JPH06164661A - Radio receiver - Google Patents

Radio receiver

Info

Publication number
JPH06164661A
JPH06164661A JP4313686A JP31368692A JPH06164661A JP H06164661 A JPH06164661 A JP H06164661A JP 4313686 A JP4313686 A JP 4313686A JP 31368692 A JP31368692 A JP 31368692A JP H06164661 A JPH06164661 A JP H06164661A
Authority
JP
Japan
Prior art keywords
detection circuit
circuit
signal
quasi
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4313686A
Other languages
Japanese (ja)
Other versions
JP2977396B2 (en
Inventor
Kazuhiko Fukawa
和彦 府川
Hiroshi Suzuki
博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4313686A priority Critical patent/JP2977396B2/en
Publication of JPH06164661A publication Critical patent/JPH06164661A/en
Application granted granted Critical
Publication of JP2977396B2 publication Critical patent/JP2977396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To harmonize transmission characteristics with energy consumption. CONSTITUTION:A control circuit 22 controls a switching circuit 21 based on a delay detecting signal from a delay detection circuit 12 and a quasi- synchronous detecting signal sampling value from a quasi-synchronous detection circuit 3, operates the delay detection circuit 12 and a judge circuit 13 provided with less energy consumption when the quality of a radio line is satisfactory, and operates the quasi-synchronous detection circuit 3 and an equalizer 7, which reduce signal errors although the energy consumption is more, when the quality of the radio line is degraded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル無線通信の
無線受信機に利用する。本発明は、振幅位相変調その他
ディジタル変調された無線信号の受信機に利用する。本
発明は移動無線通信方式の移動局装置として利用するに
適する。本発明は、符号間干渉による伝送特性劣化を抑
えるとともに消費電力の経済化に関するためのものであ
る。
BACKGROUND OF THE INVENTION The present invention is used in a radio receiver for digital radio communication. INDUSTRIAL APPLICABILITY The present invention is used for a receiver of a radio signal that is digitally modulated such as amplitude / phase modulation. The present invention is suitable for use as a mobile station device of a mobile radio communication system. The present invention is intended to suppress the deterioration of transmission characteristics due to intersymbol interference and to make the power consumption economical.

【0002】[0002]

【従来の技術】図4は従来例の準同期検波回路を使用し
た無線受信機である。図5は他の実施例の遅延検波回路
を使用した無線受信機である。
2. Description of the Related Art FIG. 4 shows a radio receiver using a conventional quasi-coherent detection circuit. FIG. 5 shows a radio receiver using a differential detection circuit according to another embodiment.

【0003】ディジタルQAM(Quadrature Amplitude
Modulation,直交振幅変調)信号の無線受信機の検波回
路として、符号間干渉による伝送特性劣化を抑圧する技
術として、図4および図5に示す構成の装置が広く知ら
れている。図4は受信信号を入力とする準同期検波回路
3と、準同期検波回路3の出力サンプリング値から信号
判定を行う等化器7とを含むものである。一方、図5は
受信信号を入力とする遅延検波回路12と、遅延検波回
路12の出力の信号判定を行う判定回路13とを含むも
のである。
Digital QAM (Quadrature Amplitude)
As a detection circuit of a radio receiver for Modulation (Quadrature Amplitude Modulation) signals, a device having a configuration shown in FIGS. 4 and 5 is widely known as a technique for suppressing deterioration of transmission characteristics due to intersymbol interference. FIG. 4 includes a quasi-synchronous detection circuit 3 that receives a received signal as an input, and an equalizer 7 that determines a signal from an output sampling value of the quasi-synchronous detection circuit 3. On the other hand, FIG. 5 includes a differential detection circuit 12 that receives a received signal as an input, and a determination circuit 13 that determines a signal output from the differential detection circuit 12.

【0004】図6はこの受信機により受信されるバース
ト信号の一例を示す図であり、トレーニング信号は例え
ば10シンボルでその方式毎に定められたパターンの信
号が配列され、このトレーニング信号の期間に受信回路
の動作が設定され、つづくデータ信号を受信する。デー
タ信号は例えば56シンボルで構成され、このバースト
信号の持続時間は例えば約3.3ミリ秒である。
FIG. 6 is a diagram showing an example of a burst signal received by this receiver. As a training signal, for example, a signal of a pattern defined by each system is arranged with 10 symbols, and during the training signal period. The operation of the receiving circuit is set and the subsequent data signal is received. The data signal is composed of, for example, 56 symbols, and the duration of the burst signal is, for example, about 3.3 milliseconds.

【0005】図4に示す等化器7を含む検波回路では、
入力端子1に与えられる中間周波数帯の受信信号を自動
利得制御(AGC)つきの線形増幅器2により増幅し、
準同期検波回路3により信号の同相成分および直交成分
を取り出し、それぞれアナログ・ディジタル変換回路4
および5によりサンプリング値を得て、これをメモリ6
に蓄積する。このメモリ6の内容を等化器7に与えて信
号判定を行う。
In the detection circuit including the equalizer 7 shown in FIG.
The received signal in the intermediate frequency band given to the input terminal 1 is amplified by the linear amplifier 2 with automatic gain control (AGC),
The in-phase component and the quadrature component of the signal are extracted by the quasi-synchronous detection circuit 3, and the analog-digital conversion circuit 4 respectively
And the sampling value is obtained from 5 and stored in the memory 6
Accumulate in. The contents of the memory 6 are given to the equalizer 7 to make a signal determination.

【0006】ここで準同期検波回路とは(図4の符号
3)、受信ローカル周波数は送信側のキャリヤ周波数と
等しく設定されているが、位相同期をとっていない同期
検波回路である。また、等化器7としては最尤列推定
(Maximum Likelihood Seque
nce Estimation:MLSE)が知られて
いる。この等化器では可能性のある信号系列に対応する
尤度を算出し、信号判定ではその値が最も大きい信号系
列を選択するものである。この等化器は信号系列が長く
なると、可能性がある全ての信号系列の数は指数関数的
に増大するから、系列数を減らして演算量を抑えるため
に、状態推定をビタビアルゴリズムで行うビタビ形等化
器が知られている。
Here, the quasi-synchronous detection circuit (reference numeral 3 in FIG. 4) is a synchronous detection circuit in which the reception local frequency is set equal to the carrier frequency on the transmission side, but is not in phase synchronization. Further, as the equalizer 7, the maximum likelihood sequence estimation (Maximum Likelihood Sequence) is performed.
nce Estimation: MLSE) is known. This equalizer calculates the likelihood corresponding to a possible signal sequence, and selects the signal sequence having the largest value in signal determination. This equalizer exponentially increases the number of all possible signal sequences when the signal sequence becomes long.Therefore, in order to reduce the number of sequences and reduce the amount of calculation, the Viterbi algorithm that performs state estimation uses a Viterbi algorithm. Shape equalizers are known.

【0007】一方、図5に示す検波回路は、入力端子1
から中間周波数帯の受信号が入力し、リミッタアンプ1
1により受信信号を一定レベルに非線形増幅する。この
出力を遅延検波回路12により遅延検波すると、この出
力には遅延検波信号の同相成分および直交成分が得られ
る。これを判定回路13により硬判定して判定信号の同
相成分および直交成分をそれぞれ出力端子8、9に得る
ように構成されている。
On the other hand, the detection circuit shown in FIG.
The received signal in the intermediate frequency band is input from the limiter amplifier 1
By 1, the received signal is non-linearly amplified to a constant level. When this output is differentially detected by the differential detection circuit 12, the in-phase component and the quadrature component of the differential detection signal are obtained at this output. The decision circuit 13 makes a hard decision to obtain the in-phase component and the quadrature component of the decision signal at the output terminals 8 and 9, respectively.

【0008】[0008]

【発明が解決しようとする課題】上記二つの検波回路の
特性を比較すると、準同期検波回路および等化器を含む
図4に示す回路では、伝搬路の遅延分散が変調波のシン
ボル同期Tに比べて大きいときにも伝送特性の劣化が小
さい優れた性能を持っているが、サンプリング値が抽出
された後の回路はディジタル回路により構成されるため
に、その動作時の消費電力が大きい欠点がある。また自
動利得制御つきの線形増幅器も消費電力が大きい。一
方、遅延検波回路を含む無線受信機では、遅延検波回路
は非常に簡単なアナログ回路で実現でき、等化器に比べ
て消費電力が少なく、等化器を含む無線受信機よりも回
路規模が小さくなる利点があるが、伝搬路の遅延分散が
変調波のシンボル同期Tに比べて大きいとき、伝送特性
が大幅に劣化する欠点がある。
Comparing the characteristics of the above-mentioned two detection circuits, in the circuit shown in FIG. 4 including the quasi-synchronous detection circuit and the equalizer, the delay dispersion of the propagation path corresponds to the symbol synchronization T of the modulated wave. It has excellent performance with little deterioration in transmission characteristics even when it is large, but since the circuit after the sampling value is extracted is composed of a digital circuit, it has the drawback of high power consumption during operation. is there. In addition, a linear amplifier with automatic gain control also consumes a large amount of power. On the other hand, in a wireless receiver including a differential detection circuit, the differential detection circuit can be realized by a very simple analog circuit, consumes less power than an equalizer, and has a smaller circuit scale than a wireless receiver including an equalizer. Although it has the advantage of being small, when the delay dispersion of the propagation path is larger than the symbol synchronization T of the modulated wave, there is a drawback that the transmission characteristics are significantly deteriorated.

【0009】移動無線通信方式の移動局装置に実装する
受信機としては、消費電力が小さいことがきわめて重要
であることから、遅延検波回路が多く採用されている
が、地方ではゾーン半径が大きく基地局送信電力が大き
く設定され伝播路の遅延分散が大きくなることから、移
動局装置にいずれの検波回路を採用するかは大きい問題
である。一方、近年ディジタル回路がきわめて小型にな
り、かなり複雑な判定回路も移動局装置の中に実装する
ことが可能になっている。
As a receiver mounted in a mobile station apparatus of the mobile radio communication system, it is extremely important that the power consumption is small, and therefore, a differential detection circuit is often used, but in a rural area, a zone radius is large and a base station is large. Since the station transmission power is set large and the delay dispersion of the propagation path becomes large, it is a big problem which detection circuit is adopted in the mobile station device. On the other hand, in recent years, digital circuits have become extremely small, and it has become possible to mount a considerably complicated decision circuit in a mobile station device.

【0010】本発明はこのような背景に行われたもので
あって、伝送特性と消費電力の調和をとった無線受信機
を提供することを目的とする。
The present invention has been made under such circumstances, and an object of the present invention is to provide a radio receiver in which transmission characteristics and power consumption are harmonized.

【0011】[0011]

【課題を解決するための手段】本発明は、受信信号を入
力とする遅延検波回路と、この遅延検波回路の出力の信
号判定を行う判定回路とを含む第一の検波回路を備え、
前記受信信号を入力とする準同期検波回路と、この準同
期検波回路の出力サンプリング値から信号判定を行う等
化器とを含む第二の検波回路を備え、前記二つの検波回
路のいずれか一方を選択する選択手段を備え、前記遅延
検波回路の出力および前記出力サンプリング値を取込み
前記二つの検波回路の各評価値を演算する手段と、この
評価値にしたがって前記選択手段を制御する制御手段と
を含む制御回路を備えたことを特徴とする。
The present invention comprises a first detection circuit including a differential detection circuit which receives a received signal as an input, and a determination circuit which determines a signal output from the differential detection circuit.
A quasi-synchronous detection circuit that receives the received signal as an input, and a second detection circuit that includes an equalizer that determines a signal from an output sampling value of the quasi-synchronous detection circuit, and one of the two detection circuits is provided. Means for calculating the respective evaluation values of the two detection circuits by taking in the output of the differential detection circuit and the output sampling value, and control means for controlling the selection means according to the evaluation values. Is provided with a control circuit including.

【0012】また、本発明は、前記評価値は、前記第一
の検波回路については符号間干渉量および信号判定誤差
であり、前記第二の検波回路については信号判定誤差で
あり、前記制御回路はこの評価値をあらかじめ設定され
た切替タイミング毎に演算する構成となりうる。
According to the present invention, the evaluation value is an intersymbol interference amount and a signal determination error for the first detection circuit, and a signal determination error for the second detection circuit. Can be configured to calculate this evaluation value for each preset switching timing.

【0013】さらに、本発明は、前記制御手段は、前記
第一の検波回路が選択されている状態ではその符号間干
渉量があらかじめ設定されたしきい値を越えたときに前
記第二の検波回路を選択し、前記第二の検波回路が選択
されている状態では前記信号判定誤差の小さい方の検波
回路を選択するように制御する手段を含むことができ
る。
Further, according to the present invention, the control means is configured to detect the second detection signal when the intersymbol interference amount exceeds a preset threshold value in a state where the first detection circuit is selected. It is possible to include means for selecting a circuit and controlling so as to select a detection circuit having a smaller signal determination error when the second detection circuit is selected.

【0014】また、前記第二の検波回路に、さらにディ
ジタル遅延検波回路と、このディジタル遅延検波回路の
出力の信号判定を行う判定回路と、前記出力サンプリン
グ値を前記等化器およびこのディジタル遅延検波回路に
分配する分配回路とを備え、前記制御手段は、前記第一
の検波回路が選択されている状態ではその符号間干渉量
があらかじめ設定されたしきい値を越えたときに前記第
二の検波回路を選択し、前記第二の検波回路が選択され
ている状態では前記信号判定誤差が前記第一の検波回路
について小さいことが判定されたときに、前記第二の検
波回路の中のディジタル遅延検波回路を選択し、さらに
切替タイミングで前記第一の検波回路を選択するように
制御する手段を含むことができる。
Further, in addition to the second detection circuit, a digital delay detection circuit, a judgment circuit for making a signal judgment of the output of the digital delay detection circuit, the output sampling value to the equalizer and the digital delay detection circuit. A distribution circuit for distributing to the circuit, the control means, when the first detection circuit is selected, when the intersymbol interference amount exceeds a preset threshold value, the second In the state where the detection circuit is selected and the second detection circuit is selected, when it is determined that the signal determination error is small for the first detection circuit, the digital signal in the second detection circuit is selected. It is possible to include means for selecting the delay detection circuit and further controlling to select the first detection circuit at the switching timing.

【0015】[0015]

【作用】本発明の装置では、無線回線の品質がよいとき
には、消費電力の小さい遅延検波回路を動作させ、無線
回線の品質が劣化してきたときには消費電力は大きいが
信号誤りの少ない等化器を含む検波回路を動作させるよ
うにして、伝送特性と消費電力との調和をとる。
In the apparatus of the present invention, when the quality of the wireless line is good, the differential detection circuit with low power consumption is operated, and when the quality of the wireless line deteriorates, an equalizer with large power consumption but few signal errors is provided. The transmission characteristics and power consumption are harmonized by operating the detection circuit that includes them.

【0016】制御回路には第一の検波回路および第二の
検波回路についてその検波出力を入力するのではなく、
第一の検波回路については遅延検波回路の出力を取込
み、第二の検波回路については準同期検波回路の出力サ
ンプリング値を取込み、それぞれ演算を行うことにより
評価値を演算することができる。
Instead of inputting the detection outputs of the first detection circuit and the second detection circuit to the control circuit,
The evaluation value can be calculated by taking in the output of the delay detection circuit for the first detection circuit, taking in the output sampling value of the quasi-synchronous detection circuit for the second detection circuit, and performing the respective operations.

【0017】[0017]

【実施例】本発明の実施例について図面を参照して説明
する。図1は本発明一実施例無線受信機のブロック構成
図である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a wireless receiver according to an embodiment of the present invention.

【0018】図1において、本実施例の無線受信機は、
受信信号を入力とする遅延検波回路としてリミッタアン
プ11および遅延回路12と、遅延検波回路12の出力
の信号判定を行う判定回路13とを含む第一の検波回路
を備え、前記受信信号を入力とする準同期検波回路とし
て線形増幅器2、準同期検波回路3、アナログ・ディジ
タル変換器4、5およびメモリ6と、準同期検波回路3
の出力サンプリング値から信号判定を行う等化器7とを
含む第二の検波回路を備え、前記二つの検波回路のいず
れか一方を選択する選択手段として選択回路23を備
え、遅延検波回路12の出力および前記出力サンプリン
グ値を取込み前記二つの検波回路の各評価値を演算する
手段と、この評価値にしたがって選択回路23を制御す
る制御手段とを含む制御回路として制御回路22および
切替回路21を備えたことを特徴とする。
In FIG. 1, the wireless receiver of this embodiment is
A first detection circuit including a limiter amplifier 11 and a delay circuit 12 as a delay detection circuit that receives a reception signal as an input, and a determination circuit 13 that determines a signal output from the delay detection circuit 12 is provided. As a quasi-synchronous detection circuit, a linear amplifier 2, a quasi-synchronous detection circuit 3, analog-digital converters 4, 5 and a memory 6, and a quasi-synchronous detection circuit 3
Of the delay detection circuit 12 and a second detection circuit including an equalizer 7 that makes a signal determination from the output sampling value of the output signal of the second detection circuit, and a selection circuit 23 as selection means for selecting one of the two detection circuits. A control circuit 22 and a switching circuit 21 are provided as a control circuit including a means for calculating an output and the output sampling value and calculating each evaluation value of the two detection circuits, and a control means for controlling the selection circuit 23 according to the evaluation value. It is characterized by having.

【0019】また、前記評価値は、前記第一の検波回路
については符号間干渉量および信号判定誤差であり、前
記第二の検波回路については信号判定誤差であり、制御
回路22はこの評価値をあらかじめ設定された切替タイ
ミング毎に演算する構成である。
The evaluation value is the intersymbol interference amount and the signal determination error for the first detection circuit, and the signal determination error for the second detection circuit, and the control circuit 22 determines the evaluation value. Is configured to be calculated for each preset switching timing.

【0020】さらに、制御回路22は、前記第一の検波
回路が選択されている状態ではその符号間干渉量があら
かじめ設定されたしきい値を越えたときに前記第二の検
波回路を選択し、前記第二の検波回路が選択されている
状態では前記信号判定誤差の小さい方の検波回路を選択
するように制御する手段を含む。
Further, the control circuit 22 selects the second detection circuit when the intersymbol interference amount exceeds a preset threshold value while the first detection circuit is selected. In the state where the second detection circuit is selected, there is included means for controlling so as to select the detection circuit with the smaller signal determination error.

【0021】このような構成の無線受信機の動作につい
て説明する。
The operation of the radio receiver having such a configuration will be described.

【0022】図1において、入力端子1から中間周波数
帯の受信信号が入力する。切替回路21は後述する制御
回路22に制御され、受信信号をリミッタアンプ11ま
たは線形増幅器2へ入力する。リミッタアンプ11は受
信信号を一定レベルに非線形増幅し、遅延検波回路12
はリミッタアンプ11の出力信号を遅延検波して、遅延
検波信号の同相成分および直交成分を出力する。判定回
路13は遅延検波信号を入力として硬判定による信号判
定を行い、第一の判定信号の同相成分および直交成分を
出力する。ここで、リミッタアンプ11、遅延検波回路
12および判定回路13は、第一の検波回路に相当す
る。
In FIG. 1, a received signal in the intermediate frequency band is input from the input terminal 1. The switching circuit 21 is controlled by the control circuit 22 described later, and inputs the received signal to the limiter amplifier 11 or the linear amplifier 2. The limiter amplifier 11 non-linearly amplifies the received signal to a constant level, and the delay detection circuit 12
Performs delay detection on the output signal of the limiter amplifier 11 and outputs the in-phase component and the quadrature component of the delay detection signal. The decision circuit 13 receives the delayed detection signal as an input, performs signal decision by hard decision, and outputs the in-phase component and the quadrature component of the first decision signal. Here, the limiter amplifier 11, the differential detection circuit 12, and the determination circuit 13 correspond to a first detection circuit.

【0023】一方、線形増幅器2は受信信号を検波に適
したレベルに線形増幅し、準同期検波回路3は線形増幅
器2の出力信号を準同期検波して、その同相成分および
直交成分を出力する。アナログ・ディジタル変換器4、
5は準同期検波信号をサンプリングし、準同期検波信号
サンプリング値として出力する。メモリ6は準同期検波
信号サンプリング値を一時保持し、等化器7へ出力す
る。等化器7は、準同期検波信号サンプリング値を入力
として等化による信号判定を行い、第二の判定信号の同
相成分および直交成分を出力する。ここで、線形増幅
2、準同期検波回路3、アナログ・ディジタル変換器
4、5、メモリ6および等化器7は第二の検波回路に相
当する。
On the other hand, the linear amplifier 2 linearly amplifies the received signal to a level suitable for detection, and the quasi-coherent detection circuit 3 quasi-coherently detects the output signal of the linear amplifier 2 and outputs its in-phase component and quadrature component. . Analog-digital converter 4,
Reference numeral 5 samples the quasi-synchronous detection signal and outputs it as a quasi-synchronous detection signal sampling value. The memory 6 temporarily holds the quasi-synchronous detection signal sampling value and outputs it to the equalizer 7. The equalizer 7 receives the quasi-synchronized detection signal sampling value as an input, performs signal determination by equalization, and outputs the in-phase component and the quadrature component of the second determination signal. Here, the linear amplification 2, the quasi-synchronous detection circuit 3, the analog / digital converters 4, 5, the memory 6 and the equalizer 7 correspond to a second detection circuit.

【0024】制御回路22は、遅延検波信号と準同期検
波信号サンプリング値とを入力として、第一の検波回路
および第二の検波回路内で伝送特性の良い方を切替タイ
ミングごとに選択し動作させる。そして、この選択に基
づき切替回路21を制御する。選択回路23は、制御回
路22の選択に基づき第一の判定信号または第二の判定
信号を選択し、出力信号として出力端子8、9から出力
する。ここで、制御回路22および切替回路21は制御
回路に相当し、選択回路23は選択手段に相当する。
The control circuit 22 receives the delayed detection signal and the quasi-synchronous detection signal sampling value as input, and selects and operates the one having better transmission characteristics in the first detection circuit and the second detection circuit at each switching timing. . Then, the switching circuit 21 is controlled based on this selection. The selection circuit 23 selects the first determination signal or the second determination signal based on the selection of the control circuit 22, and outputs it as an output signal from the output terminals 8 and 9. Here, the control circuit 22 and the switching circuit 21 correspond to a control circuit, and the selection circuit 23 corresponds to a selection unit.

【0025】次に、制御回路22の動作について説明す
る。以下の説明で変調方式は差動符号化PSKとし、信
号のサンプリング周期は変調波のシンボル周期Tとす
る。加えて、全ての信号は同相成分を実部に、直交成分
を虚部に持つ複素表示を用いて表す。
Next, the operation of the control circuit 22 will be described. In the following description, the modulation method is differential encoding PSK, and the signal sampling period is the symbol period T of the modulated wave. In addition, all signals are represented using a complex representation with the in-phase component in the real part and the quadrature component in the imaginary part.

【0026】第一の検波回路をすでに選択し動作させて
いるとき、制御回路22は遅延検波信号に含まれる符号
間干渉量を求める。これは符号間干渉による波形歪みの
度合いを表す物理量であり、この値が大きいときには第
一の検波回路よりも第二の検波回路の方が伝送特性が良
くなる。したがって、あらかじめ設定したしきい値を超
えるときには切替タイミングで第二の検波回路に切替え
動作させるように制御する。たとえば、切替タイミング
をバーストタイミングに設定したとき、次のバーストタ
イミングで第二の検波回路を選択し動作させる。
When the first detection circuit is already selected and is operating, the control circuit 22 obtains the intersymbol interference amount included in the differential detection signal. This is a physical quantity representing the degree of waveform distortion due to intersymbol interference, and when this value is large, the second detection circuit has better transmission characteristics than the first detection circuit. Therefore, when the preset threshold value is exceeded, the second detection circuit is controlled to perform a switching operation at the switching timing. For example, when the switching timing is set to the burst timing, the second detection circuit is selected and operated at the next burst timing.

【0027】次にこの符号間干渉量の計算法について述
べる。ただし、遅延検波受信信号の時刻t=kT(kは
整数)におけるサンプリング値をz(k)とする。遅延
検波信号はリミッタアンプ11を通過しているので、振
幅は一定である。時刻t=kTと時刻(k−1)Tにお
ける複素シンボルの位相差をd(k)とすると、符号間
干渉および雑音などの劣化要因がなければz(k)d*
(k)は時刻によらず一定の実数となりd(k−1)と
相関がない。ここで、*は複素共役を表す。符号間干渉
による波形歪が生じるとき、このz(k)d*(k)と
d(k−1)に相関が現れる。したがって、z(k)d
*(k)とd(k−1)との相関を符号間干渉量とみな
すことができる。たとえば、指定された信号区間をd
(k)が既知である信号長NT のトレーニング信号区間
とすれば、この相関ρは次式のように与えられる。
Next, a method of calculating the intersymbol interference amount will be described. However, the sampling value at the time t = kT (k is an integer) of the differential detection reception signal is z (k). Since the differential detection signal has passed through the limiter amplifier 11, the amplitude is constant. Assuming that the phase difference between the complex symbols at time t = kT and time (k-1) T is d (k), z (k) d * if there is no deterioration factor such as intersymbol interference and noise.
(K) is a constant real number regardless of time, and has no correlation with d (k-1). Here, * represents a complex conjugate. When waveform distortion occurs due to intersymbol interference, correlation appears in this z (k) d * (k) and d (k-1). Therefore, z (k) d
The correlation between * (k) and d (k-1) can be regarded as the intersymbol interference amount. For example, the specified signal section is d
If (k) is a training signal section with a known signal length N T , this correlation ρ is given by the following equation.

【0028】[0028]

【数1】 第二の検波回路をすでに選択し動作させてるとき、制御
回路22は、BER(bit error rati
o)の理論式から求められる判定式に基づき、第一の検
波回路と第二の検波回路の内BER特性が良い方を選択
する。以下の説明では等化器7はビタビ形等化器とす
る。この判定式は差動符号化QPSK変調の場合に、 D=γE −2.0γD となり、判定式Dが負のとき第一の検波回路を選択し、
非負のとき第二の検波回路を選択する。ここで、γE
γD は等化器7と遅延検波回路12の1ビット当たりの
信号エネルギー対雑音電力密度Eb /N0 であり、除去
できない符号間干渉および伝搬路変動に対する追従誤差
を雑音成分として考慮することにより求める。ここで
は、γE 、γD を信号長NT シンボルのトレーニング信
号区間で近似的に求める方法について述べる。雑音成分
の電力が微量であると仮定すると、判定式Dは下記の判
定式D’と置き換えることができる。
[Equation 1] When the second detection circuit is already selected and is operating, the control circuit 22 sets the BER (bit error ratio).
Based on the judgment formula obtained from the theoretical formula of o), the one having better BER characteristics is selected from the first detection circuit and the second detection circuit. In the following description, the equalizer 7 is a Viterbi equalizer. In the case of differential encoding QPSK modulation, this judgment formula is D = γ E −2.0γ D , and when the judgment formula D is negative, the first detection circuit is selected,
When it is non-negative, the second detection circuit is selected. Where γ E ,
γ D is the signal energy to noise power density E b / N 0 per bit of the equalizer 7 and the delay detection circuit 12, and considers the tracking error that cannot be eliminated as the intersymbol interference and the propagation path fluctuation as a noise component. Ask by. Here, a method for approximately obtaining γ E and γ D in the training signal section of the signal length N T symbol will be described. Assuming that the power of the noise component is very small, the judgment formula D can be replaced with the following judgment formula D ′.

【0029】[0029]

【数2】 ここで、eE (k)は等化器7の信号判定誤差で、準同
期検波信号サンプリング値とその推定値との差分であ
る。eD (k)は遅延検波回路12の信号判定誤差であ
り、準同期検波信号サンプリング値から求める。なお、
この値は、時刻1T過去の準同期検波信号サンプリング
値のキャリア位相を基準にして信号判定するときの誤差
信号であり、符号間干渉、伝搬路変動に対する追従誤差
および雑音が二重に見積もられており、その電力は求め
るべき値の2倍となっている。
[Equation 2] Here, e E (k) is a signal determination error of the equalizer 7, which is a difference between the quasi-synchronized detection signal sampling value and its estimated value. e D (k) is a signal determination error of the differential detection circuit 12 and is obtained from the quasi-synchronous detection signal sampling value. In addition,
This value is an error signal when signal determination is performed with reference to the carrier phase of the quasi-synchronized detection signal sampling value at time 1T past, and intersymbol interference, tracking error with respect to channel fluctuation, and noise are double estimated. The power is twice the value to be obtained.

【0030】この判定式D’が負のときには第二の検波
回路よりも第一の検波回路の方が伝送特性が良いので、
第一の検波回路を切替タイミングで切替え動作させるよ
うに制御する。たとえば、切替タイミングをバーストタ
イミングに設定したとき、次のバーストタイミングで第
一の検波回路を選択し動作させる。判定式D’が非負の
ときには、次のバーストタイミングでも第二の検波回路
を動作させる。
When the determination formula D'is negative, the first detection circuit has better transmission characteristics than the second detection circuit.
The first detection circuit is controlled to perform a switching operation at the switching timing. For example, when the switching timing is set to the burst timing, the first detection circuit is selected and operated at the next burst timing. When the determination expression D'is non-negative, the second detection circuit is operated even at the next burst timing.

【0031】前述のように、第二の検出回路をすでに選
択して動作しているときに、制御回路22は準同期検波
回路3からの準同期検波信号サンプリング値に基づいて
判定式D’から第一の検波回路と第二の検波回路とのど
ちらが伝送特性がよいか判断し選択することができる。
As described above, when the second detection circuit is already selected and operating, the control circuit 22 determines from the determination formula D'based on the quasi-synchronous detection signal sampling value from the quasi-synchronous detection circuit 3. It is possible to judge and select which of the first detection circuit and the second detection circuit has the better transmission characteristic.

【0032】図2は本発明第二実施例無線受信機のブロ
ック構成図である。図2において、入力端子1から中間
周波数帯の受信信号が入力する。切替回路21は後述す
る制御回路32に制御され、受信信号をリミッタアンプ
11または線形増幅器2に入力する。リミッタアンプ1
1は受信信号を一定レベルに非線形増幅し、遅延検波回
路12はリミッタアンプ11の出力信号を遅延検波し
て、遅延検波信号の同相成分および直交成分を出力す
る。判定回路13は遅延検波信号を入力として硬判定に
よる信号判定を行い、第一の判定信号の同相成分および
直交成分を出力する。 一方、線形増幅器2は受信信号
を検波に適したレベルに線形増幅し、準同期検波回路3
は線形増幅器2の出力信号を準同期検波して、その同相
成分および直交成分を出力する。アナログ・ディジタル
変換器4、5は準同期検波信号をサンプリングし、準同
期検波信号サンプリング値として出力する。メモリ6は
準同期検波信号サンプリング値を一時保持し、切替回路
34へ入力する。切替回路34は、準同期検波信号サン
プリング値を等化器7またはディジタル遅延検波回路3
5へ入力する。等化器7は、準同期検波信号サンプリン
グ値を入力として等化による信号判定を行い、第二の判
定信号の同相成分および直交成分を出力する。ディジタ
ル遅延検波回路35および判定回路36は準同期検波信
号サンプリング値を入力として遅延検波による信号判定
を行い、第三の判定信号の同相成分および直交成分を出
力する。
FIG. 2 is a block diagram of a radio receiver according to the second embodiment of the present invention. In FIG. 2, a received signal in the intermediate frequency band is input from the input terminal 1. The switching circuit 21 is controlled by the control circuit 32 described later, and inputs the received signal to the limiter amplifier 11 or the linear amplifier 2. Limiter amplifier 1
Reference numeral 1 denotes a non-linear amplification of the received signal to a constant level, and the differential detection circuit 12 differentially detects the output signal of the limiter amplifier 11 and outputs the in-phase component and the quadrature component of the differential detection signal. The decision circuit 13 receives the delayed detection signal as an input, performs signal decision by hard decision, and outputs the in-phase component and the quadrature component of the first decision signal. On the other hand, the linear amplifier 2 linearly amplifies the received signal to a level suitable for detection, and the quasi-synchronous detection circuit 3
Quasi-coherently detects the output signal of the linear amplifier 2 and outputs its in-phase component and quadrature component. The analog-digital converters 4 and 5 sample the quasi-synchronous detection signal and output it as a quasi-synchronous detection signal sampling value. The memory 6 temporarily holds the quasi-synchronous detection signal sampling value and inputs it to the switching circuit 34. The switching circuit 34 converts the quasi-synchronous detection signal sampling value into the equalizer 7 or the digital differential detection circuit 3.
Enter in 5. The equalizer 7 receives the quasi-synchronized detection signal sampling value as an input, performs signal determination by equalization, and outputs the in-phase component and the quadrature component of the second determination signal. The digital differential detection circuit 35 and the determination circuit 36 receive the quasi-synchronous detection signal sampling value as input, perform signal determination by differential detection, and output the in-phase component and the quadrature component of the third determination signal.

【0033】制御回路32は、遅延検波信号および準同
期検波信号サンプリング値を入力として、非線形受信手
段および線形受信手段の内伝送特性の良い方を切替タイ
ミングごとに選択し動作させる。そして、この選択に基
づき切替回路21を制御する。選択回路33は、制御回
路32の選択に基づき第一の判定信号、第二の判定信号
または第三の判定信号を選択し、出力信号として出力端
子8、9から出力する。
The control circuit 32 receives the delay detection signal and the quasi-synchronization detection signal sampling value as input, and selects and operates one of the nonlinear receiving means and the linear receiving means, whichever has better transmission characteristics, at each switching timing. Then, the switching circuit 21 is controlled based on this selection. The selection circuit 33 selects the first determination signal, the second determination signal, or the third determination signal based on the selection of the control circuit 32, and outputs it as an output signal from the output terminals 8 and 9.

【0034】次に、制御回路32の動作について説明す
る。
Next, the operation of the control circuit 32 will be described.

【0035】遅延検波回路12をすでに選択し動作させ
ているとき、遅延検波回路12と判定回路13から構成
される第一の検波回路が動作している。制御回路32
は、第一実施例で述べた遅延検波信号に含まれる符号間
干渉量があらかじめ設定したしきい値を超えるときには
切替タイミングで準同期検波回路3を切替え動作させる
ように制御する。すなわち、切替タイミングをバースト
タイミングに設定したとき、次のバーストタイミングで
準同期検波回路3を選択し動作させる。
When the differential detection circuit 12 is already selected and is operating, the first detection circuit composed of the differential detection circuit 12 and the determination circuit 13 is operating. Control circuit 32
Controls the quasi-synchronous detection circuit 3 to switch at the switching timing when the intersymbol interference amount included in the differential detection signal described in the first embodiment exceeds a preset threshold value. That is, when the switching timing is set to the burst timing, the quasi-synchronous detection circuit 3 is selected and operated at the next burst timing.

【0036】準同期検波回路3をすでに選択し動作させ
ているとき、ここで等化器7はビタビ形等化器とする。
制御回路32は、第一実施例で述べた判定式D’に基づ
き、等化器7とディジタル遅延検波回路35および判定
回路36との内でBER特性が良い方を選択し動作させ
る。具体的には、判定式D’が負のときディジタル遅延
検波器35および判定回路36を選択し動作させる。非
負のとき等化器7を選択し、次のバーストタイミングで
も準同期検波回路3を選択し動作させる。
When the quasi-synchronous detection circuit 3 is already selected and operated, the equalizer 7 is a Viterbi type equalizer.
The control circuit 32 selects and operates one of the equalizer 7, the digital delay detection circuit 35, and the judgment circuit 36, whichever has a better BER characteristic, based on the judgment formula D ′ described in the first embodiment. Specifically, when the judgment formula D ′ is negative, the digital delay detector 35 and the judgment circuit 36 are selected and operated. When it is non-negative, the equalizer 7 is selected, and the quasi-coherent detection circuit 3 is selected and operated even at the next burst timing.

【0037】以上、切替タイミングがバーストタイミン
グと一致している場合について述べたが、バーストタイ
ミングを整数分周したタイミングに設定することも可能
である。
The case where the switching timing coincides with the burst timing has been described above, but it is also possible to set the burst timing to a timing obtained by dividing the burst timing by an integer.

【0038】図3は本発明第二実施例無線受信機のBE
R特性グラフを示す図である。
FIG. 3 is a BE of a radio receiver according to the second embodiment of the present invention.
It is a figure which shows a R characteristic graph.

【0039】本発明の効果を確かめるために、第二実施
例に関して計算シミュレーションを行った。最初にシミ
ュレーション条件について述べる。伝送速度は40kb
/s、変調方式はロールオフ0.5の差動符号化QPS
Kとした。伝搬路は遅延時間τの2波レイリーモデルと
し、1ビット当たりの信号エネルギー対雑音電力密度の
比EB /N0 =30dB、最大ドップラ周波数fD を8
0Hzとした。バースト信号の構成は、10シンボルの
トレーニング信号に64シンボルのデータ信号が続くも
のとした。等化器はビタビ形等化器であり、伝送路推定
にRLS(逐次最小自乗法、recursive least squares
)アルゴリズムを用いる。なお、RLSアルゴリズム
の忘却係数は0.8であり、ビタビアルゴリズムの状態
数は4とした。
In order to confirm the effect of the present invention, calculation simulation was performed on the second embodiment. First, the simulation conditions will be described. Transmission speed is 40 kb
/ S, modulation method is roll-off 0.5 differential encoding QPS
K. The propagation path is a two-wave Rayleigh model with delay time τ, and the ratio of signal energy to noise power density per bit E B / N 0 = 30 dB and maximum Doppler frequency f D is 8
It was set to 0 Hz. The structure of the burst signal was such that a training signal of 10 symbols was followed by a data signal of 64 symbols. The equalizer is a Viterbi type equalizer, and for the channel estimation, RLS (recursive least squares) is used.
) Use an algorithm. The forgetting factor of the RLS algorithm was 0.8, and the number of states of the Viterbi algorithm was 4.

【0040】[0040]

【発明の効果】以上説明したように、本発明は、遅延検
波回路を伝搬状況によって適宜使用するので、伝搬路の
遅延分散が小さく変動が激しいときでも優れた伝送特性
が得られ、かつ低消費電力化が図れる優れた効果があ
る。したがって伝送特性と消費電力との調和をとった無
線受信機を実現できる。
As described above, according to the present invention, since the differential detection circuit is appropriately used depending on the propagation situation, excellent transmission characteristics can be obtained even when the delay dispersion of the propagation path is small and the fluctuation is large, and the consumption is low. There is an excellent effect that electricity can be achieved. Therefore, it is possible to realize a wireless receiver that balances transmission characteristics and power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一実施例無線受信機のブロック構成
図。
FIG. 1 is a block configuration diagram of a wireless receiver according to a first embodiment of the present invention.

【図2】本発明第二実施例無線受信機のブロック構成
図。
FIG. 2 is a block diagram of a wireless receiver according to a second embodiment of the present invention.

【図3】本発明第二実施例無線受信機のBER特性グラ
フを示す図。
FIG. 3 is a diagram showing a BER characteristic graph of the wireless receiver according to the second embodiment of the present invention.

【図4】従来例の準同期検波回路を使用した無線受信機
のブロック構成図。
FIG. 4 is a block configuration diagram of a wireless receiver using a conventional quasi-coherent detection circuit.

【図5】他の従来例の遅延検波回路を使用した無線受信
機のブロック構成図。
FIG. 5 is a block configuration diagram of a wireless receiver using another conventional differential detection circuit.

【図6】無線受信機の受信されるバースト信号を示す
図。
FIG. 6 is a diagram showing a burst signal received by a wireless receiver.

【符号の説明】[Explanation of symbols]

1 入力端子 2 線形増幅器 3 準同期検波回路 4、5 アナログ・ディジタル変換器(AD変換器) 6 メモリ 7 等化器 8、9 出力端子 11 リミッタアンプ 12 遅延検波回路 13、36 判定回路 21、34 切替回路 22、32 制御回路 23、33 選択回路 35 ディジタル遅延検波回路 1 Input Terminal 2 Linear Amplifier 3 Quasi-Synchronous Detection Circuit 4, 5 Analog / Digital Converter (AD Converter) 6 Memory 7 Equalizer 8, 9 Output Terminal 11 Limiter Amplifier 12 Delay Detection Circuit 13, 36 Judgment Circuit 21, 34 Switching circuit 22, 32 Control circuit 23, 33 Selection circuit 35 Digital differential detection circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 受信信号を入力とする遅延検波回路と、
この遅延検波回路の出力の信号判定を行う判定回路とを
含む第一の検波回路を備え、 前記受信信号を入力とする準同期検波回路と、この準同
期検波回路の出力サンプリング値から信号判定を行う等
化器とを含む第二の検波回路を備え、 前記二つの検波回路のいずれか一方を選択する選択手段
を備え、 前記遅延検波回路の出力および前記出力サンプリング値
を取込み前記二つの検波回路の各評価値を演算する手段
と、この評価値にしたがって前記選択手段を制御する制
御手段とを含む制御回路を備えたことを特徴とする無線
受信機。
1. A differential detection circuit having a received signal as an input,
A first detection circuit including a determination circuit that performs a signal determination of the output of the delay detection circuit, a quasi-synchronous detection circuit that receives the received signal as an input, and a signal determination from an output sampling value of the quasi-synchronous detection circuit. A second detection circuit including an equalizer for performing, and a selection means for selecting one of the two detection circuits, the two detection circuits for taking in the output of the differential detection circuit and the output sampling value 2. A radio receiver comprising: a control circuit including means for calculating each evaluation value of 1. and control means for controlling the selecting means according to the evaluation value.
【請求項2】 前記評価値は、前記第一の検波回路につ
いては符号間干渉量および信号判定誤差であり、前記第
二の検波回路については信号判定誤差であり、前記制御
回路はこの評価値をあらかじめ設定された切替タイミン
グ毎に演算する構成である請求項1記載の無線受信機。
2. The evaluation value is an intersymbol interference amount and a signal determination error for the first detection circuit, and a signal determination error for the second detection circuit, and the control circuit has the evaluation value. 2. The wireless receiver according to claim 1, wherein the wireless receiver is configured to calculate for each preset switching timing.
【請求項3】 前記制御手段は、前記第一の検波回路が
選択されている状態ではその符号間干渉量があらかじめ
設定されたしきい値を越えたときに前記第二の検波回路
を選択し、前記第二の検波回路が選択されている状態で
は前記信号判定誤差の小さい方の検波回路を選択するよ
うに制御する手段を含む請求項1記載の無線受信機。
3. The control means selects the second detection circuit when the intersymbol interference amount exceeds a preset threshold value in a state where the first detection circuit is selected. 2. The radio receiver according to claim 1, further comprising: a control unit that controls the detection circuit having the smaller signal determination error to be selected when the second detection circuit is selected.
【請求項4】 前記第二の検波回路に、さらにディジタ
ル遅延検波回路と、このディジタル遅延検波回路の出力
の信号判定を行う判定回路と、前記出力サンプリング値
を前記等化器およびこのディジタル遅延検波回路に分配
する分配回路とを備え、 前記制御手段は、前記第一の検波回路が選択されている
状態ではその符号間干渉量があらかじめ設定されたしき
い値を越えたときに前記第二の検波回路を選択し、前記
第二の検波回路が選択されている状態では前記信号判定
誤差が前記第一の検波回路について小さいことが判定さ
れたときに、前記第二の検波回路の中のディジタル遅延
検波回路を選択し、さらに切替タイミングで前記第一の
検波回路を選択するように制御する手段を含む請求項2
記載の無線受信機。
4. The second detection circuit further includes a digital differential detection circuit, a determination circuit for determining a signal of an output of the digital differential detection circuit, the output sampling value to the equalizer and the digital differential detection circuit. A distribution circuit for distributing to the circuit, the control means, when the first detection circuit is selected, when the intersymbol interference amount exceeds a preset threshold value, the second In the state where the detection circuit is selected and the second detection circuit is selected, when it is determined that the signal determination error is small for the first detection circuit, the digital signal in the second detection circuit is selected. 3. A means for controlling the delay detection circuit to be selected and further to select the first detection circuit at a switching timing.
The wireless receiver described.
JP4313686A 1992-11-24 1992-11-24 Wireless receiver Expired - Fee Related JP2977396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4313686A JP2977396B2 (en) 1992-11-24 1992-11-24 Wireless receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4313686A JP2977396B2 (en) 1992-11-24 1992-11-24 Wireless receiver

Publications (2)

Publication Number Publication Date
JPH06164661A true JPH06164661A (en) 1994-06-10
JP2977396B2 JP2977396B2 (en) 1999-11-15

Family

ID=18044298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4313686A Expired - Fee Related JP2977396B2 (en) 1992-11-24 1992-11-24 Wireless receiver

Country Status (1)

Country Link
JP (1) JP2977396B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044571A (en) * 2007-08-10 2009-02-26 Japan Radio Co Ltd Wireless receiver
US7602836B2 (en) 2003-12-01 2009-10-13 Samsung Electronics Co., Ltd Receiver
JP2009296072A (en) * 2008-06-02 2009-12-17 Japan Radio Co Ltd Wireless receiver
JP2010245836A (en) * 2009-04-06 2010-10-28 Mitsubishi Electric Corp Receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602836B2 (en) 2003-12-01 2009-10-13 Samsung Electronics Co., Ltd Receiver
JP2009044571A (en) * 2007-08-10 2009-02-26 Japan Radio Co Ltd Wireless receiver
JP2009296072A (en) * 2008-06-02 2009-12-17 Japan Radio Co Ltd Wireless receiver
JP2010245836A (en) * 2009-04-06 2010-10-28 Mitsubishi Electric Corp Receiver

Also Published As

Publication number Publication date
JP2977396B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JP2715662B2 (en) Method and apparatus for diversity reception of time division signals
US5465276A (en) Method of forming a channel estimate for a time-varying radio channel
US7796709B2 (en) Method and system for signal quality measurement based on mean phase error magnitude of a signal
CN100429875C (en) Signal strength compensation for mobile radio channels that considerably vary with time
JP2008136234A (en) Receiving method and receiver
JP3723653B2 (en) Digital mobile phone equipment
JP4000088B2 (en) Wireless receiver and reception filtering method
JPH10322408A (en) Receiver and signal reception method
WO2001073945A1 (en) Gain control device
EP1222743A1 (en) Receiver, transceiver, radio unit and method for telecommunication
WO1995001035A1 (en) Digital radio communication equipment
GB2434948A (en) LLR calculation with quantization of values which are scaled depending on SNR.
US7349493B2 (en) Demodulation with separate branches for phase and amplitude
EP0674398B1 (en) Delay spread sensor and detection switching circuit using it
EP0802657B1 (en) Receiver for mobile communications systems with equalisation and differential detection
JP2002290177A (en) Receiver and automatic gain control method
WO1991017607A1 (en) A method of equalization in a receiver of signals having passed a transmission channel
JP7268727B2 (en) Wireless communication device, wireless communication system and wireless communication method
JPH06164661A (en) Radio receiver
JPH09307380A (en) Radio communication equipment with agc function
JP3435392B2 (en) Wireless communication method and wireless communication device
US20020167999A1 (en) Equalizer, receiver, and equalization method and reception method
Yeh et al. An AGC design of mobile cellular systems
JP2006295766A (en) Nonlinear distortion equalization system
US7158557B2 (en) Channel estimation apparatus and method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees