JPH081371A - Joining method by applying magnetic field - Google Patents

Joining method by applying magnetic field

Info

Publication number
JPH081371A
JPH081371A JP23661294A JP23661294A JPH081371A JP H081371 A JPH081371 A JP H081371A JP 23661294 A JP23661294 A JP 23661294A JP 23661294 A JP23661294 A JP 23661294A JP H081371 A JPH081371 A JP H081371A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
solder
magnetic material
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23661294A
Other languages
Japanese (ja)
Other versions
JP2517843B2 (en
Inventor
Ryoichi Kajiwara
良一 梶原
Takao Funamoto
孝雄 舟本
Mitsuo Kato
光雄 加藤
Tomohiko Shida
朝彦 志田
Kyo Matsuzaka
矯 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6236612A priority Critical patent/JP2517843B2/en
Publication of JPH081371A publication Critical patent/JPH081371A/en
Application granted granted Critical
Publication of JP2517843B2 publication Critical patent/JP2517843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof

Abstract

PURPOSE:To easily array the reinforcing members to improve the fatigue life of the joined part in the prescribed direction by feeding the material for joining provided with the non-magnetic material and a long magnetic body between the members to be joined, heating the non-magnetic material to be melted, and applying the magnetic field thereto. CONSTITUTION:In the feeding process of the solder, the non-magnetic material 15 and a long magnetic body 16 of the ball-shaped soldering material are mixed together, and fed to the part to be joined in the paste-like condition with the flux 17. In the following heating process, the space between the members 13, 14 to be joined is filled with the melted non-magnetic material 20, and the long magnetic body 16 is in the random floating condition in the melted solder, i.e., the non-magnetic material 20. In the process to apply the magnetic field, if the magnetic field where the direction or the intensity is fluctuated when the non-magnetic material 15 is in the molten condition is applied, the non- magnetic material 20 in the molten condition is stirred by the movement of the long magnetic body 16 inside, and the contained gas is easily discharged outside and the defects such as voids can be prevented, which is effective for the fine structure and for the improvement of the quality of the joined part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品や半導体部品
を基板に接合する等の手段に係り、特に接合部の疲労寿
命を大幅に向上できる接合用材料を用いた磁場印加接合
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a means for joining electronic parts and semiconductor parts to a substrate, and more particularly to a magnetic field applying joining method using a joining material capable of greatly improving the fatigue life of the joining part.

【0002】[0002]

【従来の技術】最近の電子装置は、システムの大型化や
性能向上に伴う高密度実装化が進み、プリント基板へ塔
載するパッケージは従来のデュアルインライン型の挿入
式から、フラットパッケージやチップキヤリア型の表面
実装方式へと変わってきつつある。また電子計算機など
の超高性能機器では、従来の1チップパッケージ方式か
ら複数の裸のLSIチップを1枚の多層配線基板上に塔
載するマルチチップモジュール方式に変わりつつあり、
更にLSIチップそのものも大型化してきている。この
ため、パッケージやLSIチップとプリント基板や多層
配線基板間のはんだ接合部において、はんだ接合時のぬ
れ性不良に伴う接合不良率の増加や装置稼働中の熱サイ
クルに伴う熱疲労破壊の増大が大きな問題となってい
る。前者の不良に対しては部品の管理やはんだ接合プロ
セスの管理等によって不良率の低減がある程度可能であ
る。しかし、後者の熱疲労破壊による断線不良に対して
は以下に説明するアイデアが発案されているものの、未
だに決定的な対策案が見い出されていないのが実状であ
る。以下に従来の対策案を説明する。
2. Description of the Related Art Recent electronic devices have been mounted in higher densities with the increase in system size and performance, and the packages mounted on a printed circuit board have changed from the conventional dual in-line insertion type to flat packages and chip carriers. It is changing to the mold surface mounting method. Also, in ultra-high-performance devices such as electronic computers, the conventional 1-chip package system is changing to a multi-chip module system in which a plurality of bare LSI chips are mounted on a single multilayer wiring board.
Furthermore, the LSI chip itself is becoming larger. Therefore, in the solder joint between the package or the LSI chip and the printed circuit board or the multilayer wiring board, there is an increase in the rate of joint failure due to poor wettability during solder joint and an increase in thermal fatigue fracture due to thermal cycles during operation of the device. It's a big problem. With respect to the former defect, it is possible to reduce the defect rate to some extent by controlling the parts and the soldering process. However, although the idea described below has been devised for the latter disconnection failure due to thermal fatigue failure, the fact is that no definitive countermeasure has been found yet. The conventional measures will be described below.

【0003】図10は、フラットパケージのはんだ付構
造を示す。同図において、1は半導体チップ、2はAu
ワイヤ、3はAl電極、4はリード、5はパッケージ、
6はプリント基板、7は配線パターン、8ははんだ接合
部である。接合方法は、Pb−Sn系のプリフォームは
んだとフッラクスを混合したはんだペーストを配線パタ
ーン7上に印刷し、その上にフラットパッケージ5を位
置合わせして搭載し、炭化沸素系の蒸気中を通してその
気化潜熱を利用してはんだを溶融接合している。フラッ
トパッケージ5のリード4は、取扱い時の変形を防ぐた
めある程度の剛性が必要であり、Fe−Ni合金や最近
はCu合金などが用いられている。
FIG. 10 shows a soldering structure of a flat package. In the figure, 1 is a semiconductor chip and 2 is Au.
Wire, 3 Al electrode, 4 lead, 5 package,
6 is a printed circuit board, 7 is a wiring pattern, and 8 is a solder joint. The joining method is as follows. A solder paste in which Pb-Sn based preform solder and flux are mixed is printed on the wiring pattern 7, and the flat package 5 is aligned and mounted on the wiring pattern 7 and passed through the vapor of the hydrocarbon based system. The latent heat of vaporization is used to melt and join the solder. The leads 4 of the flat package 5 need to have a certain degree of rigidity in order to prevent deformation during handling, and Fe—Ni alloys and recently Cu alloys are used.

【0004】図11は他の構造例で、半導体チップのは
んだ付け構造を示す。同図において、1は半導体チッ
プ、9はCrーNiーAu電極、8ははんだ接合部、6
は多層配線基板、10は配線電極である。接合方法は、
半導体チップ1及び多層配線基板6の電極10上にマス
ク蒸着法によりPb及びSnが所定組成の膜を形成し、
次にこの膜を一度加熱溶融させて半円球のはんだバンプ
に成形し、最後に半導体チップ1のバンプと多層配線基
板6のバンプを対面させ、不活性雰囲気の炉中加熱によ
ってはんだを溶融し、はんだが凝固する前に半導体チッ
プ1を機械的に引き上げて接合している。はんだ柱がた
る形の場合に比べてつづみ形とした方が疲労寿命が伸び
るとの考え方に基づいている。
FIG. 11 shows another example of the structure for soldering a semiconductor chip. In the figure, 1 is a semiconductor chip, 9 is a Cr-Ni-Au electrode, 8 is a solder joint portion, 6
Is a multilayer wiring board, and 10 is a wiring electrode. The joining method is
A film having a predetermined composition of Pb and Sn is formed on the electrode 10 of the semiconductor chip 1 and the multilayer wiring substrate 6 by a mask vapor deposition method,
Next, this film is heated and melted once to form hemispherical solder bumps, and finally the bumps of the semiconductor chip 1 and the bumps of the multilayer wiring board 6 are opposed to each other, and the solder is melted by heating in a furnace in an inert atmosphere. The semiconductor chip 1 is mechanically pulled up and joined before the solder is solidified. This is based on the idea that the fatigue life is extended when the solder column is formed in a continuous shape as compared with the case where the solder column is formed in a barrel shape.

【0005】[0005]

【発明が解決しようとする課題】図10に示す従来法に
おいては、リード4の遡性加工性及び接合工程中のパッ
ケージ5の取扱い性を考慮すれば、リード4の弾性を下
げて軟かくすることができない。軟かくした場合には該
リード4が変形しやすいため組立不足を発生しやすくな
る。またリード4の形状として足の高さを高くして熱膨
張差による応力を緩和する方法は、パッケージ5の占め
る体積が増し実装密度を上げられないという点から採用
が難しいという問題がある。従って、図10に示す方法
でははんだ接合部8の疲労寿命の向上は充分に図れな
い。
In the conventional method shown in FIG. 10, the elasticity of the leads 4 is lowered and softened in consideration of the retroactive processability of the leads 4 and the handling property of the package 5 during the joining process. I can't. When softened, the leads 4 are likely to be deformed, so that insufficient assembly is likely to occur. In addition, the method of increasing the height of the legs as the shape of the leads 4 and relaxing the stress due to the difference in thermal expansion is difficult to adopt because the volume occupied by the package 5 increases and the mounting density cannot be increased. Therefore, the method shown in FIG. 10 cannot sufficiently improve the fatigue life of the solder joint portion 8.

【0006】次に図11に示す従来法においては、はん
だ形状を樽形からつづみ型に変えることによって疲労寿
命を数倍程度向上できるが、はんだ接合部8をつづみ型
形状にするためには、接合工程中のはんだ溶融時に個々
のLSIチップ1やチップキャリアを基板6面から一定
の高さに引き上げねばならず、このためチップ1やチッ
プキャリアの個数が多くなった場合のマテリアル・ハン
ド技術が難しく、またはんだが凝固するまで一定高さに
保持しておく必要があるため量産性に劣ること、基板6
のそり等の原因によって基板6面に対するチップ1やチ
ップキャリアの引き上げ高さがばらつき、はんだ接合部
8の品質や信頼性が悪くなるといった問題がある。
Next, in the conventional method shown in FIG. 11, the fatigue life can be improved by several times by changing the solder shape from the barrel shape to the stagnation type. Is a material hand when the number of chips 1 and chip carriers is large because the individual LSI chips 1 and chip carriers must be pulled up from the surface of the substrate 6 to a certain height when the solder is melted during the joining process. The technique is difficult, or it is difficult to mass-produce it because it needs to be held at a certain height until it solidifies.
There is a problem that the height of the chip 1 or the chip carrier with respect to the surface of the substrate 6 varies due to warpage or the like, and the quality or reliability of the solder joint 8 deteriorates.

【0007】電子装置におけるはんだ接合部8の破断機
構と疲労寿命の向上策を図12及び図13を用いて説明
する。フラットパッケージやチップキャリアあるいはL
SIチップ1等の半導体部品の熱膨張率は有機あるいは
セラミック多層板で構成された配線基板6の熱膨張率と
は異なり、両者を一致させることは実際上不可能であ
る。このため、半導体部品が稼動中に発生する熱によっ
てはんだ接合部8には剪断の熱応力Fが発生する。この
熱応力Fの繰り返しによって、最も強度的に弱いはんだ
接合部8の応力集中部から亀裂11が発生し、はんだ接
合部8を横断する形で亀裂11が進展する。亀裂11が
他端まで進めば、ここでの電気的接続が断たれ、装置は
機能を果さなくなる。このはんだ接合部8の中にはんだ
材よりも高強度の繊維12が混在している場合、繊維1
2がもし亀裂11の進展方向に対して平行に存在してい
る場合には亀裂11は何の障害も受けずはんだ接合部8
中を進展していくが、繊維12が亀裂11の進展方向に
対して直角方向に存在している場合には亀裂11の進展
がこの繊維12によって止められ、繊維12が破断する
かあるいは繊維12とマトリックスであるはんだとの界
面が剥離しないかぎり亀裂11がさらに進展することは
ない(図13)。すなわち、高強度ではんだとのぬれ性
に優れる繊維12を接合面に対して垂直方向に配向させ
てやれば、はんだ接合部8の熱疲労寿命を飛躍的に向上
させることが可能である。
A fracture mechanism of the solder joint portion 8 in the electronic device and a measure for improving the fatigue life will be described with reference to FIGS. 12 and 13. Flat package, chip carrier or L
The coefficient of thermal expansion of the semiconductor component such as the SI chip 1 is different from the coefficient of thermal expansion of the wiring board 6 made of an organic or ceramic multilayer plate, and it is practically impossible to match them. Therefore, the thermal stress F due to shearing is generated in the solder joint portion 8 due to the heat generated during the operation of the semiconductor component. By repeating this thermal stress F, a crack 11 is generated from the stress concentrated portion of the solder joint portion 8 which is weakest in strength, and the crack 11 propagates in a form crossing the solder joint portion 8. If the crack 11 propagates to the other end, the electrical connection here will be broken and the device will cease to function. When the fibers 12 having higher strength than the solder material are mixed in the solder joint portion 8, the fibers 1
If 2 exists in parallel to the propagation direction of the crack 11, the crack 11 receives no obstacle and the solder joint 8
When the fiber 12 is present in the direction perpendicular to the direction of propagation of the crack 11, the fiber 12 stops the propagation of the crack 11 and either breaks the fiber 12 or As long as the interface between the matrix and the solder is not separated, the crack 11 does not further propagate (FIG. 13). That is, if the fibers 12 having high strength and excellent wettability with the solder are oriented in the direction perpendicular to the joint surface, the thermal fatigue life of the solder joint portion 8 can be dramatically improved.

【0008】通常、電子部品のはんだ接合部8は接合面
積で数mm2以下、接合間隙で数百μm以下と非常に微
細である。このため、はんだ材の中に高強度の繊維12
を混合してもその分布や方向を制御する方法が難しい。
Usually, the solder joint portion 8 of an electronic component is extremely fine with a joint area of several mm 2 or less and a joint gap of several hundred μm or less. Therefore, the high-strength fiber 12
Even if mixed, it is difficult to control the distribution and direction.

【0009】本発明の目的は、接合部の疲労寿命を向上
させることのできる接合用材料を用い、接合部の疲労寿
命を向上させるための補強材を容易に一定方向に配列さ
せることのできる磁場印加接合方法を提供せんとするも
のである。
An object of the present invention is to use a joining material capable of improving the fatigue life of the joint, and a reinforcing material for improving the fatigue life of the joint can be easily arranged in a certain direction. It is intended to provide a voltage bonding method.

【0010】[0010]

【課題を解決するための手段】本発明は、被接合部材の
間隙に非磁性材と磁性長尺体とを備えた接合用材料を供
給し、加熱して非磁性材を融解させ、磁場を印加して磁
性長尺体を両接合部材と略直交方向に配列させた後、冷
却して非磁性材を固化させる磁場印加接合方法である。
According to the present invention, a joining material having a non-magnetic material and a magnetic elongated body is supplied into a gap between members to be joined and heated to melt the non-magnetic material, and a magnetic field is applied. This is a magnetic field application joining method in which a magnetic long body is applied and arranged in a direction substantially orthogonal to both joining members, and then cooled to solidify the non-magnetic material.

【0011】[0011]

【作用】本発明によれば、磁性長尺体の一定方向への配
列を磁場の印加により容易に行える。
According to the present invention, the magnetic elongated bodies can be easily arranged in a certain direction by applying a magnetic field.

【0012】[0012]

【実施例】図1は、上記問題を解決するためになされた
本発明に係る磁性印加接合方法のプロセスを説明する図
である。同図において、13,14は被接合部材、15
ははんだ材よりなる非磁性材、16は補強材となる磁性
長尺体、17はフラックス、18,19はヒータ、20
は融解した非磁性材、21,22は磁石、23は凝固し
た非磁性材、24は磁力線を表わす。また、同図(a)
(b)(c)は接合工程の時間的経過を示す。はんだの
供給工程(a)では、ボール状のはんだ材である非磁性
材15と磁性長尺体16を混合し、フラックス17でペ
ースト状にして接合部に供給しているが、蒸着法,メッ
キ法あるいは成形はんだ法で供給してもよい。ここで用
いる磁性長尺体16は、Fe,Ni,Coの内少なくと
も1種類以上含む合金あるいは複合材料から構成されて
その形状は繊維状,長片形状等、方向性を有する形状で
あればよい。尚、長尺体としては剛性のものより軟性の
ものの方が補強材として好ましい。また磁性長尺体16
の表面ははんだとのぬれ性を良くするため、Cuあるい
はAuのようなはんだとぬれ性の良い金属をコーティン
グしておくか、はんだを予め予備コーティングしておく
のがよい。磁性長尺体16の長さは接合部の間隙より短
いものとする。次の加熱工程(b)において、被接合部
材13,14の間隙を融解した非磁性材20で満たす
が、磁性長尺体16は融解したはんだすなわち非磁性材
20中にアトランダムに浮遊した状態となる。本発明で
はこの後さらに磁場印加工程(c)を設けており、自由
に浮遊している磁性長尺体16を磁気力によって一定の
方向に配向させ、その状態で冷却して凝固した非磁性材
23としている。磁性長尺体16は、磁場中では磁力線
と平行な方向に向くような回転力を受け、また磁力線密
度の疎な部分から密な方向に向けての引力を受ける。こ
の力を利用して磁性長尺体16の分布状態や方向を制御
するのである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining the process of a magnetic application bonding method according to the present invention which was made to solve the above problems. In the figure, 13 and 14 are members to be joined, and 15
Is a non-magnetic material made of a solder material, 16 is a magnetic long body serving as a reinforcing material, 17 is flux, 18 and 19 are heaters, 20
Is a melted non-magnetic material, 21 and 22 are magnets, 23 is a solidified non-magnetic material, and 24 is a magnetic field line. Also, FIG.
(B) and (c) show the time course of the joining process. In the solder supply step (a), the non-magnetic material 15 which is a ball-shaped solder material and the magnetic elongated body 16 are mixed and made into a paste with the flux 17 and supplied to the joint portion. Method or forming soldering method. The magnetic elongated body 16 used here is made of an alloy or a composite material containing at least one or more of Fe, Ni, and Co, and its shape may be a directional shape such as a fibrous shape or a long piece shape. . As the elongated body, a flexible one is preferable to a rigid one as a reinforcing material. In addition, the magnetic long body 16
In order to improve the wettability with the solder, it is preferable to coat a metal having a good wettability with the solder such as Cu or Au, or to pre-coat the solder in advance. The length of the magnetic elongated body 16 is shorter than the gap of the joint. In the next heating step (b), the gap between the members to be joined 13 and 14 is filled with the melted non-magnetic material 20, but the magnetic elongated body 16 is in a state of floating at random in the melted solder, that is, the non-magnetic material 20. Becomes In the present invention, after this, a magnetic field applying step (c) is further provided to orient the freely floating magnetic elongated body 16 in a certain direction by a magnetic force, and in this state, the non-magnetic material is solidified by cooling. 23. The magnetic elongated body 16 receives a rotational force directed in a direction parallel to the magnetic field lines in a magnetic field, and also receives an attractive force in a dense direction from a portion having a low magnetic field line density. This force is used to control the distribution state and direction of the magnetic elongated body 16.

【0013】また、図1の磁場印加工程(c)におい
て、非磁性材15が溶融状態のとき方向あるいは磁場強
度が変動するような磁場を印加すれば、中の磁性長尺体
16の動きによって溶融状態の非磁性材20が撹拌され
るため、内蔵ガスが容易に外部へ排出されボイド等の欠
陥を防止でき、組織の微細化にも有効で、接合部の品質
改善にも効果がある。
Further, in the magnetic field applying step (c) of FIG. 1, if a magnetic field whose direction or magnetic field strength fluctuates when the non-magnetic material 15 is in a molten state is applied, the magnetic elongated body 16 moves by Since the non-magnetic material 20 in the molten state is agitated, the built-in gas can be easily discharged to the outside to prevent defects such as voids, which is effective for making the structure fine and improving the quality of the joint.

【0014】図2は、磁場印加はんだ接合を行うための
装置の概略構成を示す。また図3は、図2のIII−III断
面方向から見た断面図を示す。同図において、25は接
合すべき電子部品、6は配線基板である。加熱は不活性
のホットガス26を送風して行う方式である。接合部に
かける磁場は永久磁石21,22で行っており、この磁
石21,22は強磁性体でつくられた回転可能な円筒2
7の内部に互いに対向する位置で取り付けられている。
円筒27はモーター28によって回転可能であり、接合
中の配線基板6の温度をモニタし、回転させる時期を制
御している。接合は非磁性で断熱効果を高くしてケース
29の中で行い、磁力線26が接合部を貫通しかつ永久
磁石21,22が接合時の熱で加熱されない構造及び材
料構造としている。
FIG. 2 shows a schematic structure of an apparatus for performing magnetic field application solder joining. Further, FIG. 3 shows a cross-sectional view seen from the III-III cross-sectional direction of FIG. In the figure, 25 is an electronic component to be joined, and 6 is a wiring board. Heating is performed by blowing an inert hot gas 26. The magnetic field applied to the joint is performed by permanent magnets 21 and 22. The magnets 21 and 22 are rotatable cylinders 2 made of a ferromagnetic material.
It is attached inside 7 at a position facing each other.
The cylinder 27 is rotatable by a motor 28, and monitors the temperature of the wiring board 6 during joining and controls the timing of rotation. The joining is performed in the case 29 with non-magnetic properties and a high heat insulating effect, and the magnetic lines of force 26 penetrate the joining part and the permanent magnets 21 and 22 have a structure and a material structure which are not heated by the heat during the joining.

【0015】次に、本装置を用いた磁場印加はんだ接合
の手順及び接合用材料について説明する。はんだ材料す
なわち非磁性材は直径10μm以下の粉末状のものを用
い、磁性長尺体は水素還元法で結晶成長させた長さ数十
μm,直径数μmのNiのウィスカを用いている。供給
方法は両者をロジン系のバインダーでペースト状に粘
り、印加方式によって配線基板6のパットにパターニン
グしている。電子部品25ははんだペースト上に接合す
べき電極パットが位置するように配線基板6に載せ、ケ
ース29の中央部にセットする。このときホットガス2
6の風下側の配線基板6に熱電対31を取り付ける。接
合試料のセッテイングが完了後、供給ダクト30を通じ
て300℃に加熱したN2のホットガス26を流す。用
いている非磁性材であるPb−Sn共晶はんだが完全に
融解している温度240℃に達した時点で円筒27を数
回回転させ、磁力線24が垂直方向になる位置にして止
める。円筒27の回転を止めた後ホットガス26の送風
を止め、エアーを送風して接合部を冷却する。
Next, the procedure of the magnetic field application solder joining using this apparatus and the joining material will be described. As the solder material, that is, a non-magnetic material, a powdery material having a diameter of 10 μm or less is used, and as the magnetic long body, a Ni whisker having a length of several tens of μm and a diameter of several μm grown by a hydrogen reduction method is used. As a supply method, both are adhered in a paste form with a rosin-based binder, and the pad of the wiring board 6 is patterned by an application method. The electronic component 25 is placed on the wiring board 6 so that the electrode pads to be joined are located on the solder paste, and set in the center of the case 29. Hot gas 2 at this time
The thermocouple 31 is attached to the wiring board 6 on the leeward side of 6. After the setting of the bonded sample is completed, the N 2 hot gas 26 heated to 300 ° C. is passed through the supply duct 30. When the temperature reaches 240 ° C. at which the Pb—Sn eutectic solder, which is the non-magnetic material used, is completely melted, the cylinder 27 is rotated several times to stop the magnetic field lines 24 in the vertical direction. After stopping the rotation of the cylinder 27, the blowing of the hot gas 26 is stopped and the air is blown to cool the joint.

【0016】本発明に係る接合方法により接合された電
子部品接合状態を図4及び図5に示す。図4はフラット
パッケージの場合、図5はLSIチップの場合である。
フラットパッケージの場合、接合間隙はリード4の成形
時のバラツキによって数十〜数百μmの範囲に分布して
いる。磁性長尺体16の長さに比べて接合間隙の距離が
数倍以上広くなった場合でも、磁性をもつリード4及び
配線パターン7にすれば、磁性長尺体16がリード4と
配線パターン7間を継ぐように直線状に配列するように
磁気力が働くため、はんだ接合部8の中央,上部,下部
に磁性長尺体16は適当に分配される。LSIチップの
場合には、接合間隙は供給するはんだ材の量によって一
率に決定され、約50μmになるように調整されてい
る。
4 and 5 show how electronic components are joined by the joining method according to the present invention. 4 shows the case of a flat package, and FIG. 5 shows the case of an LSI chip.
In the case of a flat package, the bonding gap is distributed in the range of several tens to several hundreds of μm due to variations in molding the leads 4. Even if the distance of the bonding gap is several times or more wider than the length of the magnetic elongated body 16, the magnetic elongated body 16 can be used as the lead 4 and the wiring pattern 7 by using the magnetic lead 4 and the wiring pattern 7. Since the magnetic force acts so as to be linearly arranged so as to connect the gaps, the magnetic elongated members 16 are appropriately distributed to the center, the upper part, and the lower part of the solder joint 8. In the case of an LSI chip, the joint gap is determined in proportion to the amount of the solder material supplied, and is adjusted to be about 50 μm.

【0017】本実施例の接合方法によれば、従来のはん
だ接合工程に短時間の磁場を印加する工程を設けただけ
で、電子部品25と配線基板6のはんだ接合部8の内部
にはんだに比べ高強度の金属繊維等からなる磁性長尺体
16を接合面に垂直な方向に配向させて複合材化できる
ので、従来と同等の製造コストではんだ接合部8の疲労
寿命を著しく向上することができる。また、磁石を回転
させることによって磁性長尺体16を動かし溶融したは
んだを撹拌することができるので、はんだ内部のフラッ
クスの残留やボイドの発生を著しく減少させることがで
き、はんだ接合部8の信頼性さらには電子装置としての
信頼性を向上することが可能となる。
According to the joining method of the present embodiment, the inside of the solder joint portion 8 of the electronic component 25 and the wiring board 6 can be soldered only by providing a step of applying a short-time magnetic field to the conventional solder joining step. Since the magnetic long body 16 made of metal fiber or the like having a higher strength can be made into a composite material by orienting it in the direction perpendicular to the joint surface, the fatigue life of the solder joint portion 8 can be remarkably improved at the same manufacturing cost as the conventional one. You can Further, since the magnetic elongated body 16 can be moved and the molten solder can be stirred by rotating the magnet, it is possible to remarkably reduce the residue of the flux inside the solder and the generation of voids, and to improve the reliability of the solder joint portion 8. In addition, the reliability of the electronic device can be improved.

【0018】本実施例においては、加熱にホットガス2
6を用いているが、従来用いられている熱源である赤外
線光ビーム、レーザ、気化潜熱、、ヒーター等のいずれ
を用いるはんだ接合方式であってもよい。またはんだ材
料の供給方法も、はんだペーストに限るものではない。
In this embodiment, hot gas 2 is used for heating.
6 is used, the soldering method may be any of the conventionally used heat sources such as infrared light beam, laser, latent heat of vaporization, and heater. Further, the method of supplying the solder material is not limited to the solder paste.

【0019】図6は、非磁性材中に混合する磁性長尺体
16の例を示し、同図(a)は縦断面、同図(b)は横
断面である。同図において、32は強磁性体材料である
Fe,Co,Fe−Ni合金、Fe−Ni−Co合金等
でできた磁性コア材で、アスペクト比が2倍以上の針状
あるいは繊維状をしている。製造方法は、水素還元法、
蒸着法等の金属ひげ結晶成長法でもよいし、線引きによ
って細線化し、それを切断する方法あるいは金属面を断
面的に削って短繊維状とするビビリ加工法でもよい。3
3は非磁性材とぬれ性が良く、磁性コア材32との密着
性あるいは接合性に優れるCu,Au,Ni,Ag等の
表面層である。この表面層33のコーティング方法は、
スパッタ磁着法が良いが、CVD法や化学メッキの手法
を用いても良い。スパッタ磁着法の場合、繊維状の試料
を下に置き、振動をかけて試料を撹拌しながら上方から
スパッタ磁着する方法を採ればムラのない全周均一な膜
を形成できる。膜を形成した後は真空中で加熱処理を行
って膜とコアの密着性を向上する。上記磁性長尺体によ
れば、はんだすなわち非磁性材とのぬれ性に劣る強磁性
体の磁性コア材32を用いても容易にぬれが生じるた
め、磁場印加時の配向がより確実に行われ、しかもはん
だと磁性長尺体との接合強度が増すため、はんだ接合部
8としての疲労寿命向上がさらに図れる。
FIG. 6 shows an example of a magnetic elongated body 16 mixed in a non-magnetic material. FIG. 6 (a) is a longitudinal section and FIG. 6 (b) is a transverse section. In the figure, numeral 32 is a magnetic core material made of a ferromagnetic material such as Fe, Co, Fe-Ni alloy, Fe-Ni-Co alloy, etc., and has a needle-like or fibrous shape with an aspect ratio of 2 times or more. ing. The manufacturing method is hydrogen reduction method,
A metal whisker crystal growth method such as a vapor deposition method may be used, a method of thinning a wire by drawing and cutting it, or a chattering method of cutting a metal surface in cross section to form a short fiber. Three
Reference numeral 3 is a surface layer of Cu, Au, Ni, Ag or the like, which has good wettability with the non-magnetic material and is excellent in adhesion or bondability with the magnetic core material 32. The coating method of the surface layer 33 is
The sputter magnetic deposition method is preferable, but a CVD method or a chemical plating method may be used. In the case of the sputter-magnetization method, if a fibrous sample is placed underneath and a method of sputter-magnetism is applied from above while vibrating the sample to stir the sample, a uniform film can be formed on the entire circumference. After forming the film, heat treatment is performed in vacuum to improve the adhesion between the film and the core. According to the above-mentioned magnetic elongated body, since wetting easily occurs even if the magnetic core material 32 of a ferromagnetic material having poor wettability with the solder, that is, the non-magnetic material is used, the orientation when the magnetic field is applied can be more reliably performed. Moreover, since the joint strength between the solder and the magnetic elongated body is increased, the fatigue life of the solder joint portion 8 can be further improved.

【0020】図7は、磁性長尺体16の他の例を示す。
磁性コア材32をSiC,C,B等の非磁性無機材34
を用いた場合でも、その表面に強磁性の磁性被覆材35
をコーティングし、さらにははんだとのぬれ性に優れる
表面層33をコーティングすれば磁場印加接合用の磁性
長尺体16として用いることができる。図7の磁性長尺
体によれば、コア材質を自由に選択できるため、複合材
化による接合部の特性調整が可能となる。Cuのコアを
用いれば導電性の改善ができ、Cのコアを用いれば磁性
長尺体の配列方向の熱膨張率を下げられる効果がある。
また、安価な磁性長尺体を使用でき材料コストの低減が
図れる。
FIG. 7 shows another example of the magnetic elongated body 16.
The magnetic core material 32 is replaced with a non-magnetic inorganic material 34 such as SiC, C, or B.
Even when using, a ferromagnetic magnetic coating material 35 is formed on the surface.
And a surface layer 33 having excellent wettability with solder can be used as the magnetic elongated body 16 for magnetic field application bonding. According to the elongated magnetic body of FIG. 7, the core material can be freely selected, so that it is possible to adjust the characteristics of the joint portion by using a composite material. The use of a Cu core can improve conductivity, and the use of a C core has an effect of reducing the coefficient of thermal expansion in the arrangement direction of the magnetic elongated bodies.
Moreover, an inexpensive magnetic long body can be used, and the material cost can be reduced.

【0021】図8及び図9は、磁場印加はんだ接合方法
を実施するための装置において、磁場印加装置を電磁石
で構成した実施例を示す。図8は、横方向から見た装置
の概略構成図、図9は図8のIX−IX線断面方向から見た
装置の概略構成図を示す。同図において、36はコイル
37と磁芯38で構成される電磁石を支える強磁性体の
筺体である。この筺体36内には電磁石が過熱すること
を防ぐため冷却孔39が設けられており、内部が水冷さ
れている。電磁石は配線基板6の左右と上下に計4個設
けられている(図9)。上下の電磁石、左右の電磁石は
それぞれ対になって働き、回転の磁場変動を加える必要
のある場合は、各対の電磁石を時分割的にかつ電流方向
を交互に逆転させて駆動させる。はんだ凝固時は上下の
電磁石を駆動させた状態に維持しておく。図の40,4
1は電流方向を反転可能な電源で、42,43はスイッ
チング回路である。本実施例によれば、磁場強度を流す
電流によって調整可能なため、被接合部品の大きさや形
状に合わせて装置を変えることなく印加磁場を最適な強
さにすることができる。また磁場の回転を装置を動かす
ことなく電気的操作のみで行えるため、装置の小型化が
可能で、消耗部分がないため長寿命であるという利点が
ある。
8 and 9 show an embodiment in which the magnetic field applying device is an electromagnet in the device for carrying out the magnetic field applying solder joining method. FIG. 8 is a schematic configuration diagram of the apparatus seen from the lateral direction, and FIG. 9 is a schematic configuration diagram of the apparatus seen from a cross-sectional direction along the line IX-IX in FIG. In the figure, reference numeral 36 denotes a ferromagnetic housing that supports an electromagnet composed of a coil 37 and a magnetic core 38. Cooling holes 39 are provided in the housing 36 to prevent the electromagnet from overheating, and the inside is water-cooled. A total of four electromagnets are provided on the left, right, top and bottom of the wiring board 6 (FIG. 9). The upper and lower electromagnets and the left and right electromagnets work in pairs, and when it is necessary to apply rotational magnetic field fluctuations, the electromagnets in each pair are driven in a time-divisional manner and the current directions are alternately reversed. Keep the upper and lower electromagnets in a driven state during solidification of the solder. 40, 4 in the figure
Reference numeral 1 is a power source capable of reversing the current direction, and 42 and 43 are switching circuits. According to the present embodiment, since the magnetic field strength can be adjusted by the electric current, the applied magnetic field can be set to the optimum strength without changing the device according to the size and shape of the parts to be joined. Further, since the rotation of the magnetic field can be performed only by electric operation without moving the device, the device can be downsized, and there is an advantage that it has a long life because there is no consumable part.

【0022】[0022]

【発明の効果】本発明の磁場印加方法によれば、電子部
品や半導体部品を熱膨張率の異なる配線基板に実装する
場合において、従来のはんだ接合プロセスと同様の接合
プロセスによつて非磁性材よりなるはんだ接合部内に一
定方向に配列した磁性長尺体を容易に分散させることが
できる。よって、磁性長尺体が補強材の役割を果たして
はんだ接合部の疲労寿命を著しく向上させた電子装置を
容易に製造することができる。
According to the magnetic field applying method of the present invention, when electronic components or semiconductor components are mounted on wiring boards having different coefficients of thermal expansion, a non-magnetic material is formed by a joining process similar to the conventional solder joining process. It is possible to easily disperse the magnetic elongated bodies arranged in a certain direction in the solder joint portion made of. Therefore, it is possible to easily manufacture an electronic device in which the long magnetic body serves as a reinforcing material and the fatigue life of the solder joint is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁場印加方法を示し、(a)〜(c)
は磁場印加接合法のプロセスを示す図である。
FIG. 1 shows a method of applying a magnetic field of the present invention, (a) to (c).
FIG. 6 is a diagram showing a process of a magnetic field application bonding method.

【図2】本発明の磁場印加方法を実施する磁場印加接合
装置の構成図である。
FIG. 2 is a configuration diagram of a magnetic field applying / bonding apparatus for carrying out the magnetic field applying method of the present invention.

【図3】図2のIII−III線断面図である。3 is a sectional view taken along line III-III in FIG.

【図4】フラットパッケージの磁場印加はんだ接合部の
断面図である。
FIG. 4 is a cross-sectional view of a magnetic field applying solder joint portion of a flat package.

【図5】LSIチップの磁場印加はんだ接合部の断面図
である。
FIG. 5 is a sectional view of a magnetic field applying solder joint portion of an LSI chip.

【図6】磁性長尺体の一例を示し、(a)は縦断面図、
(b)は横断面図である。
FIG. 6 shows an example of a magnetic elongated body, (a) is a longitudinal sectional view,
(B) is a cross-sectional view.

【図7】磁性長尺体の他の例を示し、(a)は縦断面
図、(b)は横断面図である。
7A and 7B show another example of a magnetic elongated body, in which FIG. 7A is a longitudinal sectional view and FIG. 7B is a transverse sectional view.

【図8】本発明の磁場印加方法を実施する異なる磁場印
加接合装置の構成図である。
FIG. 8 is a configuration diagram of a different magnetic field application bonding apparatus for carrying out the magnetic field application method of the present invention.

【図9】図8のIX−IX線断面図である。9 is a sectional view taken along line IX-IX in FIG.

【図10】従来のフラットパッケージ接合部の断面図で
ある。
FIG. 10 is a cross-sectional view of a conventional flat package joint.

【図11】従来のLSIチツプ接合部の断面図である。FIG. 11 is a cross-sectional view of a conventional LSI chip joint portion.

【図12】疲労発生及び進展状況の説明図である。FIG. 12 is an explanatory diagram of occurrence and progress of fatigue.

【図13】疲労発生及び進展状況の説明図である。FIG. 13 is an explanatory diagram of fatigue occurrence and progress.

【符号の説明】[Explanation of symbols]

13 被接合部材 14 被接合部材 15 非磁性材 16 磁性長尺体 32 磁性コア材 33 表面層 34 非磁性無機材 35 磁性被覆材 13 Member to be bonded 14 Member to be bonded 15 Non-magnetic material 16 Long magnetic body 32 Magnetic core material 33 Surface layer 34 Non-magnetic inorganic material 35 Magnetic coating material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 志田 朝彦 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 松坂 矯 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Asahiko Shida 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Pref., Hitachi Research Laboratory Ltd. Hitachi Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非接合部材の間隙に非磁性材と磁性長尺
体とを備えた接合用材料を供給し、加熱して非磁性材を
融解させ、磁場を印加して磁性長尺体を両接合部材と略
直交方向に配列された後、冷却して非磁性材を固化させ
る磁場印加接合方法。
1. A bonding material comprising a non-magnetic material and a magnetic elongated body is supplied to a gap between the non-bonded members, heated to melt the non-magnetic material, and a magnetic field is applied to form the magnetic elongated body. A magnetic field applying joining method in which the non-magnetic material is solidified by cooling after being arranged in a direction substantially orthogonal to both joining members.
【請求項2】 請求項1において、被接合部材の間隙へ
の接合用材料の供給が、粒状の非磁性材と磁性長尺体と
を混合し、フラックスでペースト状にして供給するもの
である磁場印加接合方法。
2. The supply of the bonding material into the gap of the members to be bonded according to claim 1, wherein the granular non-magnetic material and the magnetic elongated body are mixed and supplied in the form of a paste with a flux. Magnetic field application bonding method.
【請求項3】 請求項1において、非磁性材を蒸着法、
メッキ法又は成形はんだ法により接合部に供給する磁場
印加接合方法。
3. The non-magnetic material according to claim 1,
A magnetic field application joining method of supplying to a joint by a plating method or a forming solder method.
【請求項4】 請求項1において、磁性長尺体を両接合
部材と略直交方向に配列される前に、磁場の印加方向を
変動させる磁場印加接合方法。
4. The magnetic field application joining method according to claim 1, wherein the magnetic field application direction is varied before the magnetic elongated bodies are arranged in a direction substantially orthogonal to the joining members.
【請求項5】 請求項1において、印加する磁場強度が
可変である磁場印加接合方法。
5. The magnetic field application bonding method according to claim 1, wherein the applied magnetic field strength is variable.
JP6236612A 1994-09-30 1994-09-30 Magnetic field application joining method Expired - Lifetime JP2517843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6236612A JP2517843B2 (en) 1994-09-30 1994-09-30 Magnetic field application joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6236612A JP2517843B2 (en) 1994-09-30 1994-09-30 Magnetic field application joining method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62004262A Division JPH0746626B2 (en) 1987-01-12 1987-01-12 Bonding material

Publications (2)

Publication Number Publication Date
JPH081371A true JPH081371A (en) 1996-01-09
JP2517843B2 JP2517843B2 (en) 1996-07-24

Family

ID=17003228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6236612A Expired - Lifetime JP2517843B2 (en) 1994-09-30 1994-09-30 Magnetic field application joining method

Country Status (1)

Country Link
JP (1) JP2517843B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505283B2 (en) 2005-03-28 2009-03-17 The Furukawa Electric Co., Ltd. Reinforcing structure for metal core board and electric connection box
US8470092B2 (en) * 2003-10-23 2013-06-25 International Business Machines Corporation Method and apparatus for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks
KR102282381B1 (en) * 2020-02-11 2021-07-26 성균관대학교산학협력단 Bonding method and apparatus of soldering assisted by magnetic field

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346775A (en) 1993-02-22 1994-09-13 At&T Laboratories Article comprising solder with improved mechanical properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470092B2 (en) * 2003-10-23 2013-06-25 International Business Machines Corporation Method and apparatus for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks
US7505283B2 (en) 2005-03-28 2009-03-17 The Furukawa Electric Co., Ltd. Reinforcing structure for metal core board and electric connection box
KR102282381B1 (en) * 2020-02-11 2021-07-26 성균관대학교산학협력단 Bonding method and apparatus of soldering assisted by magnetic field

Also Published As

Publication number Publication date
JP2517843B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
EP0396484B1 (en) Solder column connection
TWI304006B (en) Tin/indium lead-free solders for low stress chip attachment
US5907187A (en) Electronic component and electronic component connecting structure
JPH06268366A (en) Microcontact spacer
US6288376B1 (en) Method and apparatus for melting a bump by induction heating
US20070102826A1 (en) Electronic Component Having at Least One Semiconductor Chip and Flip-Chip Contacts, and Method for Producing the Same
TWI330876B (en) Method for forming multi-layer bumps on a substrate
JP2007294954A (en) Filling technology of conductive bonding material
JPH1050769A (en) Method and apparatus for manufacturing semiconductor package
JP2006261186A (en) Bonding method and bonding equipment
JP2517843B2 (en) Magnetic field application joining method
JPH11186331A (en) Semiconductor device and its manufacture
JP2521891B2 (en) Semiconductor device
JP2016058526A (en) Electronic device and method of manufacturing electronic device
JPH0746626B2 (en) Bonding material
JPH07288255A (en) Formation of solder bump
JP3240876B2 (en) Mounting method of chip with bump
JP4590783B2 (en) Method for forming solder balls
JPH0737890A (en) Method and apparatus for bonding solder ball
JPH1032283A (en) Wiring board provided with solder bump and manufacture thereof
JP2004006926A (en) Wiring board with solder bump, its manufacturing method, and flattening jig
JP5526993B2 (en) Solder supply device
JP2011044530A (en) Solder joint method and solder joint device
JP3336999B2 (en) Bump sheet, bump forming apparatus and bump forming method using the same
JPH07120688B2 (en) Micro joint structure