JPH0616491A - Silicon single crystal pulling up device - Google Patents

Silicon single crystal pulling up device

Info

Publication number
JPH0616491A
JPH0616491A JP9704393A JP9704393A JPH0616491A JP H0616491 A JPH0616491 A JP H0616491A JP 9704393 A JP9704393 A JP 9704393A JP 9704393 A JP9704393 A JP 9704393A JP H0616491 A JPH0616491 A JP H0616491A
Authority
JP
Japan
Prior art keywords
pulling
inert gas
chamber
single crystal
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9704393A
Other languages
Japanese (ja)
Inventor
Toshiharu Uesugi
敏治 上杉
Koji Mizuishi
孝司 水石
Atsushi Iwasaki
淳 岩崎
Tadashi Niwayama
正 庭山
Tetsuhiro Oda
哲宏 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP9704393A priority Critical patent/JPH0616491A/en
Publication of JPH0616491A publication Critical patent/JPH0616491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent the deposition of the material occurring in SiO in graphite parts and to prolong the period of using the device by providing an introducing part and discharging part for an inert gas in such a manner that the inert gaseous flow is formed above a pulling up chamber. CONSTITUTION:This silicon single crystal pulling up device by a Czochralski method consists of a crucible 1, a silicon melt 2, a heater 3, a pulling up chamber 6, an external body 14, the inert gas introducing part 15, the inert gas discharging part 16 and a heat insulating shield 4. The discharging part 16 is constituted of a discharging hole 20, a vacuum pump 12 and a valve 11 and is so controlled that the pressure therein is slightly lower than the gaseous pressure in the pulling up chamber. As a result, the gaseous flow from the pulling up chamber 6 to the discharging chamber 16 is generated. The SiO is evaporated by the force convection, etc., generated by rotation of the crucible 1 and the silicon single crystal 5. The pressure in the pulling up chamber 6 is reduced down to <=100mbarr and the inert gas 7 is run therein. The SiO diffusing above the pulling up chamber 6 is entrained in the above-mentioned inert gaseous flow and is discharged from the discharging part 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン単結晶引上げ
装置に関し、より詳しくは、長期間に亘る引上げ操業に
よっても引上げ装置内において汚染がきらわれる部材へ
の不要物質の析出をなくし、該部材を使用可能な期間を
延長させ、清掃・解体作業が簡略できるシリコン単結晶
引上げ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon single crystal pulling apparatus, and more specifically, to eliminate the deposition of unnecessary substances on a member which is susceptible to contamination in the pulling apparatus even during a pulling operation for a long period of time. The present invention relates to a silicon single crystal pulling device that can extend the usable period of time and simplify cleaning and dismantling work.

【0002】[0002]

【従来の技術】半導体素子は、高純度シリコン単結晶棒
より得られる基板から作られることは良く知られてい
る。高純度単結晶棒は、ダイヤモンド刃により、スライ
シングされ、さらにはラッピング、化学薬品によるエッ
チング、次いで鏡面仕上げ加工を経て、例えば、半導体
集積回路等の始発材料基板として使われる。
2. Description of the Related Art It is well known that semiconductor devices are made from a substrate obtained from a high-purity silicon single crystal ingot. The high-purity single crystal ingot is sliced with a diamond blade, further subjected to lapping, etching with a chemical agent, and then subjected to mirror finishing, and then used as a starting material substrate for semiconductor integrated circuits, for example.

【0003】近年、半導体技術の進歩に伴って、ドーパ
ント濃度、ドーパント以外の不純物の濃度、格子欠陥密
度等をより精密に制御する必要性が増大し、それに伴
い、半導体単結晶引上げ装置も上記精密な制御が可能で
あるとともに、そのような精密制御を長期に亘って行な
え、清掃・解体等の作業ができるだけ少ないものが要求
されるようになってきている。
In recent years, with the progress of semiconductor technology, the need for more precise control of the dopant concentration, the concentration of impurities other than the dopant, the lattice defect density, etc. has increased, and the semiconductor single crystal pulling apparatus has the above precision. It is required to perform such precise control over a long period of time, and to perform cleaning and dismantling work as little as possible.

【0004】従来より、シリコン単結晶の引上げにはチ
ョクラルスキー法が採用されており、その一例を図2に
示す。図2において、1はシリコン溶融体2を収容する
ルツボであり、3はルツボ1の外周に設けられたヒータ
ー、4はヒーター3の外周に設けられた断熱シールド、
5は引上げられつつあるシリコン単結晶である。
Conventionally, the Czochralski method has been adopted for pulling a silicon single crystal, and an example thereof is shown in FIG. In FIG. 2, 1 is a crucible for containing the silicon melt 2, 3 is a heater provided on the outer periphery of the crucible 1, 4 is a heat shield provided on the outer periphery of the heater 3,
5 is a silicon single crystal that is being pulled up.

【0005】チョクラルスキー法によりシリコン単結晶
を製造する際、ルツボ1として石英製のルツボが用いら
れるため、石英製のルツボからシリコン溶融体中に酸素
が溶解し、それがシリコン単結晶中に取込まれることが
知られている。これは、石英ルツボ中に収容されたシリ
コン溶融体の熱対流や引上げ中のルツボの回転により生
じる強制対流により、シリコン溶融体が石英ルツボに作
用し、石英ルツボを形成するSiO2 とSiとの反応を
起こし、この反応によりSiOが発生し、このSiOが
一旦溶融体中に取り込まれ、SiOの大部分が溶融体表
面より蒸発し、残分がシリコン単結晶中に取り込まれる
ことにより生じるものである。
When a silicon single crystal is manufactured by the Czochralski method, a quartz crucible is used as the crucible 1. Therefore, oxygen is dissolved in the silicon melt from the quartz crucible, which is converted into the silicon single crystal. It is known to be captured. This is because the silicon melt acts on the quartz crucible by the thermal convection of the silicon melt contained in the quartz crucible and the forced convection generated by the rotation of the crucible during the pulling, whereby SiO 2 and Si forming the quartz crucible are formed. A reaction occurs, SiO is generated by this reaction, this SiO is once taken into the melt, most of the SiO is evaporated from the surface of the melt, and the residue is taken into the silicon single crystal. is there.

【0006】このSiOは、生成するシリコン単結晶中
の格子間酸素濃度を引き上げ、ある場合は欠陥の原因と
なり、他の場合はゲッター効果を発現することとなるた
め、結晶中に取り込まれる酸素濃度は高精度でコントロ
ールされる必要性がある。
Since this SiO raises the interstitial oxygen concentration in the silicon single crystal to be produced, it causes defects in some cases, and causes the getter effect in other cases, so the oxygen concentration taken into the crystal is increased. Needs to be controlled with high precision.

【0007】そこで、引上げ室6を完全密閉系とすると
シリコン溶融体から蒸発したSiOは、シリコン溶融体
中に再融解するし、また、引上げ室6内のSiO濃度が
刻々と変化するため、一定酸素濃度の単結晶を引上げる
ことは困難になる。そのため、引上げ室6内に不活性ガ
ス7を導入し、引上げ室6内のSiOを同伴させて流出
させ、引上げ室6内のSiO濃度を定常状態にすること
が行なわれている。
Therefore, if the pulling chamber 6 is a completely closed system, the SiO evaporated from the silicon melt is remelted in the silicon melt, and the SiO concentration in the pulling chamber 6 changes every moment, so that it is constant. It becomes difficult to pull up a single crystal having an oxygen concentration. Therefore, the inert gas 7 is introduced into the pulling chamber 6, and SiO in the pulling chamber 6 is caused to flow together with the inert gas 7 so that the SiO concentration in the pulling chamber 6 is brought to a steady state.

【0008】[0008]

【発明が解決しようとする課題】ところが、図2に示す
従来のシリコン単結晶引上げ装置においては、引上げ室
6の上方から不活性ガス7を流し、シリコン溶融体2表
面に接融させた後は、ルツボ1とヒーター3との間に形
成された間隙9a、ヒーター3と断熱シールド4との間
に形成された間隙9bを通り、排気孔10、バルブ11
を経て真空ポンプ12により系外に放出され、この際、
ヒーター3、断熱シールド4の表面にSiOに起因する
析出物が多量に付着することとなる。
However, in the conventional silicon single crystal pulling apparatus shown in FIG. 2, after the inert gas 7 is made to flow from above the pulling chamber 6 and the surface of the silicon melt 2 is melted, the inert gas 7 is melted. Through the gap 9a formed between the crucible 1 and the heater 3 and the gap 9b formed between the heater 3 and the heat insulating shield 4, the exhaust hole 10, the valve 11
Through the vacuum pump 12 is discharged to the outside of the system.
A large amount of deposits due to SiO will adhere to the surfaces of the heater 3 and the heat insulating shield 4.

【0009】ここで、ヒーター3や断熱シールド4は、
黒鉛製であり、SiO起因物質の析出により劣化した
り、あるいは操業終了後の析出物除去作業を行なわなけ
ればならなかったりし、その場合、引上げ装置の解体・
再組立を行なわねばならず、そのために多くの人手と時
間を要するという問題があった。
Here, the heater 3 and the heat insulating shield 4 are
Since it is made of graphite, it deteriorates due to the precipitation of SiO-induced substances, or it may be necessary to remove the precipitates after the operation is completed.
There has been a problem that a lot of manpower and time are required for reassembling.

【0010】本発明は、上記の点を解決しようとするも
ので、その目的は、黒鉛製の部品にSiO起因物質が析
出するのを防止して黒鉛部品のSiO起因物質の析出に
よる劣化を防止し、また、黒鉛部品からの析出物除去作
業をなくすか、あるいは極端に少なくすることができ、
さらには、黒鉛製部品の解体・再組立を行なわずに、操
業できる期間を大幅に延ばすことができ、また、黒鉛製
部品への析出物が少ないため、解体・再組立が簡略化さ
れ、大型化が可能になり、引上げ可能なシリコン単結晶
棒の径も大型化することができるシリコン単結晶の引上
げ装置を提供することにある。
The present invention is intended to solve the above-mentioned problems, and an object thereof is to prevent SiO-derived substances from precipitating on graphite parts and prevent deterioration of graphite parts due to precipitation of SiO-derived substances. In addition, the work of removing precipitates from graphite parts can be eliminated or extremely reduced,
Furthermore, the operating period can be greatly extended without disassembling / reassembling graphite parts, and since there are few precipitates on graphite parts, disassembly / reassembly is simplified and large The present invention is to provide a silicon single crystal pulling apparatus that can be made larger and the diameter of a pullable silicon single crystal rod can be increased.

【0011】[0011]

【課題を解決するための手段】本発明のシリコン単結晶
引上げ装置は、チョクラルスキー法により不活性ガス雰
囲気中でシリコン単結晶を引上げる装置であって、シリ
コン溶融体を収容するルツボと、ルツボの外周に設けら
れたヒーターと、ルツボを収納する引上げ室を形成する
外装体と、引上げ室の上方に設けられた不活性ガス導入
部と、前記不活性ガス導入部から離隔しかつ引上げ室上
方の位置に設けられた不活性ガス排気部とを有すること
を特徴とする。
A silicon single crystal pulling apparatus of the present invention is a apparatus for pulling a silicon single crystal in an inert gas atmosphere by the Czochralski method, and a crucible for containing a silicon melt. A heater provided on the outer periphery of the crucible, an exterior body forming a pulling chamber for housing the crucible, an inert gas introducing portion provided above the pulling chamber, and a pulling chamber separated from the inert gas introducing portion. And an inert gas exhaust portion provided at an upper position.

【0012】次に、図面に従い、より詳細に本発明を説
明する。図1は本発明に係るシリコン単結晶引上げ装置
の概略の構成を示す説明図である。図1において、2は
シリコン溶融体、1はシリコン溶融体2を収容するルツ
ボ、3はルツボ1の外周に設けられたヒーター、6は引
上げ室、14は引上げ室6を形成する外装体、15は引
上げ室6内上方に設けられた不活性ガス導入部、16は
前記不活性ガス導入部15から離隔し、かつ引上げ室6
の上方の位置に設けられた不活性ガス排気部、4はヒー
ター3の外周に設けられた断熱シールドである。
The present invention will now be described in more detail with reference to the drawings. FIG. 1 is an explanatory view showing a schematic configuration of a silicon single crystal pulling apparatus according to the present invention. In FIG. 1, 2 is a silicon melt, 1 is a crucible for containing the silicon melt 2, 3 is a heater provided on the outer periphery of the crucible 1, 6 is a pulling chamber, 14 is an exterior body forming the pulling chamber 6, 15 Is an inert gas introducing portion provided above the pulling chamber 6, 16 is separated from the inert gas introducing portion 15, and the pulling chamber 6 is
An inert gas exhaust portion 4 provided above the heater 3 is a heat insulating shield provided on the outer circumference of the heater 3.

【0013】不活性ガス排気部16は、排気孔20と真
空ポンプ12とバルブ11により構成され、引上げ室6
内の気圧よりも僅かに低く目になるように、制御してあ
る。これにより引上げ室6から不活性ガス排気部16へ
の気流が生じる。
The inert gas exhaust unit 16 is composed of an exhaust hole 20, a vacuum pump 12 and a valve 11, and is provided with a pulling chamber 6
The pressure is controlled to be slightly lower than the internal pressure. As a result, an air flow from the pulling chamber 6 to the inert gas exhaust unit 16 is generated.

【0014】石英製のルツボ1に収容したシリコン溶融
体2に種結晶(図示せず)を浸漬し、ルツボ1と種結晶
を回転しつつ、種結晶にシリコンを析出させて結晶成長
を行う。ここで、ルツボ1内のシリコン溶融体2は、加
熱による温度差に基づく密度の偏りにより熱対流を生
じ、またルツボ1及びシリコン単結晶5の回転に伴う強
制対流も生じる。そして、これらの対流によりシリコン
溶融体2はルツボ1の壁面を摩擦し、石英製のルツボ1
を溶解して酸素を取り込む。ここで、引上げ室6内は1
00mbar以下の減圧にされ、かつ引上げ室の上方に
設けられた不活性ガス導入部からアルゴンガスのごとき
不活性ガス7が流される。
A seed crystal (not shown) is immersed in the silicon melt 2 housed in the crucible 1 made of quartz, and while the crucible 1 and the seed crystal are rotated, silicon is deposited on the seed crystal for crystal growth. Here, the silicon melt 2 in the crucible 1 causes thermal convection due to the uneven density due to the temperature difference due to heating, and forced convection due to the rotation of the crucible 1 and the silicon single crystal 5. Then, due to these convections, the silicon melt 2 rubs against the wall surface of the crucible 1, and the crucible 1 made of quartz is rubbed.
Is dissolved and oxygen is taken in. Here, the inside of the pulling chamber 6 is 1
The pressure is reduced to 00 mbar or less, and an inert gas 7 such as argon gas is caused to flow from an inert gas inlet provided above the pulling chamber.

【0015】シリコン溶融体2に取り込まれた酸素は、
SiOとなって蒸発する。引上げ室6上方から導入され
た不活性ガス7は、引上げ室6内のSiOとともに不活
性ガス排気部16から排出される。
The oxygen taken into the silicon melt 2 is
It becomes SiO and evaporates. The inert gas 7 introduced from above the pulling chamber 6 is discharged from the inert gas exhaust unit 16 together with the SiO in the pulling chamber 6.

【0016】[0016]

【作用】引上げ室の上方に不活性ガス導入部が設けら
れ、前記不活性ガス導入部から離隔し、かつ引上げ室上
方の位置に設けられた不活性ガス排気部が設けられてい
るために、不活性ガス導入部から不活性ガス排気部に至
る不活性ガスの気流が引上げ室上方に形成され、かつ、
この気流は引上げ室内の汚染がきらわれる部材に接触す
るものではないので、ルツボ中のシリコン溶融体から発
生し、引上げ室上方に拡散してきたSiOは上記気流に
伴われて、不活性ガス排気部より排出される。ここで、
SiOはシリコン溶融体より静かに蒸発し、しかも引上
げ室上方へ向かう経路の断面積は非常に大きいために、
SiOが引上げ室上方に行くまでに引上げ室内の部材表
面に衝突する確率は非常に小さく、よって、引上げ室内
の黒鉛製部材等へのSiO起因物質の析出は非常に低く
抑えられる。
Since the inert gas introducing portion is provided above the pulling chamber, and the inert gas exhausting portion provided at a position above the pulling chamber is provided apart from the inert gas introducing portion, An inert gas flow from the inert gas introduction part to the inert gas exhaust part is formed above the pulling chamber, and
Since this air flow does not come into contact with a member that is susceptible to contamination in the pulling chamber, the SiO generated from the silicon melt in the crucible and diffused above the pulling chamber is accompanied by the above air flow, and the inert gas exhaust part More discharged. here,
Since SiO evaporates more gently than the silicon melt, and the cross-sectional area of the path leading to the upper part of the pulling chamber is very large,
The probability that SiO collides with the surface of the member in the pulling chamber by the time it reaches the upper part of the pulling chamber is very small, so that the precipitation of the SiO-derived substance on the graphite member in the pulling chamber is suppressed to a very low level.

【0017】[0017]

【実施例】次に、実施例を挙げてさらに詳細に本発明を
説明する。 実施例1 図1に示した単結晶引上げ装置を用いて、直径4イン
チ、軸方位〈100〉のシリコン単結晶棒を引上げた。
石英製のルツボ1の内径は14インチ、引上げ室6内の
気圧は100mbarとし、石英製のルツボ1を8rp
m、種結晶を25rpmで互いに逆方向に回転しつつシ
リコン単結晶5を引上げた。また、不活性ガスとして
は、アルゴンガスを110Nl/minの流速で引上げ
室6内に流入した。また、SiOの析出量を比較するた
め、図1中A及びBに直径100mm、厚み5mmの黒
鉛板を放置した。この条件で、69.67時間引上げ操
作を行い、図1における黒鉛板A,B及びヒーター3の
重量増加を調べた。黒鉛板A,B及びヒーター3のいず
れも重量の増加がなく、SiOが析出していないことが
わかった。また、引上げられたシリコン単結晶中の酸素
濃度をFT−IR法(フーリエ変換赤外分光法)により
測定したところ、下記比較例1に比べ約0.5ppma
低いことがわかった。さらに、シリコン単結晶中の欠陥
(OSF密度)は比較例1に比較して同等かやや少な
く、カーボン濃度についても、比較例1と比較して特に
差は認められなかった。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. Example 1 Using the single crystal pulling apparatus shown in FIG. 1, a silicon single crystal rod having a diameter of 4 inches and an axial orientation of <100> was pulled.
The inner diameter of the quartz crucible 1 is 14 inches, the atmospheric pressure in the pulling chamber 6 is 100 mbar, and the quartz crucible 1 is 8 rp.
m, the silicon single crystal 5 was pulled up while rotating the seed crystal in the opposite directions at 25 rpm. As the inert gas, argon gas was flown into the pulling chamber 6 at a flow rate of 110 Nl / min. Further, in order to compare the deposition amount of SiO, graphite plates having a diameter of 100 mm and a thickness of 5 mm were left at A and B in FIG. Under these conditions, the pulling operation was performed for 69.67 hours, and the weight increase of the graphite plates A and B and the heater 3 in FIG. 1 was examined. It was found that the graphite plates A and B and the heater 3 did not increase in weight and SiO was not deposited. Further, when the oxygen concentration in the pulled up silicon single crystal was measured by the FT-IR method (Fourier transform infrared spectroscopy), it was about 0.5 ppma as compared with Comparative Example 1 below.
Turned out to be low. Further, the defects (OSF density) in the silicon single crystal were the same as or slightly less than those in Comparative Example 1, and the carbon concentration was not particularly different from that in Comparative Example 1.

【0018】比較例1 図2に示したような従来のシリコン単結晶引上げ装置を
用いた以外は実施例1と同様にして、シリコン単結晶を
引上げた。26.67時間引上げ操作を行い、図2にお
ける黒鉛板A,B及びヒーター3の重量増加を調べたと
ころ、ヒーター3の重量増加はなかったが、黒鉛板Aは
46.4mgの増加、黒鉛板Bは3.3mgの増加を示
した。
Comparative Example 1 A silicon single crystal was pulled in the same manner as in Example 1 except that the conventional silicon single crystal pulling apparatus as shown in FIG. 2 was used. When the weight increase of the graphite plates A and B and the heater 3 in FIG. 2 was examined by performing a pulling operation for 26.67 hours, the weight increase of the heater 3 was not found, but the graphite plate A increased by 46.4 mg, B showed an increase of 3.3 mg.

【0019】[0019]

【発明の効果】以上の説明で明らかなように、本発明に
係るシリコン単結晶引上げ装置によれば、引上げ室の上
方に設けられた不活性ガス導入部と、前記不活性ガス導
入部から離隔し、かつ引上げ室上方の位置に設けられた
不活性ガス排気部を有するため、不活性ガス導入部から
不活性ガス排気部に至る不活性ガスの気流が引上げ室上
方に形成され、かつ、この気流は引上げ室内の汚染がき
らわれる部材に接触するものではないので、ルツボ中の
シリコン溶融体から発生し、引上げ室上方に拡散してき
たSiOは上記気流に伴われて、不活性ガス排気部より
排出され、黒鉛製部材のような引上げ装置内の各部材へ
のSiO起因物質の析出が防止されるとともに、SiO
起因物質の析出による劣化を防止し、また、引上げ装置
内の各部材からの析出物除去作業をなくすか、あるいは
極端に少なくすることができ、さらには引上げ装置の解
体・再組立を行なわずに操業できる期間を大幅に延長す
ることができ、また、SiO起因物質が析出する部材が
少ないため、解体・再組立の作業が簡略化され、大型化
が可能となり、引上げ可能なシリコン単結棒の径も大型
化することができる。そして、このような利点は、引上
げられる単結晶棒の品質を良好に保ったまま可能であ
る。
As is apparent from the above description, according to the silicon single crystal pulling apparatus of the present invention, the inert gas introducing section provided above the pulling chamber and the inert gas introducing section separated from each other. In addition, since it has an inert gas exhaust portion provided at a position above the pulling chamber, an air flow of the inert gas from the inert gas introducing portion to the inert gas exhaust portion is formed above the pulling chamber, and Since the air flow does not come into contact with the member in the pulling chamber where contamination is likely to occur, SiO generated from the silicon melt in the crucible and diffused above the pulling chamber is accompanied by the above-mentioned air flow and is discharged from the inert gas exhaust section. The SiO-derived substance is prevented from being deposited and deposited on each member in the pulling device such as the graphite member.
Deterioration due to the precipitation of the causative substance can be prevented, and the work of removing the precipitate from each member in the pulling device can be eliminated or extremely reduced, and without disassembling and reassembling the pulling device. The operating period can be greatly extended, and because there are few members that deposit SiO-derived substances, disassembly and reassembly work can be simplified and upsizing can be achieved. The diameter can also be increased. And, such an advantage is possible while maintaining good quality of the pulled single crystal ingot.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るシリコン単結晶引上げ装置の概略
構成を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a silicon single crystal pulling apparatus according to the present invention.

【図2】従来のシリコン単結晶引上げ装置の概略構成を
示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a schematic configuration of a conventional silicon single crystal pulling apparatus.

【符号の説明】[Explanation of symbols]

1 ルツボ 2 シリコン溶融体 3 ヒーター 4 断熱シールド 5 シリコン単結晶 6 引上げ室 7 不活性ガス 9a,9b 間隙 10 排気孔 11 バルブ 12 真空ポンプ 14 外装体 15 不活性ガス導入部 16 不活性ガス排気部 20 排気孔 1 Crucible 2 Silicon Melt 3 Heater 4 Heat Insulation Shield 5 Silicon Single Crystal 6 Pulling Chamber 7 Inert Gas 9a, 9b Gap 10 Exhaust Hole 11 Valve 12 Vacuum Pump 14 Exterior Body 15 Inert Gas Introducing Section 16 Inert Gas Exhausting Section 20 Exhaust hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 庭山 正 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社磯部工場内 (72)発明者 小田 哲宏 福井県武生市北府2丁目13番50号 信越半 導体株式会社武生工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Namiyama 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd. Isobe factory (72) Inventor Tetsuhiro Oda 2-13, Kitafu, Takefu City, Fukui Prefecture No. 50 Shin-Etsu Semiconductor Co., Ltd., Takefu Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法により不活性ガス雰
囲気中でシリコン単結晶を引上げる装置であって、シリ
コン溶融体を収容するルツボと、ルツボの外周に設けら
れたヒーターと、ルツボを収納する引上げ室を形成する
外装体と、引上げ室の上方に設けられた不活性ガス導入
部と、前記不活性ガス導入部から離隔しかつ引上げ室上
方の位置に設けられた不活性ガス排気部とを有すること
を特徴とするシリコン単結晶引上げ装置。
1. A device for pulling a silicon single crystal in an inert gas atmosphere by the Czochralski method, which comprises a crucible for containing a silicon melt, a heater provided on the outer periphery of the crucible, and a crucible. An exterior body forming a pulling chamber, an inert gas introducing portion provided above the pulling chamber, and an inert gas exhaust portion provided at a position above the pulling chamber and separated from the inert gas introducing portion. A silicon single crystal pulling apparatus having.
【請求項2】 不活性ガス導入部が引上げ室上方の中央
に設けられ、不活性ガス排気部が引上げ室上方の隅に設
けられることを特徴とする請求項1に記載のシリコン単
結晶引上げ装置。
2. The silicon single crystal pulling apparatus according to claim 1, wherein the inert gas introducing portion is provided in the center above the pulling chamber, and the inert gas exhausting portion is provided in a corner above the pulling chamber. .
【請求項3】 不活性ガス導入部が引上げ室に設けら
れ、不活性ガス排気部が引上げ室の2箇所以上に設けら
れることを特徴とする請求項2に記載のシリコン単結晶
引上げ装置。
3. The silicon single crystal pulling apparatus according to claim 2, wherein the inert gas introducing portion is provided in the pulling chamber, and the inert gas exhaust portion is provided at two or more places in the pulling chamber.
【請求項4】 引上げ室の2箇所以上に設けられた不活
性ガス排気部が、引上げ室の中央軸心の略対称位置に配
置され、複数組の2個の該不活性ガス排気部対を形成す
ることを特徴とする請求項3に記載のシリコン単結晶引
上げ装置。
4. An inert gas exhaust part provided at two or more places in the pulling chamber is arranged at a substantially symmetrical position with respect to a central axis of the pulling chamber, and a plurality of pairs of the two inert gas exhaust parts are provided. It forms, The silicon single crystal pulling apparatus of Claim 3 characterized by the above-mentioned.
JP9704393A 1992-03-31 1993-03-31 Silicon single crystal pulling up device Pending JPH0616491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9704393A JPH0616491A (en) 1992-03-31 1993-03-31 Silicon single crystal pulling up device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-105556 1992-03-31
JP10555692 1992-03-31
JP9704393A JPH0616491A (en) 1992-03-31 1993-03-31 Silicon single crystal pulling up device

Publications (1)

Publication Number Publication Date
JPH0616491A true JPH0616491A (en) 1994-01-25

Family

ID=26438245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9704393A Pending JPH0616491A (en) 1992-03-31 1993-03-31 Silicon single crystal pulling up device

Country Status (1)

Country Link
JP (1) JPH0616491A (en)

Similar Documents

Publication Publication Date Title
US6652934B1 (en) Silica glass crucible and method of fabricating thereof
EP1094039B1 (en) Method for manufacturing quartz glass crucible
US6214109B1 (en) Apparatus for controlling the oxygen content in silicon wafers heavily doped with antimony or arsenic
JP5670519B2 (en) Method for producing a silica crucible having a pure and bubble-free crucible inner layer
JP2003119015A (en) Method of producing rod-shaped high purity polycrystalline silicon
JP2004155642A (en) Quartz glass crucible and its manufacturing method
JP2888089B2 (en) Silicon single crystal pulling equipment
JPH0616491A (en) Silicon single crystal pulling up device
US5394829A (en) Device for pulling silicon single crystal
JPH06183897A (en) Method for growing silicon carbide single crystal
JPH07223894A (en) Apparatus for production of semiconductor single crystal
WO2024043030A1 (en) Quartz glass crucible for single-crystal silicon pulling and method for producing single-crystal silicon using same
JP3205488B2 (en) Jig for heat treatment
JP3401942B2 (en) Synthetic quartz glass manufacturing equipment
JP2975250B2 (en) Carbon parts for single crystal pulling device
TW202248165A (en) Quartz glass crucible, manufacturing method therefor, and manufacturing method for silicon single crystal
JPH07227533A (en) Baking method of vacuum container
JP2735740B2 (en) Method for producing silicon single crystal
JPH09223658A (en) Manufacture of silicon nitride membrane and member of silicon nitride membrane
JP2002234794A (en) Method of puling up silicon single crystal and silicon wafer
JPH05319976A (en) Ultra-low-carbon crystal growing apparatus and production of silicon single crystal
JP2003332240A (en) Gas cleaning method for deposited-silicon film forming device
JP2735741B2 (en) Method for producing silicon single crystal
JPH11116388A (en) Quartz glass crucible for pulling silicon single crystal and its production
JPS6010715A (en) Device for chemical gas-phase growth