JPH06166525A - Mold for forming optical element - Google Patents

Mold for forming optical element

Info

Publication number
JPH06166525A
JPH06166525A JP34146892A JP34146892A JPH06166525A JP H06166525 A JPH06166525 A JP H06166525A JP 34146892 A JP34146892 A JP 34146892A JP 34146892 A JP34146892 A JP 34146892A JP H06166525 A JPH06166525 A JP H06166525A
Authority
JP
Japan
Prior art keywords
molding
glass
cao
mold
auxiliary agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34146892A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayashi
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP34146892A priority Critical patent/JPH06166525A/en
Publication of JPH06166525A publication Critical patent/JPH06166525A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a mold for forming an optical element having high denseness and thermal conductivity by using a sintered compact containing AlN as a principal component and a specific amount of CaO as a sintering assistant. CONSTITUTION:This mold for forming an optical element is formed from a sintered compact containing AlN as a principal component and 0.5-5wt.% CaO. The sintered compact having a high thermal conductivity and a high density is obtained with a lower content of the CaO than that of Y2O3 which is a conventionally used sintering assistant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学ガラス素子の製造
方法に係り、特にプレス成形後研磨工程を必要としない
高精度光学ガラス素子の製造を行う際に用いる光学素子
成形用型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical glass element, and more particularly to an optical element molding die used for manufacturing a high precision optical glass element which does not require a polishing step after press molding.

【0002】[0002]

【従来の技術】一般に、光学ガラス素子の設計におい
て、レンズ部の簡略化のため非球面を用いる方向にあ
る。しかし、この非球面光学ガラス素子の製造方法にあ
たっては、従来の研磨方法では量産化が困難であった。
そこで近年、光学ガラスを加熱軟化させ、高精度の非球
面形状を持つ型にてプレス成形する方法が開発されてい
る。
2. Description of the Related Art Generally, in designing an optical glass element, an aspherical surface is used to simplify a lens portion. However, in the manufacturing method of this aspherical optical glass element, mass production was difficult by the conventional polishing method.
Therefore, in recent years, a method has been developed in which the optical glass is softened by heating and press-molded with a mold having a highly accurate aspherical shape.

【0003】このプレス成形では、ガラスを高温軟化さ
せてプレスのみで光学面を成形するため、高温でのガラ
スとの反応に生じない材料が要求される。そのため、型
材の特性として、ガラスとの濡れ性の悪いことが要求さ
れる。その特性を満足させるため、従来は、例えば特開
平3−83825号公報にて示されるように、少なくと
も成形面にAlNを形成した成形用型により前記問題を
解決している。
In this press molding, since the glass is softened at a high temperature to form the optical surface only by pressing, a material which does not react with the glass at a high temperature is required. Therefore, the mold material is required to have poor wettability with glass. In order to satisfy the characteristics, conventionally, for example, as disclosed in Japanese Patent Application Laid-Open No. 3-83825, the above-mentioned problem is solved by a molding die in which at least a molding surface is formed with AlN.

【0004】[0004]

【発明が解決しようとする課題】上記AlN材は上記ガ
ラスとの濡れ性が悪い特性以外に、熱伝導性が100W
/m・K以上が得られる性質をもつ。熱伝導性が高い材
料は、加熱冷却が制御しやすいため、成形時の温度コン
トロールが容易に行える。しかしながら、特開平3−8
3825号公報にて示される成形用型は、Y2 3 ・T
hO2 を助剤としているため、ガラスとの濡れ性は悪く
融着は生じにくいが、上記熱伝導性を高めるためには助
剤を5〜10wt%含有させる必要がある。また、Y2
2 ・ThO2 を助剤としてAlNを緻密な焼結材にす
るためにも助剤を5〜10wt%以上含有させる必要が
ある。
The AlN material has a heat conductivity of 100 W in addition to the poor wettability with the glass.
/ M · K or more. For materials with high thermal conductivity, heating and cooling can be controlled easily, so temperature control during molding can be performed easily. However, JP-A-3-8
The molding die disclosed in Japanese Patent No. 3825 is Y 2 O 3 · T.
Since hO 2 is used as an auxiliary agent, it has poor wettability with glass and is unlikely to cause fusion, but it is necessary to contain the auxiliary agent in an amount of 5 to 10 wt% in order to enhance the thermal conductivity. Also, Y 2
In order to make AlN into a dense sintered material by using O 2 · ThO 2 as an auxiliary agent, it is necessary to contain the auxiliary agent in an amount of 5 to 10 wt% or more.

【0005】焼結工程は、以下に示す工程によるもので
ある。AlNは焼結する際、粒成長が生じる。粒成長は
粒子間に存在する気孔を閉じ込め緻密な焼結材にならな
い。そのため、助剤を含有させる。助剤は焼結の際、液
相となり、粒界に析出する。これにより、粒子の成長が
抑制され、内部の気孔が外部に移動しやすくなるため、
緻密な材料となる。また粒子と助剤との界面では、固溶
した酸素や不純物を液相内に取り込む特性により、見掛
け上高純度のAlNが焼結できる。上記従来では、Y2
3 ・ThO2 を助剤としているため、緻密な構造材を
焼結させるためには上記割合が必要となる。
The sintering step is based on the following steps. When AlN is sintered, grain growth occurs. Grain growth does not become a dense sintered material by confining pores existing between grains. Therefore, an auxiliary agent is contained. Upon sintering, the auxiliary agent becomes a liquid phase and precipitates at grain boundaries. This suppresses the growth of particles and facilitates the movement of internal pores to the outside.
It becomes a precise material. At the interface between the particles and the auxiliary agent, apparently high-purity AlN can be sintered due to the characteristic that solid solution oxygen and impurities are taken into the liquid phase. In the above conventional method, Y 2
Since O 3 · ThO 2 is used as an auxiliary agent, the above proportion is necessary for sintering the dense structural material.

【0006】よって、上記緻密性と熱伝導性を兼ねた型
材を得るためには助剤が多く必要となる。しかしなが
ら、助剤が多い場合、高温のガラスと接触すると、粒子
間に析出した助剤が分解し、表面が劣化する問題が生じ
た。特に長時間連続的に行った場合、または高温で成形
するようなガラスの場合に耐久性が著しく低下した。ま
た、Y2 3 およびThO2 を5〜10wt%含有させ
ると、AlNの特徴がY2 3 およびThO2 によって
弱まることにより、上記組成からなる成形用型の成形面
の熱伝導性が低くなり、また、焼き付きやすくなった。
Therefore, a large amount of an auxiliary agent is required in order to obtain a mold material having both the denseness and the thermal conductivity. However, when the amount of the auxiliary agent is large, contact with high temperature glass causes the problem that the auxiliary agent precipitated between particles is decomposed and the surface is deteriorated. In particular, the durability was remarkably reduced when the glass was continuously formed for a long time or when the glass was formed at a high temperature. Further, when Y 2 O 3 and ThO 2 are contained in an amount of 5 to 10 wt%, the characteristics of AlN are weakened by Y 2 O 3 and ThO 2 , and the thermal conductivity of the molding surface of the molding die having the above composition is low. It became easier to burn.

【0007】本発明は、前記問題点を鑑みてなされたも
のであり、低助剤量にて上記問題である上記高緻密性、
高熱伝導性を備えた光学素子成形用型を提供することを
目的とする。
The present invention has been made in view of the above-mentioned problems, and the above-mentioned high compactness, which is the above-mentioned problem with a low amount of auxiliary agent,
An object is to provide an optical element molding die having high thermal conductivity.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、AlNを主成分とし、かつ焼結助剤とし
てCaOを0.5〜5wt%含有した焼結体によって光
学素子成形用型を形成することとした。これにより、問
題であった緻密性、熱伝導性を低含有量の助剤に解決す
ることが可能となる。
In order to solve the above problems, the present invention forms an optical element by a sintered body containing AlN as a main component and 0.5 to 5 wt% CaO as a sintering aid. It was decided to form a mold. This makes it possible to solve the problems of denseness and thermal conductivity with a low content of auxiliary agent.

【0009】[0009]

【作用】図1にCaOの添加量と相対密度の関係を示
す。図1からCaOの助剤の方がY2 3 より低助剤量
で相対密度が高くなっていることが確認される。またC
aOが1〜2wt%の焼結剤の熱伝導率を測定したとこ
ろ、150W/m・Kであったが、Y2 3 が1〜2w
t%の焼結剤の熱伝導率を測定したところ、100W/
m・Kであり、CaOの助剤が低含有量で高熱伝導率、
高密度が得られた。
FIG. 1 shows the relationship between the amount of CaO added and the relative density. From FIG. 1, it is confirmed that the auxiliary agent of CaO has a higher relative density than Y 2 O 3 with a lower amount of the auxiliary agent. Also C
When the thermal conductivity of a sintering agent having aO of 1 to 2 wt% was measured, it was 150 W / m · K, but Y 2 O 3 was 1 to 2 w.
When the thermal conductivity of the t% sintering agent was measured, it was 100 W /
m · K, the CaO auxiliary has a low content and high thermal conductivity,
A high density was obtained.

【0010】[0010]

【実施例1】 (成形型製造方法)高純度AlN粉末(純度99.9%
以上)とCaOとを重量(wt)%で97:3の割合で
混合し、分散媒としてエタノールを加え100℃、3時
間乾燥させた。その後、図2に示す形状と近似した形状
(ブランク)に成形した。成形圧力は1.5tonで行
った。成形したブランク1を窒素雰囲気中で650〜7
00℃の範囲で加熱し、脱脂を行った。3時間脱脂した
後、1800℃まで上昇させ、5時間その温度で保持
し、本焼結合させた。加熱保持後、10時間かけて除冷
した。焼結させたブランク1をダイヤモンド砥石で外形
を研削加工し、形状を仕上げた。また、ガラスレンズ成
形面はダイヤモンドパウダーにて研磨加工し、表面をR
max=0.08μm以下に仕上げた。
Example 1 (Mold forming method) High-purity AlN powder (purity 99.9%)
The above) and CaO were mixed at a weight ratio of 97: 3, ethanol was added as a dispersion medium, and the mixture was dried at 100 ° C. for 3 hours. Then, it shape | molded in the shape (blank) approximated to the shape shown in FIG. The molding pressure was 1.5 ton. The molded blank 1 is 650-7 in a nitrogen atmosphere.
Degreasing was performed by heating in the range of 00 ° C. After degreasing for 3 hours, the temperature was raised to 1800 ° C., held at that temperature for 5 hours, and then fire-bonded. After heating and holding, it was cooled for 10 hours. The outer shape of the sintered blank 1 was ground with a diamond grindstone to finish the shape. Also, the glass lens molding surface is polished with diamond powder and the surface is rounded.
It was finished to max = 0.08 μm or less.

【0012】(成形方法)この光学素子成形用型にて低
軟化点のLaK8の硝材の成形を行った。装置概略図を
図3に示す。ガラスをルツボ3にて1080℃に加熱溶
融させた。2は溶融ガラスである。ガラス溶融後排出
し、シャー4にて切断後、切断したガラスゴブ5は搬送
皿6にて受けた。搬送皿6はヒーター7内を通過するこ
とによりガラス粘度で105 〜107 ポアズに相当する
温度に保持した。ヒーター7にて加熱保持後、搬送アー
ム10にて搬送皿6を固定し、一対の上記本実施例の成
形用型8,9間に搬送及び回転し、加熱ガラスを型間に
供給した。前記成形用型8,9は前記AlNで形成され
ており、温度はガラス粘度で1012〜1014ポアズに相
当する温度に保持されている。下型である成形用型9上
に滴下後、プレス時間5秒、プレス圧5kgf/cm2
にて成形し、その後プレス圧160kgf/cm2 に加
圧し、プレス時間15秒で成形した。
(Molding Method) A glass material of LaK8 having a low softening point was molded with this optical element molding die. A schematic diagram of the apparatus is shown in FIG. The glass was heated and melted at 1080 ° C. in the crucible 3. 2 is molten glass. After the glass was melted, it was discharged, cut by the shear 4, and then the cut glass gob 5 was received by the carrying dish 6. The carrier plate 6 was kept at a temperature corresponding to a glass viscosity of 10 5 to 10 7 poise by passing through the heater 7. After being heated and held by the heater 7, the transfer tray 6 was fixed by the transfer arm 10, transferred and rotated between the pair of molding dies 8 and 9 of the present embodiment, and the heated glass was supplied between the dies. The molding dies 8 and 9 are formed of AlN, and are kept at a temperature corresponding to a glass viscosity of 10 12 to 10 14 poises. After dropping onto the molding die 9, which is the lower die, the pressing time is 5 seconds and the pressing pressure is 5 kgf / cm 2.
After that, it was pressed at a pressing pressure of 160 kgf / cm 2 and pressed for 15 seconds.

【0013】(効果)この成形方法にて連続成形を行っ
たところ、25000ショット以上の連続成形をおこな
っても成形面に助剤の析出もなく、表面の劣化も見られ
なかった。上記型剤は熱伝導が良く、溶融ガラス等の高
温成形でも焼結助剤が少ないため、連続成形を行っても
成形面の劣化が生じにくい特性がある。
(Effect) When continuous molding was carried out by this molding method, no auxiliary agent was deposited on the molding surface and no deterioration of the surface was observed even after continuous molding for 25,000 shots or more. The above mold has good thermal conductivity, and has a characteristic that the molding surface is not easily deteriorated even when continuous molding is performed because the sintering aid is small even at high temperature molding of molten glass or the like.

【0014】上記AlNとCaOとの重量%を97:3
の割合で行ったが、CaOの重量%を0.5wt%まで
減少させても同様の効果が得られた。しかし、それ以下
にすると助剤が少なくなり、AlNの粒成長が生じるた
め緻密な焼結材ができなかった。またCaOの重量%を
5wt%まで増加させても前記と同様な効果が得られた
が、それ以上にすると熱伝導率が低下する問題と、Ca
Oが析出し、表面が劣化する問題が生じた。
The weight percentage of AlN and CaO is 97: 3.
The same effect was obtained even if the weight% of CaO was reduced to 0.5 wt%. However, if the amount is less than that, the amount of the auxiliary agent decreases, and grain growth of AlN occurs, so that a dense sintered material cannot be obtained. Further, even if the weight percentage of CaO was increased to 5 wt%, the same effect as above was obtained, but if it is more than that, the problem that the thermal conductivity decreases,
There was a problem that O was precipitated and the surface was deteriorated.

【0015】[0015]

【実施例2】上記成形用型でBK系のように軟化点の高
い軟化ガラスを成形した実施例を示す。成形型の製造方
法は実施例1と同様である。
Example 2 An example is shown in which softened glass having a high softening point such as BK type is molded with the above molding die. The manufacturing method of the molding die is the same as that of the first embodiment.

【0016】(成形方法)成形方法を図4に示す。高軟
化点のBK7の硝材の成形を行った。両面を平面研磨し
たガラス素材12の搬送治具13に挿入し、さらに搬送
アーム14に設置した。搬送アーム14にてガラス素材
12および搬送治具13をヒーター11にて加熱した。
ガラス粘度で107 〜109 ポアズに相当する温度に加
熱軟化させた。加熱後、搬送アーム14を移動させ、成
形用型16,17間に搬送した。成形用型16,17
は、ガラス粘度で1012〜1014ポアズに相当する温度
に加熱保持してある。プレス時間20秒、プレス圧25
0kgf/cm2 にて成形した。15は成形レンズであ
る。
(Molding Method) The molding method is shown in FIG. A BK7 glass material having a high softening point was molded. The glass material 12 whose both surfaces had been flat-polished was inserted into a carrying jig 13 and further installed on a carrying arm 14. The glass material 12 and the transfer jig 13 were heated by the heater 11 by the transfer arm 14.
It was softened by heating to a temperature corresponding to a glass viscosity of 10 7 to 10 9 poise. After heating, the transfer arm 14 was moved and transferred between the molding dies 16 and 17. Molds 16, 17
Is heated and maintained at a temperature corresponding to a glass viscosity of 10 12 to 10 14 poise. Press time 20 seconds, press pressure 25
It was molded at 0 kgf / cm 2 . Reference numeral 15 is a molded lens.

【0017】(効果)この成形方法にて連続成形を行っ
たところ、30000ショット以上の連続成形をおこな
っても実施例1と同様に成形面の劣化は生じなかった。
上記型材は熱伝導が良いため、高温ガラス等の高温成形
でも型表面からの熱吸収が良く、ガラスと型の温度差が
すぐに小さくなるため、温度差によるガラスの割れが生
じにくい特性がある。
(Effect) When continuous molding was carried out by this molding method, deterioration of the molding surface did not occur as in Example 1 even after continuous molding of 30,000 shots or more.
Since the above mold material has good heat conduction, heat absorption from the mold surface is good even at high temperature molding of high temperature glass etc., and the temperature difference between the glass and the mold becomes small immediately, so there is a characteristic that glass cracking due to the temperature difference does not occur easily. .

【0018】実施例1と同様にAlNとCaOとの重量
%を97:3の割合で行ったが、CaOの重量%を0.
5wt%まで減少させても同様の効果が得られた。しか
し、それ以下にすると助剤が少なくなり、AlNの粒成
長が生じるため緻密な焼結材ができなかった。またCa
Oの重量%を5wt%まで増加させても前記と同様な効
果が得られたが、それ以上にすると熱伝導率が低下する
問題と、CaOが析出し、表面から劣化する問題が生じ
た。
As in Example 1, the weight percentage of AlN and CaO was 97: 3, but the weight percentage of CaO was 0.
Similar effects were obtained even when the amount was reduced to 5 wt%. However, if the amount is less than that, the amount of the auxiliary agent decreases, and grain growth of AlN occurs, so that a dense sintered material cannot be obtained. Also Ca
Even if the weight percentage of O was increased to 5 wt%, the same effect as described above was obtained, but if it was more than that, there was a problem that the thermal conductivity was lowered and that CaO was precipitated and deteriorated from the surface.

【0019】[0019]

【発明の効果】以上のように本発明によれば、光学素子
成形用型をAlNを主成分とし、かつCaOを0.5〜
5wt%含有した焼結体によって形成したので、助剤と
して用いるCaOの含有量が0.5〜5wt%でも従来
の成形用型と同様の緻密性と耐久性とを有することがで
き、また、従来の成形用型の組成に比べて、AlNに対
する助剤の含有量が少ないことから、AlNの性質がよ
り強調され、成形用型の熱伝導性が高くなるのである。
すなわち、従来の成形用型と比較して低助剤量で緻密な
焼結体が得られるため、高温での劣化が減少し、さらに
熱伝導性が向上するため、温度制御が簡単に行え、高精
度の成形レンズの製造が可能となる。
As described above, according to the present invention, the optical element molding die contains AlN as a main component and CaO of 0.5 to 0.5%.
Since it was formed from a sintered body containing 5 wt%, even if the content of CaO used as an auxiliary agent is 0.5 to 5 wt%, it is possible to have the same compactness and durability as the conventional molding die. Since the content of the auxiliary agent with respect to AlN is smaller than that of the composition of the conventional molding die, the properties of AlN are further emphasized and the thermal conductivity of the molding die is increased.
That is, since a dense sintered body can be obtained with a low amount of auxiliary agent as compared with a conventional molding die, deterioration at high temperature is reduced, and further thermal conductivity is improved, so that temperature control can be easily performed, It is possible to manufacture a highly accurate molded lens.

【図面の簡単な説明】[Brief description of drawings]

【図1】CaOの添加量と相対密度の関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the amount of CaO added and the relative density.

【図2】本発明の実施例1で成形した成形用型を示す縦
断面図である。
FIG. 2 is a vertical sectional view showing a molding die molded in Example 1 of the present invention.

【図3】同実施例1で用いた成形装置を示す概略構成図
である。
FIG. 3 is a schematic configuration diagram showing a molding apparatus used in the first embodiment.

【図4】本発明の実施例2で用いた成形装置を示す概略
構成図である。
FIG. 4 is a schematic configuration diagram showing a molding apparatus used in Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 ブランク 8,9,16,17 成形用型 1 Blank 8, 9, 16, 17 Mold for molding

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 AlNを主成分とし、かつCaOを0.
5〜5wt%含有した焼結体によって形成したことを特
徴とする光学素子成形用型。
1. A main component of AlN and CaO of less than 0.
An optical element molding die, which is formed of a sintered body containing 5 to 5 wt%.
JP34146892A 1992-11-27 1992-11-27 Mold for forming optical element Withdrawn JPH06166525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34146892A JPH06166525A (en) 1992-11-27 1992-11-27 Mold for forming optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34146892A JPH06166525A (en) 1992-11-27 1992-11-27 Mold for forming optical element

Publications (1)

Publication Number Publication Date
JPH06166525A true JPH06166525A (en) 1994-06-14

Family

ID=18346302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34146892A Withdrawn JPH06166525A (en) 1992-11-27 1992-11-27 Mold for forming optical element

Country Status (1)

Country Link
JP (1) JPH06166525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073132A (en) * 2001-09-03 2003-03-12 Olympus Optical Co Ltd Method and apparatus for forming optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073132A (en) * 2001-09-03 2003-03-12 Olympus Optical Co Ltd Method and apparatus for forming optical element

Similar Documents

Publication Publication Date Title
US7140205B2 (en) Method of manufacturing glass optical elements
US7491667B2 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the optical element
KR900000622B1 (en) Method for forming of optical glass element
JP4603767B2 (en) Manufacturing method of glass optical element
JPH01133948A (en) Manufacture of optical element
JPH06166525A (en) Mold for forming optical element
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
CN112189000B (en) Optical glass, optical element, optical device, method for producing optical glass, and method for producing optical lens
JPH0688803B2 (en) Mold for optical glass element
KR870001737B1 (en) The mould for making lenses by press
JPH06219755A (en) Mold for forming optical element
JPH0710546A (en) Glass melting crucible
JPH06340434A (en) Mold for forming optical element
JPH06219754A (en) Mold for forming optical element
CN104193167B (en) Fluorphosphate glass, compression molding glass material, optical element blank, optical element and glass forming body and manufacture method
JP3164923B2 (en) Glass material for molding optical element and method for producing the same
JPH06293526A (en) Molding die for optical element
JPH0416415B2 (en)
JP4256190B2 (en) Manufacturing method of glass optical element
JPH03103329A (en) Pressing mold for glass and production thereof
JPH06122548A (en) Optical element transporting member
JPS6311285B2 (en)
JPH10226526A (en) Mold for molding glass lens and its production
JPH09194221A (en) Die for forming glass optical element and forming method
JPH03295823A (en) Forming die for optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201