JPH06166876A - 石炭から軽質炭化水素油を製造する方法 - Google Patents

石炭から軽質炭化水素油を製造する方法

Info

Publication number
JPH06166876A
JPH06166876A JP5183638A JP18363893A JPH06166876A JP H06166876 A JPH06166876 A JP H06166876A JP 5183638 A JP5183638 A JP 5183638A JP 18363893 A JP18363893 A JP 18363893A JP H06166876 A JPH06166876 A JP H06166876A
Authority
JP
Japan
Prior art keywords
coal
reaction
strong acid
weak base
kcal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5183638A
Other languages
English (en)
Inventor
George M Kramer
モーティマー クレイマー ジョージ
Edwin R Ernst
ロバート アーネスト エドウィン
Chang Samuel Hsu
サミュエル スー チャン
Gopal H Singhal
ハリー シンガル ゴーパル
Peter Sheng-Shyong Maa
シェン シヨン マー ピーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Publication of JPH06166876A publication Critical patent/JPH06166876A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0225Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
    • B01J31/0227Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0217Mercaptans or thiols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0218Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0225Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/226Sulfur, e.g. thiocarbamates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/006Combinations of processes provided in groups C10G1/02 - C10G1/08
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】 【目的】 耐火性物質の生成を最小限に抑えながら、低
温で石炭を迅速に解重合して軽質炭化水素油を製造する
方法を提供する。 【構成】 微粉砕した石炭を、強酸及び弱塩基と接触さ
せて、低温で解重合し、炭化水素油とする石炭の水素化
処理方法。解重合された石炭は、石炭転化触媒又はその
先駆体との混合物を形成し、この混合物を、250〜5
50℃の温度で、2100〜35000kPaの水素分
圧で水素化処理して、炭化水素油を得る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、石炭を解重合する方法
に関する。特に、石炭が強酸/弱塩基処理を使用して、
穏やかな条件下で解重合される。解重合された石炭は、
液化のための優れた供給原料であり、穏やかな水素化処
理条件下に、軽質液体生成物へ高収率で転化出来る。こ
の解重合された石炭は、低灰分炭へ転化出来る。
【0002】
【従来の技術及び発明が解決しようとする課題】石炭構
造に関する研究から、石炭は主に1〜4つの環の置換芳
香族単位間の代表的架橋基としてエ−テル及び短鎖アル
キレンを含む複雑な重合構造を持つことがわかってい
る。触媒の存在下に、石炭の水素化処理を含む、石炭の
液状炭化水素生成物への転化方法が多数存在する。これ
らの方法は、一般に、高温度だけで、或いは、高い水素
圧との組合せで、触媒単独か、セレニウムの様な他の金
属との組合せから成るニッケル、錫、モリブデン、コバ
ルト、鉄、バナジウムを利用する。石炭は、触媒又は担
体に支持された触媒で浸漬出来る。幾つかの方法では、
石炭は、水素化処理前に、最初の溶媒抽出に掛けられ
る。抽出に使用する溶媒は、テトラリン、デカリン、ア
ルキル置換多環芳香族、フエノ−ル、アミンを含む。代
表的な溶媒は強力な水素供与体である。
【0003】石炭液化は、触媒と種々の溶媒との組合せ
を用いても行う事が出来る。鉱酸で促進された金属ハロ
ゲン化物、極性溶媒の存在下での塩化亜鉛、アンモニウ
ムイオン、1a又は1b金属アルコキシド基又は水酸
基、又は弱酸の塩とキノンとの組合せが石炭液化の触媒
として使われてきた。アルカリ金属ケイ酸塩の様な触
媒、カルシウム又はマグネシウムイオン、界面活性剤を
含む水溶液は、石炭破壊用媒体を形成する。全体に石炭
の重合構造をつくりあげているエ−テル又はアルキレン
架橋基を壊す事で、石炭を低分子量留分に解重合でき
る。石炭解重合用触媒は、フエノ−ルと錯塩化したBF
3 、H2 SO4 の様なブレ−ンステズ酸(Bronst
edacid)、フエノ−ル溶媒存在下でのp−トルエ
ンスルホン酸、トリフロロメタンスルホン酸及びメタン
スルホン酸、塩化亜鉛、塩化第二鉄を含む。水素化処理
が後に続く。解重合反応は、「石炭利用の化学」(第二
追補版、M.A エリオット版、J.Wiley&Su
ns、NY、1981年、425頁以降)で、Wend
er等により精査されている。触媒を用いた石炭液化方
法で必要とされる高温は、耐火性物質及び真空ガス油と
他の高沸点成分のかなりの量を含む液化炭化水素油をつ
くる。
【0004】
【課題を解決するための手段】本発明は、低温で石炭を
迅速に解重合し、耐火性物質をもたらす副反応を抑制し
て耐火性物質の生成を最小限に抑える方法を提供するも
のである。解重合された石炭は、穏やかな条件で水素化
処理され、真空ガス油及び他の高沸点留分の生成を最小
限にして軽質炭化水素生成物を生成する。解重合された
石炭は、鉱物性混入物を除去する為に選択的に抽出さ
れ、低灰分の石炭とする。本発明の石炭解重合方法の更
に多くの利点が、以下の記述で明らかとなろう。本発明
に依れば、石炭は、温度0℃〜100℃で、弱塩基(so
ft base)の存在下に、強酸と微粉炭粒子を接触させて解
重合される。前記の強酸は、硫化メチルとの反応熱が、
10kcal/molから30kcal/mol、及び
前記の弱塩基は、三フッ化ホウ素との反応熱が、10k
cal/molから17kcal/molのものであ
る。解重合された石炭は、強酸及び弱塩基を除去するた
め抽出処理される。解重合された石炭は、強酸及び弱塩
基を除去するため抽出処理され、鉱物性混入物の部分
は、続いて、抽出処理では除去されない鉱物性混入物を
除去する為に、抽出した石炭を膨潤溶媒で処理する事に
より低灰分の石炭に転化出来る。抽出された、解重合さ
れた石炭は、軽質炭化水素油を製造するため水素化処理
出来る。水素化処理は次の工程からなる。即ち、解重合
された石炭と、IV−B、VI−A、VII−A及びV
III−A(「Advanced Inorganic
Chemistry」F.A.Cotton及びG.
W.Wilkinson,第4版,John Wile
y and Sons,NY,の周期律表で与えられて
いる)、又はそれらの混合物群のいずれか1つから選ば
れる金属のジチオカルビル置換ジチオカルバメ−ト金属
塩との混合物を形成する工程、250℃〜550℃の温
度と2100kPa〜35000kPaの水素分圧でそ
の混合物を水素化処理する工程、及び炭化水素油を回収
する工程から成る。
【0005】組合された強酸と弱塩基処理は、通常酸触
媒に敏感な石炭構造中の多数のエ−テル及びアルキル−
芳香族架橋成分を迅速に開裂、捕捉し、更に耐火性物質
をもたらす劣化反応を抑制し、最小限とする。解重合
は、圧力を加えることなしに、100℃以下の温度で迅
速に起こる。室温では、最大の解重合が、一般に1時間
未満で行われる。得られる解重合された石炭は、それか
ら、残渣としての解重合された石炭のバルクは残して、
反応物、幾つかの開裂成分及び様々な量の鉱物性物質を
除去するために溶媒抽出される。適当な溶媒で以てこの
残渣を非常に低い鉱物含有量にする事が出来る。抽出処
理を伴う、又は伴わない穏やかな条件下での解重合され
た石炭の水素化処理は、未処理の石炭で得られる液化炭
化水素よりも一層望ましい軟質液状炭化水素を、高い割
合、高い転化水準で製造する。
【0006】本発明方法は、石炭にその重合性を与える
縮合環芳香族基の間の架橋基を壊して、石炭を迅速に、
低温で解重合する方法を提供する。本発明の強酸/弱塩
基系は、エ−テル及びアルキル芳香族が石炭の隣接成分
で劣化縮合反応を受ける前に、エ−テル及びアルキル芳
香族の分解で形成されるイオン性中間体を、優先的に捕
捉する。強酸は小さいサイズのもので、高い陽電荷を持
ち、それらの原子価殼中に空き軌道を持ち、低い分極率
と高い電気陰性度で特徴ずけられる。弱塩基は、電子供
与体で、高い分極率と低い電気陰性度を持ち、容易に酸
化されることで特徴ずけられる。一般に、強酸は強塩基
と結合し、弱酸は弱塩基と結合するのが好ましい。
【0007】これらの一般特性は、R.G.Pears
onの論文集で論じられている。その多くは、「強弱酸
塩基」(R.G.Pearson,Dowden,Hu
tchinson&Ross,Inc.1973)に纏
められている。強酸は、H+、Al3+、B3+、U6+と印
字され、これらイオンは種或いは分子成分或いはAlB
3 、BF3 、又はUO2 2+ 等の様な空間軌道を含む大
きなイオンとは区別される。代表的な弱塩基は、相当す
る化合物のEtOH、Me2 O、Me3 N中の酸素原子
又は窒素原子よりもむしろ、EtSH、Me2 S、又は
Me3 P中の硫黄原子又は燐原子を含む分子である。後
の3化合物は、代表的な強塩基で、強酸と強力な配位錯
体を形成する事が期待される。強力な相互作用が、酸を
実質的に中性化する。本発明方法による強酸は、硫化ジ
メチルとの反応(又は錯化)熱が、10kcal/mo
lから30kcal/molの範囲に在る事で特徴ずけ
られる。同様に、塩基は三フッ化ホウ素との反応(又は
錯化)熱が、10kcal/molから17kcal/
molの範囲に在る事で特徴ずけられる。「ルイス酸−
塩基の概念」(J.Wiley&Sons,1980
年,253頁)でW.B.Jensenが記述している
ように、強弱酸塩基(HSAB)の概念は、本質的に定
性的である。Jensenの本で論じられている様に、
反応(又は錯化)熱は、強弱酸塩基を述べる為の1つの
方法を提供する。好ましい強酸は、メタンスルホン酸、
トルエンスルホン酸、ベンゼンスルホン酸、トリフロロ
メタンスルホン酸、フッ化ホウ酸、H2 O:BF3 混合
物であり、好ましい弱塩基は、エチルメルカプタン、メ
チルメルカプタン、硫化ジメチルである。
【0008】対照的に、強酸と弱塩基の混合物中では、
その成分は相対的に自由で、互いに独立的に行動出来
る。従って、プロトンの様な強酸性反応体は、多数のエ
−テルを攻撃し、炭素陽イオンを生成する結合開裂反応
を起こす。一方、EtSH、又はMe2 S(両方共極め
て良好な求核性がある事が知られている)の様な硫黄化
合物は、水の様な酸素化塩基より一層迅速にこれらイオ
ンと反応する。EtSHが炭素陽イオンを捕捉し、プロ
トン化された硫化物又はスルホニウムイオンを形成し、
これはプロトンを失って最終生成物の硫化物になる。一
方、Me2 Sでの捕捉は尚一層安定な第三級スルホニウ
ムイオンを形成し、塩として最終生成物で残る。メルカ
プタンとMe2 Sの様な硫化物の両方共良好な捕捉剤で
ある。反応中間体としてのEtSHの作用でつくられる
スルホニウムイオン及び反応物のバルクの大部分は容易
に再生される。捕捉剤としてMe2 Sの使用は、大量
の、比較的安定なスルホニウム塩をつくるように思われ
る。これらの大部分はMeOHの様な溶媒処理で分解で
きる。Me2 Sの大部分は回収出来るが、その塩の幾ら
かは未知の副反応で安定な硫化物を形成するかも知れな
い。それにより、幾らかのMe2 Sの回収を困難にす
る。
【0009】如何なる特殊理論にも拘束される積もりは
ないが、本発明の強酸/弱塩基触媒系(HSAB)は、
石炭のエ−テル架橋の開裂を変える事で副反応を最小限
にする様に機能すると信じる。強酸/強塩基系(HAH
B)、例えばBF3 /フエノ−ル又はブレ−ンステド酸
/フエノ−ルを使用する解重合反応は、HSAB系の様
に石炭のマトリックス中で同じエ−テルとアルキル結合
基を攻撃し、石炭の解重合となるが、酸素化塩基である
フエノ−ルはEtSHのようなチオ−ルと同様の有効な
求核性は殆どない。それゆえ、急速に発達する炭素陽イ
オンを捕捉しない。低分子量部の形成に代えて、HAH
B系は、競合、つまり劣化捕捉反応中に、石炭マトリッ
クスの他の部分に付加する為の遊離イオンを残すと理論
ずけられる。この結果は、石炭が、石炭中の比較的反応
性のある環が、全体により一層安定な方向に変形した様
に、殆どの場合、未反応の石炭と少なくとも同程度の安
定性がある構造に再配置されたと言う事である。
【0010】本発明の触媒系は、石炭及び他の類似の炭
化水素の解重合に適用出来る。ロ−ハイド(Rawhi
de)とワイオダック(Wyodak)炭は、全組成が
約20%又はそれ以上の有機的に結合した酸素を含む亜
瀝青炭である。類似の全体組成の他の亜瀝青炭も同様で
ある。エ−テル架橋と同様にアルキル芳香族結合を含む
高品位炭は、酸触媒による開裂反応を受け易いので、類
似の利益が、利用できる石炭の範囲全体にわたって見出
されるものと信じる。粒径は本発明では臨界的ではない
が、表面積を増大し、その結果反応効率を増大させる
為、微粉炭を使用するのが好ましい。好ましい石炭粒径
は、10〜1000μ、特に10〜250μである。
【0011】強酸/弱塩基触媒系が、それ自身溶媒とし
て作用する場合は、溶媒の添加は必要ない。望むなら
ば、溶媒又は共溶媒が使用できる。HSAB系での溶媒
の主要な役割は、酸性及び塩基性反応物の石炭構造内の
場所への接近を促進させる事である。その結果、即座の
開裂が起こる時、求核性が発現する。その物質に対し特
有の水素結合相互作用で干渉する溶媒を石炭が吸収する
につれて、石炭が膨潤することは知られている。この様
に、マトリックス中の他の場所に別の方法で結合してい
るフエノ−ルプロトンと相互作用を行う溶媒は、石炭を
膨潤し、HSAB成分の所望の接近を助ける事が期待さ
れ、添加される溶媒それ自身は酸性触媒を中性化する程
の塩基性ではない。高められた解重合を提供するための
BF3 触媒を使用中にEtSHと混合出来る事が分かっ
た様に、メタノ−ルはこの方法で機能することは明らか
である。
【0012】スラリ−の形成を促進するために、n−ヘ
キサンの様な非反応性、非膨潤性でしかも自由に流動す
る共溶媒を、選択的にEtSHに添加出来る。そのよう
な共溶媒は、石炭のHSAB系反応の結果得られる分解
成分のガスクロマトグラフィ−での分離、検出を促進す
るのに使用された。50:50のEtSH:nC6 14
中のBF3 :H2 Oとワイオダック炭との反応では、
ヘキサン層は、石炭開裂反応の主要生成物の2,2−ジ
チオエチルプロパン、CH3 −C(C2 5 S)2 −C
3 を含む事が分かった。ヘキサンの様な共溶媒は、解
重合された石炭から未反応のメルカプタン及び硫化物を
洗滌するのに使用できる。それらは僅かに石炭を膨潤さ
せる傾向がある。石炭解重合用の他の溶媒とは違い、本
発明の強酸/弱塩基触媒は、非常に穏やかな条件下で迅
速に石炭を解重合する。圧力は自己発生的で、温度は0
〜100℃の範囲である。好ましい温度範囲は15〜7
5℃である。室温でも解重合は一般に1時間未満で完結
する。解重合を最適化し、石炭成分が再結合して耐火性
物質をつくる劣化反応を最小限にするために、形成され
る抽出物の量で決めた解重合の範囲は時間の関数として
決められる。抽出物の量は、処理した石炭を極性溶媒又
はそれらの混合物、例えばメタノ−ル、テトラヒドロフ
ラン、ジメチルホルムアミド等で抽出し測定できる。
【0013】図1に、強酸/弱塩基触媒を使用する、可
能な迅速解重合の例を示す。ロ−ハイド炭を室温で、n
−ヘキサンの存在下で、メタンスルホン酸とエチルメル
カプタンと接触させると、解重合が急速に頂点に達す
る。メタノ−ル(MeOH)、ジメチルホルムアミド
(DMF)、n−メチルピロリドン(NMP)、エチレ
ンジアミン(EDA)を含む種々の溶媒抽出系で、抽出
パ−セントで表示される抽出物は、約15分で最大に達
する。如何なる反応機構にも拘束される積もりはない
が、メタンスルホン酸は、石炭中でエ−テル架橋と反応
し、プロトン化した種(オキソニウムイオン)を形成す
るものと信じる。後者は開裂を受け、弱塩基、エチルメ
ルカプタンと反応して安定な炭素陽イオン部を作り、ス
ルホニウムイオンとフエノ−ル部又はヒドロキシアルキ
ル部を形成する。スルホニウムイオンはCH3 SO3 -
の陰イオンと急速に反応しスルホン酸エステルをつく
る。次いで、この生成物をメタノ−ルで洗滌すると、ス
ルホン酸エステルのこの混合物はメタノリシスを受け、
石炭部が内部水素結合で安定化された後に残っている石
炭から酸が除去される。
【0014】抽出溶媒の性質を調節することにより、鉱
物混入物を石炭から除去する事が可能である。図2で示
した様に、解重合された石炭がメタノ−ルで抽出される
と、アルカリ及びアルカリ土類金属の大部分が、実質的
な量の重金属と共に除去される。未処理炭では、アルミ
ニウム、カルシウム、鉄、マグネシウム、ナトリウムの
鉱物物質が、夫々10,300、15,900、4,3
00、3,800、600ppmの濃度であることがわ
かる。メタンスルホン酸/エチルメルカプタンの抽出処
理後に、これらの濃度は、夫々3,100、200、
1,500、100、160ppmに減少する。残留鉱
物物質の大多数はシリカで、これは環境的に有害物質で
はない。望むならば、シリカ除去のため、石炭を更に処
理に掛けることが出来る。便利な方法は、石炭を溶媒で
膨潤させる事で、その溶媒の密度(ρ)は、石炭の有機
成分より重いが、ρ(>約1.2〜1.3)、SiO2
よりは軽い、ρ(2.2〜2.6)。この溶媒で石炭を
浮かし、シリカを沈める。メチレンクロライド、クロロ
ホルム、四塩化炭素、ブロモホルムの様な塩素化又は臭
素化溶媒が、適当な溶媒の例である。
【0015】解重合された石炭は、炭化水素油を製造す
る為、穏やかな条件下で水素化処理される。この処理
で、真空ガス油の様な重質生成物の生成を抑え、ナフサ
及び留出物の様なより望ましい軽質油の収量が増加す
る。これは図3で示される。図3は同じ条件下で水素化
処理された、処理と未処理のロ−ハイド炭の比較であ
る。その条件は、427℃(800°F)で、水素化触
媒を用い、初期圧7000kPa、溶媒の存在下、石炭
は真空ガス油から得たものである。強酸/弱塩基触媒系
で処理された解重合された石炭は、ねずみ色の生成物
で、ナフサと留出物は未処理炭に比べ約75%増加す
る。真空ガス油に関しては、未処理炭は約25wt%製
造するのに対し、本発明による処理炭は、真空ガス油の
軽質生成物への転化により真空ガス油溶媒を殆ど生じな
い。
【0016】解重合された石炭を液体炭化水素にする水
素化処理は、比較的穏やかな条件下で行なわれる。水素
化処理触媒は、硫化金属化合物が好ましい。好ましい金
属は、バナジウム、ニオブ、タンタル、クロム、モリブ
デン、タングステン、マンガン、レニウム、鉄、コバル
ト、ニッケル、白金、イリジウム、パラジウム、オスミ
ウム、ルテニウム、ロジウムである。ジヒドロカルビル
置換ジチオカルバメ−ト金属塩の先駆体からの金属触媒
の調製は、米国特許第5,064,527号に記述され
ており、この内容も本明細書の記載に含まれるものとす
る。水素化処理に使用される溶媒は、175℃〜550
℃の範囲で沸騰する真空ガス油又は留出物の様な石炭処
理で得られる炭化水素油が好ましい。他の適当な溶媒
は、石油処理からの中間体流出物及び置換及び非置換芳
香族複素環のものである。水素化処理は、250℃〜5
50℃、好ましくは300℃〜450℃の温度で起こ
る。水素分圧は、2000kPa〜35000kPa、
好ましくは3500kPa〜10000kPaである。
以下に、本発明を実施例を以て例示するが、本発明はこ
れによって限定されるものではない。
【0017】
【実施例】
実施例1 ワイオダック炭を65℃で真空乾燥した。乾燥した石炭
20gを、水2.2ml、エチルメルカプタン20ml
及びn−ヘキサン20mlでスラリ−とした。このスラ
リ−を、機械的に攪拌される300mlのハステロイ−
Cのオ−トクレ−ブに入れた。オ−トクレ−ブに三フッ
化ホウ素8gを入れ、19時間まで時間を種々変化さ
せ、室温で、攪拌しながら反応を進めた。生成物を水洗
し、100℃、真空下で乾燥した。固形分をソックスレ
−抽出器で、ピリジンかテトラヒドロフランのいずれか
を用いて抽出した。図4に、ピリジン抽出物と、乾燥炭
を基に表示される反応時間の関数としてのワイオダック
炭の反応生成物の元素組成を示す。20分と30分で行
った繰り返し実験から、抽出物量は約±1%の再現性が
あることがわかった。時間目盛りは、垂直破線の左側で
幾分広がっていることに注意。
【0018】抽出物は、周囲温度で、短い反応時間後に
最大に達し、その後減少した。これはワイオダック炭の
酸触媒による解重合中に、一連の連続反応が存在するこ
との直接の証明である。約50%の石炭が短時間でピリ
ジン抽出物となったが、これら初期の可溶性生成物は、
更に反応を受け、それらはオ−トクレ−ブ中に在って、
更にピリジン不溶物質へと変化した。表1に、ワイオダ
ック炭及び重複実験で得た30分生成物の元素組成を表
示した。
【0019】
【表1】 表 1 ワイオダック 実験 生成物(a) 実験 I II 相対重量,g 100 129(b) 129(b) Wt%(乾燥基準 ) C 64.8 50.4 51.6 H 5.0 4.7 5.3 O 24.7 (32.6) 32.2 N 0.6 0.7 0.7 S 1.0 1.5 2.2 B 0.0 3.1 F 0.0 7.0 その他の無機元素 3.5 元素 合計 99.6 (100.0) (92.0)原子比 (c) H/C 0.93 1.12 1.23 O/C 0.3 0.5 水を添加 F/B 1.3 Bは1〜2のFを失っ た B/C 0 0.77 約1B/2環添加 B/(6−C) 0.4 B/S 8.9 SよりBを添加 S/C 0.006 0.011 0.016 〔0.5−1〕S/ 00C添加 (a) 抽出前の乾燥反応生成物。 (b) 表2参照。 (c) 生成物と反応物との比較から推定した。反応物
中の全ての炭素は、未だ生成物中に存在すると推定し
た。付記 * 約2.6の酸素がホウ素当たり添加された。 * ピリジン抽出物は、ホウ素とフッ素比がF/B=
1.4、のホウ素とフッ素を90%以上含む。
【0020】実験Iは、元素合計100%とする為に必
要な酸素と無機成分の量を示す括弧内の量を含む。推定
された32.6%は、重複実験IIで中性子活性(ne
utron activation)で分かった酸素量
と明らかに一致した。このデ−タは、生成物がホウ素、
フッ素、酸素、硫黄の取得から見て、ワイオダックより
も炭素留分が少ない事を示す。表1の下の部分に、ワイ
オダックと反応生成物の原子比を提示した。この変化
は、石炭が6炭素原子毎に約0.4のホウ素を必要とす
る事を示す。これらのホウ素は、金属が酸素又は水酸基
で置換されて平均的に失う2つのフッ素を持つ様なBF
3 付加物の一部ではない。2より僅かに多い酸素がホウ
素当たり添加された事から、フルオロホウ酸エステル及
びアルコ−ル又は水和物が形成されたに相違ないと推定
するのが合理的である。ホウ素が硫化物よりむしろ捕捉
反応の最終生成物として明らかな事は興味有ることであ
る。ホウ素の取得及びフルオロホウ酸エステルの生成
は、実験を調整したり、それ単独で反応系から排除され
たり、約1/10囘だけ多数のフルオロホウ酸エステル
を用意する様なエチルメルカプタンの存在に非常に依存
する。フルオロホウ酸エステルの生成は石炭の重量を増
加する。即ち、固形生成物は最初の石炭より重い。これ
がピリジンで50%抽出出来る膨潤石炭である。生成物
の分析を、炭素の一定量に調整する単純計算では、石炭
の質量が、30分反応後に約29%増大した事を示し
た。表2参照。
【0021】
【表2】 表 2 実験生成物 一定炭素に調整 I 元素,wt% ワイオダック 水洗/乾燥 生成物 C 64.8 50.4 64.8 H 5.0 4.7 6.09 O 24.7 (32.6) (42.25) N 0.6 0.7 0.91 S 1.0 1.5 1.94 B 0.0 3.1 4.02 F 0.0 7.0 9.07 無機元素 3.5 ( ) ( ) 99.6 100 129.08
【0022】ピリジンで抽出可能な50%部分のフルオ
ロホウ酸エステル量を推定するために、膨潤石炭のホウ
素含有量と(11B−NMRスペクトルの結果)を使う
事により、フルオロホウ酸エステルを含む石炭の31.
4%は元からワイオダック炭中に在った化合物であると
結論できた。これは元の石炭の40.8%である。フル
オロホウ酸エステルについてはいくつかの興味ある見解
がある。第一は、この化合物が冷水の大規模洗滌で残存
する事である。それらは延長された加水分解の下で、フ
ッ素及びホウ素を失う。即ち、水でソックスレ−抽出し
ながら工程中に無機元素の約2/3を除去する。それら
の安定性は、容易に加水分解されるホウ酸エステルとし
ては、幾分期待外れである。結果として、これらフルオ
ロホウ酸エステルは、解重合方法の中間体と同様に回収
可能な反応生成物と見ることができる。その他の興味あ
る性質は、ピリジンで抽出される生成物の留分中に殆ど
排他的に存在しようとするそれらの傾向である。先験的
に、結合開裂反応の存在は、反応の低分子量と同様に高
分子量のフルオロホウ酸エステルつくらないと言った単
純な理由では無いように思われる。若しこれが起こると
すれば、各成分中に見出されるフルオロホウ酸エステル
の正しく、均一な分散を期待するが、分析は、フルオロ
ホウ酸エステルの約95%はピリジンで抽出される事を
示していた。
【0023】実施例2 未処理のワイオダック炭と実施例1の30分反応生成物
を、次のように水素化処理した。ボンベに3.0gの石
炭、6.0gのテトラリン、7000kPaの水素及び
1000ppmのモリブデン触媒を詰めた。ボンベを2
時間、400℃に加熱した。冷却後、ボンベの内容物を
検査し、シクロヘキサン可溶物への転化を見た。表3に
重複試料のシクロヘキサン可溶物への転化とガスを表示
した。結果は、反応物と生成物の灰分含有量に於いて、
供給原料を基準とした。乾燥灰分無し(DAF)基準で
表示された転化は、ほぼ全ての可溶物を除去したシクロ
ヘキサンで、次いでピリジンで洗滌後、後に残った残渣
の量から別に推定したものと非常に似ていた。
【0024】
【表3】 表 3 シクロヘキサン可溶物への転化 試 料 + ガス(DAF基準) 未処理のワイオダック 39.96,41.51 ワイオダック/BF・H2 O/EtSH 61.10,60.29 ワイオダック/BF・H2 O/EtSH/ Moly 72.27,70.47
【0025】ガス量は全ての実験で同じであった。ガス
の選択性は、Moly触媒1000ppmで処理後の転
化の約10%に相当した。ワイオダック炭の転化はモリ
ブデンを使用せずに約40〜60%に増加し、これが解
重合系に添加された時は70%に達した。このシクロヘ
キサン溶液は、フッ素及びホウ素が実質的に無い事が分
かったので、ワイオダックの有機成分(炭素、水素及び
酸素)の、シクロヘキサン+ガスに可溶な有機化合物へ
の転化が表4に纏めたように推定できた。これを行う為
に、フルオロホウ酸エステルの形成と水素転化の結果と
して、最初の石炭よりも29%も重い解重合された石炭
はこの物質の60〜70%を表す事を思い起こした。石
炭に載ったフルオロホウ酸エステルの70%転化は、ワ
イオダックの初期供給量の約90%転化を表す。
【0026】
【表4】 表 4 Moly1000ppmで 解重合 水素化処理 ワイオダック された物 シクロヘキサン溶液+ガス 試料,g 100 129 有機含有量,g 96.5 96.5 90.3 転化生成物は、ガス約10%とシクロヘキサンに抽出可
能な重質有機化合物90%である。後者の溶液はフッ素
とホウ素の無い事が示された。それぞれの検出は、分析
上、5ppmと4ppmが限度であった。
【0027】実施例3 ロ−ハイド炭を実施例1と同様に乾燥した。20gの乾
燥ロ−ハイド炭、20mlのヘキサン、20mlのエチ
ルメルカプタン、11gのメタンスルホン酸を実施例1
の攪拌オ−トクレ−ブに添加し、2時間まで種々の時
間、室温で、自然圧で反応を行った。所望の時間の最後
で、60mlのメタノ−ルを添加し、生成物をソックス
レ−抽出器でメタノ−ルを使い一晩中抽出した。乾燥し
た生成物を、第二の極性溶媒で、第二の時間抽出した。
メタンスルホン酸/エチルメルカプタン触媒にとっては
約15分が最適時間で(図1参照)、抽出物の最大量
は、メタノ−ル/エチレンジアミン溶媒系で得られた。
長時間では、抽出物の量は、耐火性反応物をつくる第二
反応を示し、減少した。
【0028】実施例4 実施例3の方法を使い、ロ−ハイド炭を30分間処理
し、次いでメタノ−ルで抽出した。未処理のロ−ハイド
炭の分析、メタノ−ル抽出後の残渣及びメタノ−ル抽出
を表5に纏めた。
【0029】
【表5】 表 5 残渣 抽出 ロ−ハイド 86.1% 13.9% 実験 1 2 3 4 5 C 64.45 65.87 65.28 67.05 39.32 H 4.92 4.50 4.47 4.68 4.35 N 1.02 0.94 0.91 0.93 1.01 S 0.891 0.51 0.56 3.91 5.50 O 25.30 25.30 24.80 24.50 30.99 物質合計 96.52 97.12 96.01 101.07 81.17 灰分(a) 7.22 6.94 7.17 3.44 37.67 金属(b,ppm Al 10100 Ca 11700 171 Fe 3690 1520 Mg 2210 83 Na 1650 160 Si 10400 (推定) 10400(c) 200(c) (a) 灰分は、約50%の酸素と50%の金属から成
っていた。 (b 誘導連結プラズマ(Inductively
Coupled Plasma)で異なる試料を分析し
た。 (c) シリコンは、Galbraith Labor
atories,Inc.で分析した。 抽出工程で、13.9%の乾燥抽出物と86.1%の残
渣が得られた。抽出物は多量のカルシウムを含んでい
た。
【0030】実施例5 上の表5は、シリコン(シリカの形で)の殆ど全てが抽
出後に、残渣中に残留すると言うことを確立した。シリ
カは、40 CER 302(7−1−91)版で列記
される有害物質ではない。しかし、若し非常に低灰分の
石炭を望むならば、実質的に全てのシリカを除去でき
る。その様な石炭残渣は燃料として環境上有利である。
何故ならば、それらは低灰分含有量で、発生した灰分は
低金属含有量である。この効果を示すため、メタノ−ル
で洗滌した後の、解重合されたロ−ハイド炭のクロロホ
ルムスラリ−に、少量のメタノ−ルを添加した。この混
合物を激しく混合し、次いで遠心分離に掛け浮遊炭と少
量の黒ずんだ沈澱物を得た。両方の試料を、エネルギ−
拡散X線スペクトロコピ−,EDS(energydi
spersive X−ray spectrocop
y)、で分析した。それぞれの試料のSi/S比が得ら
れた。(硫黄は、それぞれの層中に存在する石炭部に一
定値で存在すると思われる内部標準である)。Si/S
の原子比の最高は0.10/1で、沈澱物中では、0.
56/1であった。このデ−タは、沈澱物中に濃縮され
ているSiO2 の大きな分離が起こった事を示す。
【0031】実施例6 結合開裂と捕捉が、好ましい抽出物を同定するのと同様
に触媒作用を受けた支配的反応であるかを決めるため
に、一連の溶媒で実施例4の残渣をソックスレ−抽出し
た。溶媒は、トリエチルアミン、テトラヒドロフラン、
N,N−ジメチルホルムアミド、ジメチルスルホキシ
ド、ピリジン、N−メチルピロリドン、ヘキサメチルホ
スホルアミド、エチレンジアミンを使用した。結果を表
6に示した。
【0032】
【表6】 表 6 溶媒 抽出,%(a) UO2 親和力(b) Kcal/mol トリエチルアミン 12.5 −8.7 メタノ−ル 12.5 0.5 アセトニトリル 12.5 3.5 塩化メチレン 12.5 10推定 テトラヒドロフラン 20.5 0.0 N,N−ジメチルホルムアミド 28.5 −2.9 ジメチルスルホキシド 29.5 −2.2推定 ピリジン 30.5 −1.2 キノリン 40.0 N−メチルピロリドン 41.5 −3 ヘキサメチルホスホルアミド 48.6 −3 エチレンジアミン 60.0 −12.8 (a) メタノ−ル+第二溶媒抽出物の合計。 (b) ウラニル親和力は、クロロホルム中のウラニル
ヘキサフロロアセチルアセトネ−トのTHF錯体と塩基
の平衡化に起因する。
【0033】トリエチルアミン以外は、これらの溶媒の
塩基性度と、解重合された石炭からビチュ−メンを抽出
する能力との間にはもっともらしい関連があった事が分
かった。塩基性度は、ウラニル親和力として報告されて
いる(Kramer,G.M.,Maas,Jr.E.
T.,Dines,M.B.,Inorg.Chem.
1981,20,1418)。その塩基性度が、メタノ
−ルからエチレンジアミンへと上昇するにつれて、抽出
物は14〜16%に増加した。トリエチルアミンがビチ
ュ−メンを抽出出来なかったのは、マトリックス中で、
酸性場所(プロトン)に接近する能力の無さよりも、む
しろ石炭中への分散の困難性によるものと仮定される。
酸性度/抽出性の関係は、解重合された生成物が強力な
水素結合で保たれていると言うこと、そしてこの相互作
用の妨害が、抽出可能なビチュ−メンを与えると言うこ
とを意味する。含まれる大きな要因は、全く合理的に抽
出溶媒の塩基性度である。
【0034】実施例7 モリブデン触媒先駆体、シス−ジオキソビス(N,N−
ジブチル−ジチオカルバメ−ト)モリブデン(VI)
を、米国特許第5,064,527号記述の様に調製し
た。実施例3で調製した解重合されたロ−ハイド炭を細
粉した。攪拌オ−トクレ−ブにロ−ハイド炭(3.5μ
粒径)と真空ガス油(VGO)とを、3.5g石炭/5
6.0gVGO比で、上述のように調製したモリブデン
触媒5000ppmと一緒に入れた。オ−トクレ−ブを
密閉し、7000kPaの水素で加圧し、15000k
Paで、160分間、427℃(800°F)に加熱し
た。上述の方法を未処理のロ−ハイド炭(100μ粒
径)に対し繰り返した。冷却後、内容物を検査し、炭化
水素油への転化を見た。処理と未処理のロ−ハイド炭の
比較を表7に示した。
【0035】
【表7】 表 7(a) 水素 真空 消費 残油 ガス油 留出物 ナフサ C1-C4 H2O H2S 未処理 ロ−ハ イド炭 -5.8 26.8 22.1 19.6 12.1 7.3 12.5 0.6 処理 ロ−ハ イド炭 -6.5 20.6 -7.6 32.4 21.9 12.9 17.8 3.9 分析値 未処理 ロ−ハイド炭 C 65.28;H 4.47;N 0.91;S 0.55;O 21.62;灰分=7.17%;H/C比=0.82。 処理 ロ−ハイド炭 C 63.11;H 5.38;N 0.75;S 4. 82;O 21.17;灰分=4.82%;H/C比=1.02。 (a) 乾燥灰分無しの石炭を基準としたwt%。 表7(又は図3)から分かるように、未処理対処理の留
出物とナフサの収率は、それぞれ65%と81%に増加
した。これら生成物の両方とも、炭化水素油の望ましい
収量である。これらの増加は、残油形成と真空ガス油を
犠牲にして部分的に起こった。事実、処理した石炭の場
合には真空ガス油の正味の損失があった。 表7の分析
デ−タから、処理した石炭は、より高い硫黄含有量を持
つことが注目される。これは、石炭構造中へのエチルメ
ルカプタンの混入による。硫黄は、メタンスルホン酸
(CH3 SO3 - )の部分に起因させることは出来な
い。なぜならば、酸素分析で相当する様な増加がなかっ
た。処理した石炭のC2 2 S含有量の増加は、処理し
た石炭対未処理の石炭に対し、C1 −C4 の増加とH2
Sの増加を説明する。
【0036】
【図面の簡単な説明】
【図1】 メタンスルホン酸とエチルメルカプタンで処
理したロ−ハイド炭の急速解重合の例を示す。
【図2】 メタンスルホン酸とエチルメルカプタンでの
処理後の抽出によるロ−ハイド炭からの鉱物物質の除去
の例を示す。
【図3】 処理及び未処理のロ−ハイド炭の水素化処理
の比較である。
【図4】 BF3 :H2 Oとエチルメルカプタンでの処
理後の抽出による解重合されたワイオダック炭のピリジ
ン抽出物と元素組成の例を示す。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 エドウィン ロバート アーネスト アメリカ合衆国 ニュージャージー州 08502ベル ミード ストーンウィック ドライヴ 9 (72)発明者 チャン サミュエル スー アメリカ合衆国 ニュージャージー州 08807ブリッジウォーター アードズリー レーン 908 (72)発明者 ゴーパル ハリー シンガル アメリカ合衆国 ルイジアナ州 70810 バトン ルージュ ハイ レイク ドライ ヴ 910 (72)発明者 ピーター シェン シヨン マー アメリカ合衆国 ルイジアナ州 70809 バトン ルージュ ウッドチェイス ブー ルヴァード 1521

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 石炭を水素化処理して軽質炭化水素油を
    製造する方法であって、(1) 微粉炭粒子を、温度0
    〜100℃で、弱塩基の存在下に、強酸と接触させて石
    炭を解重合する工程、ここで、該強酸は、硫化ジメチル
    との反応熱が10kcal/molから30kcal/
    molの範囲であり、かつ、該弱塩基は三フッ化ホウ素
    との反応熱が10kcal/molから17kcal/
    molの範囲であることを特徴とする、(2) 解重合
    された石炭を抽出して強酸及び弱塩基を除去する工程、
    (3) 解重合された石炭とジヒドロカルビル置換ジチ
    オカルバメ−ト金属塩との混合物を形成する工程、該金
    属塩を構成する金属は、IV−B、V−A、VI−A、
    VII−A及びVIII−A又はそれらの混合物のいず
    れか1つの群から選ばれる、(4) 該混合物を、25
    0〜550℃の温度と、2100kPa〜35000k
    Paの水素分圧で水素化処理する工程、及び、(5)
    炭化水素油を回収する工程、を含むことを特徴とする上
    記方法。
JP5183638A 1992-08-04 1993-07-26 石炭から軽質炭化水素油を製造する方法 Pending JPH06166876A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/925,356 US5294349A (en) 1992-08-04 1992-08-04 Coal depolymerization and hydroprocessing
US07/925356 1992-08-04

Publications (1)

Publication Number Publication Date
JPH06166876A true JPH06166876A (ja) 1994-06-14

Family

ID=25451614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5183638A Pending JPH06166876A (ja) 1992-08-04 1993-07-26 石炭から軽質炭化水素油を製造する方法

Country Status (6)

Country Link
US (1) US5294349A (ja)
JP (1) JPH06166876A (ja)
AU (1) AU658803B2 (ja)
CA (1) CA2100151A1 (ja)
DE (1) DE4325687A1 (ja)
GB (1) GB2270085B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298157A (en) * 1992-08-04 1994-03-29 Exxon Research And Engineering Company Coal depolymerization utilizing hard acid/soft base
US5489376A (en) * 1994-08-12 1996-02-06 Exxon Research And Engineering Company Recovery of hard acids and soft bases from decomposed coal
US5489377A (en) * 1994-08-12 1996-02-06 Exxon Research And Engineering Company Recovery of hard acids and soft bases from decomposed coal
US5492618A (en) * 1994-08-12 1996-02-20 Exxon Research And Engineering Company Recovery of hard acids and soft bases from decomposed coal
US5573556A (en) * 1994-11-03 1996-11-12 Exxon Research And Engineering Company Conversion of solid carbonaceous material using polyoxoanions
DE10032316A1 (de) * 2000-07-04 2002-01-17 Studiengesellschaft Kohle Mbh Hydrierung/Hydrogenolyse von Steinkohle mit Boran-Katalysatoren
CA2729802C (en) 2008-07-02 2013-06-11 Ciris Energy, Inc. Method for optimizing in-situ bioconversion of carbon-bearing formations
SG181644A1 (en) * 2009-12-18 2012-07-30 Ciris Energy Inc Biogasification of coal to methane and other useful products
US20160340591A1 (en) * 2015-05-24 2016-11-24 Accelergy Corporation Integrated direct coal liquefaction process and system

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1881927A (en) * 1932-10-11 Alfred pott and hans bboche
US2202901A (en) * 1937-01-06 1940-06-04 Dreyfus Henry Treatment of carbonaceous materials
US2347231A (en) * 1939-01-24 1944-04-25 Stoewener Fritz Catalytic reactions with carbonaceous materials
BE632927A (ja) * 1962-05-28
US3282826A (en) * 1963-04-30 1966-11-01 Winkler Joseph Depolymerization of bituminous coal utilizing friable metal reactants
US3505203A (en) * 1967-06-26 1970-04-07 Universal Oil Prod Co Solvent extraction method
US3502564A (en) * 1967-11-28 1970-03-24 Shell Oil Co Hydroprocessing of coal
US3549512A (en) * 1968-07-23 1970-12-22 Shell Oil Co Process for conversion of coal
US3532617A (en) * 1968-07-23 1970-10-06 Shell Oil Co Hydroconversion of coal with combination of catalysts
US3893943A (en) * 1971-01-20 1975-07-08 Caw Ind Inc Novel catalyst and process for preparing the same
US3677932A (en) * 1971-03-12 1972-07-18 Shell Oil Co Molten salt hydroconversion process
US3764515A (en) * 1971-04-23 1973-10-09 Shell Oil Co Process for hydrocracking heavy hydrocarbons
US3748254A (en) * 1971-12-08 1973-07-24 Consolidation Coal Co Conversion of coal by solvent extraction
US3840456A (en) * 1972-07-20 1974-10-08 Us Interior Production of low-sulfur fuel from sulfur-bearing coals and oils
US3841991A (en) * 1973-04-05 1974-10-15 Exxon Research Engineering Co Coal conversion process
US3988238A (en) * 1974-07-01 1976-10-26 Standard Oil Company (Indiana) Process for recovering upgraded products from coal
US4056460A (en) * 1975-12-01 1977-11-01 Malek John M Process for liquefying carbonaceous materials of high molecular weight and for separating liquefaction products
US4090944A (en) * 1976-09-07 1978-05-23 Battelle Memorial Institute Process for catalytic depolymerization of coal to liquid fuel
CA1094004A (en) * 1977-11-18 1981-01-20 Her Majesty In Right Of Canada As Represented By The Minister Of Energy, Mines And Resources Canada Process for catalytically hydrocracking a heavy hydrocarbon oil
US4333815A (en) * 1979-03-05 1982-06-08 The United States Of America As Represented By The United States Department Of Energy Coal liquefaction in an inorganic-organic medium
CA1163222A (en) * 1981-02-12 1984-03-06 Her Majesty The Queen, In Right Of Canada As Represented By The Minister Of Natural Resources Canada Simultaneous demetalization and hydrocracking of heavy hydrocarbon oils
US4394247A (en) * 1981-08-05 1983-07-19 Olah George A Liquefaction of coals using recyclable superacid catalyst
US4675120A (en) * 1982-12-02 1987-06-23 An-Son Petrochemical, Inc. Methods of using strong acids modified with acid solutions
US4426313A (en) * 1982-10-18 1984-01-17 Uop Inc. Preparation of surfactants by sulfonating derivatives of depolymerized coal
JPS59136135A (ja) * 1983-01-26 1984-08-04 Hokkaido Daigaku 石炭直接液化法
US4539095A (en) * 1984-04-19 1985-09-03 Air Products And Chemicals, Inc. Aqueous alkali depolymerization of coal with a quinone
US5064527A (en) * 1984-05-08 1991-11-12 Exxon Research & Engineering Company Catalytic process for hydroconversion of carbonaceous materials
US4518478A (en) * 1984-05-23 1985-05-21 The United States Of America As Represented By The United States Department Of Energy Liquefaction with microencapsulated catalysts
US4617105A (en) * 1985-09-26 1986-10-14 Air Products And Chemicals, Inc. Coal liquefaction process using pretreatment with a binary solvent mixture
US4728418A (en) * 1985-10-23 1988-03-01 University Of Utah Process for the low-temperature depolymerization of coal and its conversion to a hydrocarbon oil
US5026475A (en) * 1989-12-21 1991-06-25 Exxon Research & Engineering Company Coal hydroconversion process comprising solvent extraction (OP-3472)

Also Published As

Publication number Publication date
GB2270085A (en) 1994-03-02
US5294349A (en) 1994-03-15
AU658803B2 (en) 1995-04-27
AU4438393A (en) 1994-02-10
GB9316113D0 (en) 1993-09-22
GB2270085B (en) 1996-01-17
DE4325687A1 (de) 1994-02-10
CA2100151A1 (en) 1994-02-05

Similar Documents

Publication Publication Date Title
JP3061844B2 (ja) 水性環境中で有機資源物質を変換し品質向上する方法
US3502564A (en) Hydroprocessing of coal
US5041209A (en) Process for removing heavy metal compounds from heavy crude oil
Siskin et al. Pyrolysis studies on the structure of ethers and phenols in coal
JP3035113B2 (ja) 多環式芳香族環開裂方法
CA1152924A (en) Process of converting high-boiling crude oils to equivalent petroleum products
US4728418A (en) Process for the low-temperature depolymerization of coal and its conversion to a hydrocarbon oil
JPH06166876A (ja) 石炭から軽質炭化水素油を製造する方法
US4356077A (en) Pyrolysis process
EP0268612A1 (en) Integrated ionic liquefaction process
US5573672A (en) Water managed solvent extraction process for the organic wastes
EP0001675A2 (en) Process for increasing fuel yield of coal liquefaction
US5296133A (en) Low ash coal products from depolymerized coal
US4148717A (en) Demetallization of petroleum feedstocks with zinc chloride and titanium tetrachloride catalysts
US5298157A (en) Coal depolymerization utilizing hard acid/soft base
CA1104961A (en) Process for coal liquefaction
CA1108544A (en) Coal liquefaction
US4464245A (en) Method of increasing the oil yield from hydrogenation of coal
EP0469917A1 (en) Process for converting heavy oil deposited on coal to distillable oil in a low severity process
US4773988A (en) Arsenic removal from shale oil by addition of basic materials
US5489377A (en) Recovery of hard acids and soft bases from decomposed coal
US5489376A (en) Recovery of hard acids and soft bases from decomposed coal
US5492618A (en) Recovery of hard acids and soft bases from decomposed coal
US4257869A (en) Liquefaction of acid treated coal
CA1140064A (en) Treatment of solid, naturally-occurring carbonaceous material by oxygen-alkylation and/or oxygen acylation