993-02-22 1994-10-04 American Teleph & Telegr Co <Att> Solder material containing magnetic particle and its preparation
DE102010019276B4 (en) * 2009-05-07 2013-02-21 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method for producing an integrated part by means of a fastening material by means of a magnetic field
WO2011106421A3 (en) * 2010-02-24 2015-09-11 Ramirez Ainissa G Low melting temperature alloys with magnetic dispersions

Similar Documents

Publication Publication Date Title
US6919007B2 (en) Apparatus for mounting chips
WO2011111659A1 (en) Heating apparatus and annealing apparatus
TWI246174B (en) Heat spreader, package and package method thereof
WO1988001827A1 (en) Circuit package attachment apparatus and method
TW201806097A (en) Manufacturing apparatus and manufacturing method of electronic component and electronic component
JP2005136018A (en) Semiconductor device
JP2004095586A (en) Electric apparatus and wiring board
JP4542926B2 (en) Joining method
TW201125173A (en) Substrate for mounting light-emitting element and method for producing same
US20090134204A1 (en) Soldering Method and Semiconductor Module Manufacturing Method
JPH07201919A (en) Semiconductor device and reproduction method
JPH06168966A (en) Semiconductor device, die bonder and manufacture of semiconductor device
JP2014216527A (en) Light irradiation module and printer
US20230282608A1 (en) Semiconductor die package
US20230282611A1 (en) Semiconductor device manufacturing method
JP2016122726A (en) Chip bonding device and chip bonding method
JPH05121603A (en) Hybrid integrated circuit device
JP2006128571A (en) Semiconductor device
JP2015026647A (en) Light irradiation module and printer
JPH06120283A (en) Semiconductor pellet and mounting method thereof
JPH09172112A (en) Heat radiating device for heating element
JP2013171911A (en) Light radiation module and printing device
JPH081371A (en) Joining method by applying magnetic field
US7183642B2 (en) Electronic package with thermally-enhanced lid
JP3050067B2 (en) Cure device and cure method