JPH06168693A - Sample analyzer - Google Patents

Sample analyzer

Info

Publication number
JPH06168693A
JPH06168693A JP4317446A JP31744692A JPH06168693A JP H06168693 A JPH06168693 A JP H06168693A JP 4317446 A JP4317446 A JP 4317446A JP 31744692 A JP31744692 A JP 31744692A JP H06168693 A JPH06168693 A JP H06168693A
Authority
JP
Japan
Prior art keywords
sample
condensing
charged particles
reflecting mirror
mirror body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4317446A
Other languages
Japanese (ja)
Inventor
Hirotami Koike
紘民 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP4317446A priority Critical patent/JPH06168693A/en
Publication of JPH06168693A publication Critical patent/JPH06168693A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a sample analyzer by which both of an inorganic substance and an organic substance can be analyzed speedily and simultaneously on the basis of light and an X-ray obtained from a sample by radiating a charged particle to the sample. CONSTITUTION:A sample analyzer is provided with an objective lens 1 to radiate an electron beam E to a sample 4, a condensing reflecting mirror body 2 in which a condensing reflecting surface 6 to condense light obtained from the sample 4 on the basis of radiation of the electron beam E is formed on the side facing to the sample 4 and the forward side in a direction that the detecting optical axis 7 of the condensing reflecting surface 6 is extending is formed as release space 8 and a light detector 11 to detect light introduced from the condensing reflecting mirror body 2 through the release space 8. An opening 13 to introduce an X-ray obtained from the sample 4 on the basis of the radiation of the electron beam E to an X ray detector 12, is formed in the condensing reflecting mirror body 2 so as to face to the sample 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、荷電粒子を試料に照射
することにより試料から得られる光、X線に基づき無機
物質、有機物質の両方の分析を行うことのできる試料分
析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample analyzer capable of analyzing both an inorganic substance and an organic substance based on light and X-rays obtained from a sample by irradiating the sample with charged particles.

【0002】[0002]

【従来の技術】従来から、有機分析を行う方法として、
FT−IR(顕微赤外法)、顕微ラマン法、顕微螢光法
等が知られている。FT−IR(顕微赤外法)の観察領
域は10μmのオ−ダ−、顕微ラマン法の観察領域は1
μmのオ−ダ−、顕微螢光法の観察領域は1μmのオ−
ダ−である。一方、無機分析を行う方法としては、SE
M/EDX、SIMS、μ−AES(オ−ジエ電子分光
法)が知られている。SEM/EDXの観察領域は数ナ
ノmのオ−ダ−、SIMSの観察領域は100〜100
0ナノmのオ−ダ−、μ−AES(オ−ジ電子分光法)
の観察領域は50ナノmのオ−ダ−であり、数μm以下
のオ−ダ−の観察領域で、荷電粒子を試料に照射してこ
の荷電粒子を試料に照射することにより試料から得られ
る光、X線に基づき試料の有機分析と無機分析とを同時
に行うことができる試料分析装置は現在までのところな
い。
2. Description of the Related Art Conventionally, as a method for conducting organic analysis,
FT-IR (microscopic infrared method), microscopic Raman method, microscopic fluorescence method and the like are known. The observation area of FT-IR (microscopic infrared method) is of the order of 10 μm, and the observation area of the microscopic Raman method is 1.
μm order, observation area of microscopic fluorescence method is 1 μm
It's a dare. On the other hand, as a method for performing inorganic analysis, SE
M / EDX, SIMS and μ-AES (Osier electron spectroscopy) are known. The observation area of SEM / EDX is an order of several nanometers, and the observation area of SIMS is 100 to 100.
0 nm order, μ-AES (Old electron spectroscopy)
The observation region of 50 nm is of the order of 50 nm, and the observation region of the order of several μm or less is obtained from the sample by irradiating the sample with charged particles and then irradiating the sample with the charged particles. So far, there is no sample analyzer that can simultaneously perform organic analysis and inorganic analysis of a sample based on light and X-rays.

【0003】[0003]

【発明が解決しようとする課題】近時、半導体製造技
術、液晶製造技術の分野では、ゴミ等の異物検査のため
に、有機分析と無機分析との両方を行うことが要望され
ているが、従来、この半導体製造技術、液晶製造技術の
分野では、数μm以下のオ−ダ−の観察領域で、試料の
無機分析にSEM/EDX法を使用し、試料の有機分析
に顕微螢光法を使用することが報告されている。
Recently, in the fields of semiconductor manufacturing technology and liquid crystal manufacturing technology, it is desired to perform both organic analysis and inorganic analysis for inspecting foreign substances such as dust. Conventionally, in the field of semiconductor manufacturing technology and liquid crystal manufacturing technology, SEM / EDX method has been used for inorganic analysis of a sample and microfluorescence method has been used for organic analysis of a sample in an observation region of several μm or less. It has been reported to be used.

【0004】これは、以下の理由によると考えられる。It is considered that this is due to the following reasons.

【0005】未知の物質は、有機物、無機物の両方があ
り、SEM/EDX法を無機分析に適用した場合にはS
EMによりその形状を観察し、EDXSにより元素分析
を行うことにより異物を特定できるが、有機分析に適用
する場合には、有機物がC、H、O等の元素が主体であ
り、X線の検出効率が低いという問題もあるが、原理的
に異物の化学構造をEDXS法で特定できないからであ
る。
The unknown substance includes both organic substances and inorganic substances, and when the SEM / EDX method is applied to the inorganic analysis, S is unknown.
Foreign matter can be identified by observing its shape by EM and performing elemental analysis by EDXS. However, when applied to organic analysis, organic substances are mainly elements such as C, H, and O, and X-ray detection This is because there is a problem that the efficiency is low, but in principle, the chemical structure of a foreign substance cannot be specified by the EDXS method.

【0006】このようなわけで、有機分析に顕微螢光法
を使用したものと思われるが、有機分析にFT−IR〓
(顕微赤外法)、顕微ラマン法、顕微螢光法等のいずれ
を用いたとしても、観察領域を1μ以下のオ−ダ−とす
ることは困難であった。
For this reason, it seems that the microscopic fluorescence method was used for organic analysis, but FT-IR 〓 for organic analysis.
It is difficult to set the observation region to an order of 1 μm or less, regardless of which method (microscopic infrared method), microscopic Raman method, microscopic fluorescence method, or the like is used.

【0007】そこで、本発明は、荷電粒子を試料に照射
することにより試料から得られる光、X線に基づき、迅
速に無機物質、有機物質の両方の分析を同時に行うこと
ができる試料分析装置を提供することを目的とする。
Therefore, the present invention provides a sample analyzer which can rapidly analyze both an inorganic substance and an organic substance simultaneously by irradiating the sample with charged particles and the light and X-rays obtained from the sample. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に記載
の試料分析装置は、上記の課題を解決するため、荷電粒
子を試料に照射する照射系と、前記荷電粒子の照射に基
づき前記試料から得られる光を集光する集光反射面が前
記試料に臨む側に形成されて該集光反射面の検出光軸の
延びる方向先方が解放空間とされた集光反射鏡体と、前
記解放空間を通して前記集光反射鏡体から導かれた光を
検出する光検出器とを備え、前記集光反射鏡体には前記
荷電粒子の照射に基づき該試料から得られるX線をX線
検出器に導くための開口が試料に臨むようにして形成さ
れていることを特徴とする。
In order to solve the above-mentioned problems, a sample analyzer according to claim 1 of the present invention has an irradiation system for irradiating a sample with charged particles, and an irradiation system for irradiating the sample with charged particles. A condensing reflecting mirror body having a condensing reflecting surface for condensing light obtained from a sample, the condensing reflecting surface being formed on a side facing the sample, and a front end in a direction in which a detection optical axis of the condensing reflecting surface extends being an open space; And a photodetector for detecting the light guided from the condensing reflecting mirror body through the open space, and the condensing reflecting mirror body detects X-rays obtained from the sample based on irradiation of the charged particles. It is characterized in that an opening for leading to the container is formed so as to face the sample.

【0009】本発明の請求項5に記載の試料分析装置
は、上記の課題を解決するため、荷電粒子を試料に照射
する照射系と、前記荷電粒子の照射に基づき前記試料か
ら得られる光を集光する集光反射面が前記試料に臨む側
に形成されて該集光反射面の検出光軸の延びる方向先方
が解放空間とされた集光反射鏡体と、前記解放空間を通
して前記集光反射鏡体から導かれた光を検出する光検出
器本体と、前記照射系と前記光検出器本体とに干渉しな
いようにして配置されて前記解放空間を通して前記荷電
粒子の照射により前記試料から得られるX線を検出する
X線検出器本体とを備えていることを特徴とする。
In order to solve the above problems, a sample analyzer according to a fifth aspect of the present invention provides an irradiation system for irradiating a sample with charged particles and a light obtained from the sample based on the irradiation of the charged particles. A light collecting and reflecting surface for collecting light, the light collecting and reflecting surface is formed on the side facing the sample, and the light collecting reflecting surface has a free space in the direction in which the detection optical axis of the light collecting and reflecting surface extends. A photodetector body for detecting the light guided from the reflecting mirror body, and arranged so as not to interfere with the irradiation system and the photodetector body, and obtained from the sample by irradiation of the charged particles through the release space. And an X-ray detector main body for detecting the generated X-rays.

【0010】[0010]

【作 用】本発明によれば、荷電粒子を試料に照射する
ことにより試料から得られる光を光検出器で検出するこ
とにより有機分析を行い、荷電粒子を試料に照射するこ
とにより試料から得られるX線をX線検出器で同時に検
出することにより無機分析を行うことができる。
[Operation] According to the present invention, organic analysis is performed by irradiating a sample with charged particles to detect light obtained from the sample with a photodetector, and irradiating the sample with charged particles to obtain an organic analysis. Inorganic analysis can be performed by simultaneously detecting the X-rays generated by an X-ray detector.

【0011】[0011]

【実施例】以下に、本発明に係わる試料分析装置の実施
例を図面を参照しつつ説明する。
Embodiments of the sample analyzer according to the present invention will be described below with reference to the drawings.

【0012】[0012]

【実施例1】図1(a)において、1は走査型電子顕微
鏡本体の照射系の一部を構成する対物レンズであり、こ
の対物レンズ1は集光反射鏡体2に臨んでいる。この集
光反射鏡体2の下方には試料ステ−ジ3が設けられてい
る。試料ステ−ジ3は対物レンズ1に対して位置調整可
能である。この試料ステ−ジ3には試料4が載置されて
いる。集光反射鏡体2には照射系を構成する公知の電子
銃、集束レンズ、走査コイル、対物レンズ1により生成
される荷電粒子としての電子線Eを試料4に導く貫通孔
5が形成されている。集光反射鏡体2はほぼ直方体形状
とされ、その下部は内部がくり貫かれて、試料4に臨む
集光反射面6が形成されている。この実施例では、この
集光反射面6は検出光軸7としての長軸を回転軸とする
回転楕円面の一部で構成されているが、これに限るもの
ではなく、検出光軸7を回転軸とする回転放物面、双曲
面、球面のいずれでもよい。試料4は集光反射面6の焦
点近傍に位置される。照射系は試料4に対して相対移動
されて、試料4への電子線Eの照射に基づき試料4から
特性X線、螢光(カソ−ドルミネッセンス)、二次電子
が得られる。検出光軸7の延びる方向先方は図1(a)
に示すように解放空間8とされている。その二次電子は
図示を略す光電子増倍管により検出され、光電子増倍管
の検出信号は画像処理されて、白黒画像として図示を略
す画面に表示され、その検出信号に基づき試料4の形態
(形状、内部構造)が観察される。電子線Eの照射によ
り試料5から得られるカソ−ドルミネッセンスCLはそ
の解放空間8を通して光検出器本体としての分光器9に
導かれる。分光器9はグレ−テイング10、光検出器1
1としてのマルチチャンネル検出器を有する。マルチチ
ャンネル検出器は、集光反射面6が回転楕円面の一部で
構成されている場合には、集光反射面6の他方の焦点位
置と光学的に等価な位置に設けられる。このマルチチャ
ンネル検出器により検出された検出信号は画像処理され
て、カラ−画像として前記画面に表示され、試料4の有
機分析が可能となる。この集光反射鏡体2はアルミニウ
ム、銅等を用いて作製され、その集光反射面6には必要
に応じて金、クロムのメッキが施されるもので、可視域
の螢光検出にはアルミニウムが適しており、赤外域の螢
光検出には反射鏡体2を銅で作製するか、あるいは、
金、クロムのメッキをアルミニウムで作製した集光反射
鏡体2の集光反射面6に施すことが適している。
Embodiment 1 In FIG. 1A, reference numeral 1 denotes an objective lens which constitutes a part of an irradiation system of a scanning electron microscope main body, and the objective lens 1 faces a condenser reflecting mirror body 2. A sample stage 3 is provided below the converging / reflecting mirror body 2. The position of the sample stage 3 can be adjusted with respect to the objective lens 1. A sample 4 is placed on the sample stage 3. The converging / reflecting mirror body 2 is formed with a well-known electron gun constituting an irradiation system, a focusing lens, a scanning coil, and a through hole 5 for guiding the electron beam E as charged particles generated by the objective lens 1 to the sample 4. There is. The condensing / reflecting mirror body 2 has a substantially rectangular parallelepiped shape, and the inside thereof is hollowed out to form a condensing / reflecting surface 6 facing the sample 4. In this embodiment, the condensing reflecting surface 6 is composed of a part of a spheroidal surface having the long axis as the detection optical axis 7 as the rotation axis, but the present invention is not limited to this, and the detection optical axis 7 is not limited to this. It may be any of a paraboloid of revolution, a hyperboloid, and a sphere, which is the axis of rotation. The sample 4 is located in the vicinity of the focus of the condensing reflecting surface 6. The irradiation system is moved relative to the sample 4, and based on the irradiation of the electron beam E onto the sample 4, characteristic X-rays, fluorescence (catho-luminescence), and secondary electrons are obtained from the sample 4. The direction in which the detection optical axis 7 extends is as shown in FIG.
The open space 8 is formed as shown in FIG. The secondary electrons are detected by a photomultiplier tube (not shown), and the detection signal of the photomultiplier tube is image-processed and displayed as a black and white image on a screen (not shown). The shape and internal structure) are observed. The cathodoluminescence CL obtained from the sample 5 by the irradiation of the electron beam E is guided to the spectroscope 9 as the photodetector body through the open space 8. The spectroscope 9 is a grating 10 and the photodetector 1
1 has a multi-channel detector. The multi-channel detector is provided at a position optically equivalent to the other focal position of the condensing reflecting surface 6 when the condensing reflecting surface 6 is formed by a part of the spheroidal surface. The detection signal detected by this multi-channel detector is image-processed and displayed on the screen as a color image, and the organic analysis of the sample 4 becomes possible. This condensing reflecting mirror body 2 is made of aluminum, copper or the like, and its condensing reflecting surface 6 is plated with gold or chrome if necessary. For detecting fluorescence in the visible range. Aluminum is suitable, and the reflector body 2 is made of copper for fluorescence detection in the infrared region, or
It is suitable to apply gold or chrome plating to the light collecting and reflecting surface 6 of the light collecting and reflecting mirror body 2 made of aluminum.

【0013】集光反射鏡体2には、電子線Eの照射に基
づき試料4から得られる特性X線をX線検出器本体とし
てのEDXの一部を構成するX線検出器12(シリコン
検出器)に導くための開口13が図1(b)に示すよう
に試料4に臨んで形成されている。この開口13は電子
線Eの照射方向と検出光軸7とを含む面で定義される平
面(ここでは、紙面)Pに交差する方向から特性X線を
検出できるように集光反射鏡体2の側部14に形成され
ている。ここではこの開口13は貫通孔であり、貫通孔
にはX線収集用のコリメ−タ−15が装着されている。
このコリメ−タ−15はボロン(Bo)、ベリリウム〓
(Be)、カ−ボン(C)等の軽元素から構成されてい
る。電子線の照射により発生する特性X線には試料4か
ら得られるもの以外に二次電子の集光反射鏡体2への衝
突によって発生するアルミニウムに基づく特性X線の
他、連続X線等のバックグラウンドX線があり、試料4
から直接発生する特性X線を検出することが試料分析に
望ましいからである。このコリメ−タ−15の試料4に
臨む側の穴径Aは図2に示すようにX線検出器12の側
の穴径Bよりも小さいことが望ましいが、穴径Aが余り
に小さいと電子線の照射箇所Cからずれた箇所での特性
X線が検出されることになるので所定の大きさが必要で
あり、また、集光反射鏡体2とコリメ−タ−15とを一
体的に構成しておくことが精度向上の面から望ましい。
このX線検出器12により検出された検出信号に基づき
試料4の無機分析が有機分析と同時に行われる。なお、
符号Dは走査範囲である。
On the converging / reflecting mirror body 2, the characteristic X-rays obtained from the sample 4 based on the irradiation of the electron beam E are included in the X-ray detector 12 (silicon detection) which constitutes a part of the EDX as the X-ray detector main body. An opening 13 for leading to the container is formed so as to face the sample 4 as shown in FIG. The aperture 13 is configured so that the characteristic reflection X-ray can be detected from a direction intersecting a plane (here, the paper surface) P defined by a plane including the irradiation direction of the electron beam E and the detection optical axis 7. Is formed on the side portion 14 of the. Here, the opening 13 is a through hole, and a collimator 15 for collecting X-rays is attached to the through hole.
This collimator 15 is boron (Bo), beryllium 〓
It is composed of light elements such as (Be) and carbon (C). In addition to the characteristic X-rays obtained from the sample 4, the characteristic X-rays generated by the irradiation of the electron beam include aluminum-based characteristic X-rays generated by collision of secondary electrons with the condensing reflection mirror body 2, and continuous X-rays and the like. There is background X-ray, sample 4
This is because it is desirable for sample analysis to detect characteristic X-rays directly generated from the sample. The hole diameter A of the collimator 15 on the side facing the sample 4 is preferably smaller than the hole diameter B on the X-ray detector 12 side as shown in FIG. 2, but if the hole diameter A is too small, the electron Since the characteristic X-ray is detected at a position deviated from the irradiation point C of the line, a predetermined size is required, and the converging / reflecting mirror body 2 and the collimator 15 are integrally formed. It is desirable to configure it from the viewpoint of improving accuracy.
The inorganic analysis of the sample 4 is performed simultaneously with the organic analysis based on the detection signal detected by the X-ray detector 12. In addition,
Reference numeral D is a scanning range.

【0014】(変形例1)図3(a)、図3(b)は第
1実施例の開口13の第1変形例を示すもので、開口1
3を貫通孔とする代わりに貫通溝としたものであり、そ
の他の構成は第1実施例と同一であるので同一符号を付
してその詳細な説明は省略する。
(Modification 1) FIGS. 3 (a) and 3 (b) show a first modification of the opening 13 of the first embodiment.
3 is a through groove instead of the through hole. Since the other structure is the same as that of the first embodiment, the same reference numeral is given and the detailed description thereof is omitted.

【0015】(変形例2)図4(a)、図4(b)は第
1実施例の開口13の第2変形例を示すもので、開口1
3を貫通孔とする代わりに切り欠きとし、コリメ−タ−
15は装着しない構成としたものであり、その他の構成
は第1実施例と同一であるので同一符号を付してその詳
細な説明は省略する。
(Modification 2) FIGS. 4A and 4B show a second modification of the opening 13 of the first embodiment.
Instead of using 3 as a through hole, make a notch and use a collimator.
No. 15 is a structure which is not mounted, and the other structures are the same as those of the first embodiment, and therefore, the same reference numerals are given and detailed description thereof is omitted.

【0016】[0016]

【実施例2】図5は本発明に係わる試料分析装置の第2
実施例を示す図であって、集光反射鏡体2の側部14に
開口13を形成する代わりに、照射系と分光器9とに干
渉しないようにしてEDXSを配置し、解放空間8を通
して試料4から得られる特性X線をシリコン検出器12
により検出することにしたもので、走査電子顕微鏡本体
と分光器9との間に十分な間隔を設けるため、カソ−ド
ルミネッセンスCLをオプテイカルファイバ−(又はラ
イトガイド)16を介して集光することとしたものであ
る。
Second Embodiment FIG. 5 shows a second example of the sample analyzer according to the present invention.
It is a figure showing an example, and instead of forming an opening 13 in a side portion 14 of the condensing reflecting mirror body 2, an EDXS is arranged so as not to interfere with the irradiation system and the spectroscope 9, and through the release space 8. The characteristic X-ray obtained from the sample 4 is used as the silicon detector 12
In order to provide a sufficient space between the scanning electron microscope main body and the spectroscope 9, the cathodoluminescence CL is condensed via the optical fiber (or light guide) 16. It was decided.

【0017】[0017]

【発明の効果】本発明は以上説明したように構成したの
で、荷電粒子を試料に照射することにより試料から得ら
れる光、X線に基づき、迅速に無機物質、有機物質の両
方の分析を同時に行うことができるという効果を奏す
る。特に、集光反射鏡体を対物レンズと試料ステ−ジと
の間から抜き取らなくとも、X線検出を行うことができ
るので、荷電粒子の照射による化学結合の破壊、元素の
蒸発、昇華等に伴う試料の劣化が生じないような状態で
観察を行うことができるというメリットがある。
Since the present invention is configured as described above, it is possible to rapidly analyze both an inorganic substance and an organic substance simultaneously on the basis of light and X-rays obtained from the sample by irradiating the sample with charged particles. There is an effect that it can be performed. In particular, X-ray detection can be performed without removing the converging / reflecting mirror body from between the objective lens and the sample stage, so that chemical bond destruction due to irradiation of charged particles, element evaporation, sublimation, and the like can be performed. There is an advantage that the observation can be performed in a state where the accompanying deterioration of the sample does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる試料分析装置の第1実施例を示
す図であって、(a)はその要部構成を示す側面部分断
面図である。(b)はその要部構成を示す正面断面図で
ある。(c)はその要部構成を示す側面図である。
FIG. 1 is a diagram showing a first embodiment of a sample analyzer according to the present invention, and FIG. 1 (a) is a side partial cross-sectional view showing the configuration of the main part thereof. (B) is a front sectional view showing the configuration of the main part thereof. FIG. 3C is a side view showing the configuration of the main part thereof.

【図2】図1に示すコリメ−タ−の説明図である。FIG. 2 is an explanatory view of the collimator shown in FIG.

【図3】図1の開口の第1変形例を示す図であって、
(a)はその要部構成を示す正面断面図である。(b)
はその要部構成を示す側面図である。
FIG. 3 is a diagram showing a first modification of the opening shown in FIG.
(A) is a front sectional view showing the configuration of the main part. (B)
FIG. 3 is a side view showing the configuration of the main part thereof.

【図4】図1の開口の第2変形例を示す図であって、
(a)はその要部構成を示す正面断面図である。(b)
はその要部構成を示す側面図である。
FIG. 4 is a diagram showing a second modification of the opening shown in FIG.
(A) is a front sectional view showing the configuration of the main part. (B)
FIG. 3 is a side view showing the configuration of the main part thereof.

【図5】本発明に係わる試料分析装置の第2実施例の要
部構成を示す側面部分断面図である。
FIG. 5 is a side partial cross-sectional view showing the configuration of the main part of a second embodiment of the sample analyzer according to the present invention.

【符号の説明】[Explanation of symbols]

1…対物レンズ 2…集光反射鏡体 4…試料 7…検出光軸 8…解放空間 9…分光器 12…X線検出器 13…開口 E…電子線 DESCRIPTION OF SYMBOLS 1 ... Objective lens 2 ... Condensing reflection mirror body 4 ... Sample 7 ... Detection optical axis 8 ... Open space 9 ... Spectroscope 12 ... X-ray detector 13 ... Aperture E ... Electron beam

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子を試料に照射する照射系と、前
記荷電粒子の照射に基づき前記試料から得られる光を集
光する集光反射面が前記試料に臨む側に形成されて該集
光反射面の検出光軸の延びる方向先方が解放空間とされ
た集光反射鏡体と、前記解放空間を通して前記集光反射
鏡体から導かれた光を検出する光検出器とを備え、前記
集光反射鏡体には前記荷電粒子の照射に基づき該試料か
ら得られるX線をX線検出器に導くための開口が試料に
臨むようにして形成されていることを特徴とする試料分
析装置。
1. An irradiation system for irradiating a sample with charged particles, and a condensing reflection surface for condensing light obtained from the sample based on irradiation of the charged particles is formed on a side facing the sample, and the condensing surface is formed. The reflecting surface is provided with a condensing reflecting mirror body having an open space in the direction in which the optical axis extends, and a photodetector for detecting light guided from the condensing reflecting mirror body through the releasing space. A sample analyzer, wherein an opening for guiding an X-ray obtained from the sample to the X-ray detector based on the irradiation of the charged particles is formed in the light reflecting mirror so as to face the sample.
【請求項2】 前記試料は前記集光反射面の焦点近傍に
配置され、該集光反射面は前記検出光軸を回転軸とする
回転楕円面、放物面、双曲面、球面のいずれかの一部で
構成され、前記開口は荷電粒子の照射方向と前記検出光
軸とによって定義される平面に交差する方向から前記X
線を検出できるように前記集光反射鏡体の側部に形成さ
れて、貫通孔、貫通溝、切り欠きのいずれかであること
を特徴とする請求項1に記載の試料分析装置。
2. The sample is arranged in the vicinity of the focal point of the light collecting and reflecting surface, and the light collecting and reflecting surface is any one of a spheroid, a paraboloid, a hyperboloid, and a spherical surface whose rotation axis is the detection optical axis. Of the X-rays from the direction intersecting the plane defined by the irradiation direction of the charged particles and the detection optical axis.
The sample analysis device according to claim 1, wherein the sample analysis device is formed at a side portion of the condensing reflecting mirror body so as to detect a line and is any one of a through hole, a through groove, and a notch.
【請求項3】 前記集光反射鏡体はアルミニウムによっ
て形成され、前記開口にはボロン、ベリリウム、カ−ボ
ン等の軽元素からなるX線収集用のコリメ−タ−が装着
されていることを特徴とする請求項1に記載の試料分析
装置。
3. The condensing reflecting mirror body is formed of aluminum, and an X-ray collecting collimator made of a light element such as boron, beryllium or carbon is attached to the opening. The sample analyzer according to claim 1, wherein the sample analyzer is a sample analyzer.
【請求項4】 前記照射系は前記荷電粒子と前記試料と
を相対移動させて走査することを特徴とする請求項1に
記載の試料分析装置。
4. The sample analyzer according to claim 1, wherein the irradiation system relatively moves the charged particles and the sample for scanning.
【請求項5】 荷電粒子を試料に照射する照射系と、前
記荷電粒子の照射に基づき前記試料から得られる光を集
光する集光反射面が前記試料に臨む側に形成されて該集
光反射面の検出光軸の延びる方向先方が解放空間とされ
た集光反射鏡体と、前記解放空間を通して前記反射鏡体
から導かれた光を検出する光検出器本体と、前記照射系
と前記光検出器本体とに干渉しないようにして配置され
て前記解放空間を通して前記荷電粒子の照射により前記
試料から得られるX線を検出するX線検出器本体とを備
えていることを特徴とする試料分析装置。
5. An irradiation system for irradiating a sample with charged particles, and a condensing reflection surface for condensing light obtained from the sample based on irradiation of the charged particles is formed on the side facing the sample, and the condensing surface is formed. A converging reflecting mirror body having a free space in the direction in which the detection optical axis of the reflecting surface extends, a photodetector body for detecting light guided from the reflecting mirror body through the free space, the irradiation system and the An X-ray detector main body which is arranged so as not to interfere with the photodetector main body and detects X-rays obtained from the sample by irradiating the charged particles through the open space. Analysis equipment.
JP4317446A 1992-11-26 1992-11-26 Sample analyzer Pending JPH06168693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4317446A JPH06168693A (en) 1992-11-26 1992-11-26 Sample analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4317446A JPH06168693A (en) 1992-11-26 1992-11-26 Sample analyzer

Publications (1)

Publication Number Publication Date
JPH06168693A true JPH06168693A (en) 1994-06-14

Family

ID=18088315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4317446A Pending JPH06168693A (en) 1992-11-26 1992-11-26 Sample analyzer

Country Status (1)

Country Link
JP (1) JPH06168693A (en)

Similar Documents

Publication Publication Date Title
US11087955B2 (en) System combination of a particle beam system and a light-optical system with collinear beam guidance, and use of the system combination
US7039157B2 (en) X-ray microscope apparatus
US8513604B2 (en) Detection device and particle beam device having a detection device
US4900932A (en) Cathodoluminescence detector utilizing a hollow tube for directing light radiation from the sample to the detector
US7023954B2 (en) Optical alignment of X-ray microanalyzers
DE112015000433B4 (en) Sample holder, viewing system, and imaging process
EP0293924B1 (en) Direct imaging monochromatic electron microscope
JP4696197B2 (en) Cathode luminescence detection device
JPH10339798A (en) Mirror for condensing x rays
JPH0510897A (en) X-ray photoelectron spectral imaging apparatus
JP5489412B2 (en) High resolution X-ray microscope with X-ray fluorescence analysis function
JP2021162590A (en) Transmissive type charge particle microscope comprising electronic energy loss spectroscopic detector
JPH05113418A (en) Surface analyzing apparatus
JP2020140961A (en) Multi-Beam Scanning Transmission Charged Particle Microscope
JPH06168693A (en) Sample analyzer
Ko et al. Development of a second generation scanning photoemission microscope with a zone plate generated microprobe at the National Synchrotron Light Source
JPS60144646A (en) Device for observing and analyzing cathode luminescence
JP3643917B2 (en) Microscopic laser mass spectrometer
US5369274A (en) Method and an apparatus for the examination of structures on membrane surfaces
US4882487A (en) Direct imaging monochromatic electron microscope
JPH04190148A (en) Method and apparatus for analyzing surface
JP3368643B2 (en) Photoelectron spectrometer
US11555784B2 (en) Methods, systems, and devices for super resolution solid immersion lens microscopy
JP2005127967A (en) High resolution/chemical bond electron/secondary ion microscope apparatus
JP2500423Y2 (en) electronic microscope