JPH06164515A - Optical amplifying repeater - Google Patents

Optical amplifying repeater

Info

Publication number
JPH06164515A
JPH06164515A JP4335525A JP33552592A JPH06164515A JP H06164515 A JPH06164515 A JP H06164515A JP 4335525 A JP4335525 A JP 4335525A JP 33552592 A JP33552592 A JP 33552592A JP H06164515 A JPH06164515 A JP H06164515A
Authority
JP
Japan
Prior art keywords
optical
signal
band
terminal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4335525A
Other languages
Japanese (ja)
Inventor
Izumi Yokota
泉 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4335525A priority Critical patent/JPH06164515A/en
Publication of JPH06164515A publication Critical patent/JPH06164515A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To branch/synthesize another signal which is waveform-multiplexed with a main signal so that a high S/N rate can be obtained without being affected by the main signal by simultaneously branching the optical signal which is waveform- multiplexed and synthesizing exciting light to branching light. CONSTITUTION:The main signal is loaded on a 1.55mum-band and a monitor control signal on the optical signal of a 1.347m-band, for example, so as to transmit them on an optical fiber transmission line 8. When the both optical signals are inputted from the transmission line 8 to the terminal (1) of a WDM coupler 1, the main signal is branched to the optical amplifier fiber 2 of a terminal (2)-side and a control signal to the light-receiving element 5 of a terminal (3)-side. The main signal is light-amplified by excitation by inputting the exciting light of the 1.48mum-band to the terminal (4) of the coupler 1. On the other hand, the control signal is converted into an electric signal in the element 5, is monitor-controlled and amplified in an electric circuit 6 and is electrically/optically converted into the original wavelength band in a light- emitting element 7. Furthermore, the main signal which is inputted to the terminal (4) of a WDM coupler 3 and is amplified in an amplifier 2 is synthesized with the control signal in the terminal (2) so as to output it again to an optical fiber 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信システム等に用い
られる光増幅中継器に関するものである。信号光を光の
ままで増幅する光増幅器は、高速の電子回路が不要であ
り、高利得、高出力、信号の速度によらないといった優
れた特性を有しており、色々なシステムへの適用が可能
である。光増幅器を中継器として用いる場合、各中継器
の状態を把握する上で監視制御を行うことが重要であ
り、そのため主信号と監視制御信号を多重して伝送する
が、この監視制御信号を主信号から効率よく多重/分離
できることが必要とされる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplifier repeater used in an optical communication system or the like. The optical amplifier that amplifies the signal light as it is does not require a high-speed electronic circuit, and has excellent characteristics such as high gain, high output, and no dependence on the signal speed, and is applicable to various systems. Is possible. When using an optical amplifier as a repeater, it is important to perform supervisory control in order to grasp the state of each repeater. Therefore, the main signal and supervisory control signal are multiplexed and transmitted. It is necessary to be able to efficiently multiplex / separate from the signal.

【0002】[0002]

【従来の技術】光増幅中継システムにおいて、各中継器
の監視制御を行うために、同じ光波長を用いて主信号に
監視制御信号を重畳させて伝送する方法、あるいは主信
号の光波長(通常、1.55μm帯)と数nm〜数十n
m離れた光波長に監視制御信号を乗せて光信号の状態で
多重化して伝送する方法が検討されている。
2. Description of the Related Art In an optical amplification repeater system, in order to monitor and control each repeater, the same optical wavelength is used to superimpose a supervisory control signal on a main signal for transmission, or the optical wavelength of the main signal (usually , 1.55 μm band) and several nm to several tens of n
A method is being studied in which a supervisory control signal is placed on optical wavelengths distant from each other by m, and the signals are multiplexed and transmitted in the state of optical signals.

【0003】[0003]

【発明が解決しようとする課題】各中継器の監視制御を
行うために主信号に監視制御信号を重畳させる方法の場
合、主信号が強度変調で監視制御信号も振幅変調では、
監視制御信号の周波数によっては主信号の成分の漏れ込
みが生じる、監視制御信号の特性が主信号のマーク率に
依存する、微小変調なので監視制御信号のS/N比が悪
い、重畳による主信号の振幅の劣化等が起こる等の問題
がある。
In the case of the method of superimposing the supervisory control signal on the main signal for performing supervisory control of each repeater, the main signal is intensity modulation and the supervisory control signal is also amplitude modulation.
The component of the main signal leaks depending on the frequency of the supervisory control signal, the characteristics of the supervisory control signal depend on the mark ratio of the main signal, and the S / N ratio of the supervisory control signal is poor because of minute modulation. There is a problem such as the deterioration of the amplitude of.

【0004】また、後者の波長多重による方法の場合、
各中継器で主信号光と監視制御信号光を分けて処理する
ために、多重化された主信号光から監視制御信号光を分
波するための分波器と、分波し処理した後の監視制御信
号光を再び主信号光に合波して伝送路に送出するための
合波器とが必要となり、光部品が増えて、価格、信頼度
の点で不利になる。また、主信号も損失を受けるため、
利得が下がる、中継器の雑音指数が悪くなるといった問
題が生じる。
In the latter case of the wavelength division multiplexing method,
In order to process the main signal light and the supervisory control signal light separately in each repeater, a demultiplexer for demultiplexing the supervisory control signal light from the multiplexed main signal light and a demultiplexer A multiplexer for multiplexing the supervisory control signal light with the main signal light again and sending it to the transmission line is required, and the number of optical components increases, which is disadvantageous in terms of price and reliability. Also, the main signal suffers loss,
There are problems that the gain is lowered and the noise figure of the repeater is deteriorated.

【0005】本発明はかかる問題点に鑑みてなされたも
のであり、その目的とするところは、波長多重された監
視制御信号等の他の信号が主信号にまったく影響されな
く、どのような変調方法でも良く、高いS/N比がとれ
るように効率よく主信号と分波、合波できるようにする
ことにある。
The present invention has been made in view of the above problems, and it is an object of the present invention to determine what kind of modulation the other signals such as the wavelength-multiplexed supervisory control signals are not affected by the main signal at all. The method is also applicable, and is to enable efficient demultiplexing and multiplexing with the main signal so that a high S / N ratio can be obtained.

【0006】[0006]

【課題を解決するための手段】図1は本発明に係る原理
説明図である。本発明の光増幅中継器は、第1、第2の
光波長帯で波長多重された光信号を中継する光増幅中継
器であって、励起光を発生する励起光源31と、波長多
重された光信号が入力されてこれを第1、第2の光波長
帯の光信号に分波するとともに、残りの入力端子に励起
光源31からの励起光が入力されてこれを分波された第
1の光波長帯の光信号に合波する第1のWDMカプラ3
2と、第1のWDMカプラ32で分波された第1の波長
帯の光信号を励起光を用いて光増幅する光増幅器33
と、第1のWDMカプラ32で分波された第2の波長帯
の光信号を再生中継する再生中継回路34と、光増幅器
33から出力された光信号と再生中継回路34から出力
された光信号を合波する第2のWDMカプラ35とを備
えたものである。
FIG. 1 is a diagram illustrating the principle of the present invention. The optical amplification repeater of the present invention is an optical amplification repeater that repeats wavelength-multiplexed optical signals in the first and second optical wavelength bands, and is wavelength-multiplexed with a pumping light source 31 that generates pumping light. An optical signal is input and demultiplexed into optical signals in the first and second optical wavelength bands, and the pumping light from the pumping light source 31 is input to the remaining input terminal and demultiplexed. First WDM coupler 3 for multiplexing optical signals in the optical wavelength band of
2 and an optical amplifier 33 for optically amplifying the optical signal of the first wavelength band demultiplexed by the first WDM coupler 32 by using the pump light.
And a regenerative repeater circuit 34 for regeneratively repeating the optical signal of the second wavelength band demultiplexed by the first WDM coupler 32, an optical signal output from the optical amplifier 33, and an optical signal output from the regenerative repeater circuit 34. And a second WDM coupler 35 that multiplexes the signals.

【0007】上述の光増幅中継器は、再生中継回路34
の代わりに、第2の波長帯の光信号を光信号のままで光
増幅する第2の光増幅器を備えるよう構成することがで
きる。
The above-described optical amplification repeater is based on the regeneration repeater circuit 34.
Instead of the above, a second optical amplifier that optically amplifies an optical signal in the second wavelength band as an optical signal can be provided.

【0008】また上述の光増幅中継器は、第2のWDM
カプラの残りの出力端子に励起光が入力されるように構
成し、この励起光を該光増幅器に逆方向から入力してこ
れを後方励起するように構成することができる。
Further, the above-mentioned optical amplification repeater has a second WDM
The pump light may be configured to be input to the remaining output terminals of the coupler, and the pump light may be configured to be input to the optical amplifier from the opposite direction and to be backward pumped.

【0009】上述の第1、第2のWDMカプラは融着
長、融着間隔を適当に選ぶことで通過信号光の損失の波
長周期を選択できるファイバ融着型WDMカプラサで構
成することができる。
The above-mentioned first and second WDM couplers can be constructed by fiber fusion type WDM couplers capable of selecting the wavelength period of the loss of the passing signal light by appropriately selecting the fusion length and the fusion interval. .

【0010】[0010]

【作用】ファイバ融着型等のWDM(Wavelenght Divis
ion Multiplex :波長分割多重方式)カプラは、信号光
の通過経路によって通過信号光の損失が波長依存性を持
ち、ある一定の波長周期で減衰、透過の特性を繰り返し
ており、融着長、融着間隔を適当に選ぶことでこの波長
周期等を選択できる。この性質を利用し、波長多重され
た光信号の分波と分波光への励起光の合波とを同時に行
うようにする。
[Function] WDM (Wavelenght Divis) such as fiber fusion type
Ion Multiplex: A coupler has a wavelength dependence in the loss of the passing signal light depending on the signal light passing path, and repeats the characteristics of attenuation and transmission at a certain wavelength cycle. The wavelength period and the like can be selected by appropriately selecting the landing interval. By utilizing this property, the demultiplexing of the wavelength-multiplexed optical signal and the multiplexing of the pumping light into the demultiplexed light are performed at the same time.

【0011】例えば、第1の波長として1.55μm
帯、第2の光波長として1.34μm帯を用いて、1.
55μmに主信号、1.34μm帯に監視制御信号等の
他の信号を乗せるようにした場合、ファイバ融着型WD
Mカプラの端子に、1.55μm 帯と1.3μm 帯で
波長多重された光信号を入力すると、端子へ1.55
μm 帯の光信号を、また端子に1.34μm 帯の光信
号を分波して出力することができる。
For example, the first wavelength is 1.55 μm
Band, using the 1.34 μm band as the second light wavelength, 1.
When a main signal is put on 55 μm and another signal such as a monitor control signal is put on the 1.34 μm band, the fiber fusion type WD
When the wavelength-multiplexed optical signal in the 1.55 μm band and 1.3 μm band is input to the M coupler terminal, 1.55 μm is input to the terminal.
An optical signal in the μm band and an optical signal in the 1.34 μm band can be demultiplexed and output to the terminal.

【0012】同時に、端子からは1.55μm 帯の光
信号を増幅する希土類元素をドープした光ファイバでの
励起波長である1.48μm 帯の光信号を入力すると、
この1.48μm帯の光信号は端子へ出力されて(端
子へは出力されず)、端子において1.55μm 帯
の光信号と合波することができる。この端子の出力の
先に希土類元素ドープ光ファイバ増幅器を接続すること
で、1.55μm 帯の光信号を増幅する前方励起型の光
増幅器を構成することができる。
At the same time, when an optical signal in the 1.48 μm band, which is the excitation wavelength in the optical fiber doped with a rare earth element for amplifying the optical signal in the 1.55 μm band, is input from the terminal,
The optical signal in the 1.48 μm band is output to the terminal (not output to the terminal) and can be combined with the optical signal in the 1.55 μm band at the terminal. By connecting a rare earth element-doped optical fiber amplifier to the end of the output of this terminal, a forward pumping type optical amplifier for amplifying an optical signal in the 1.55 μm band can be constructed.

【0013】また、第2のWDMカプラにおいて、端子
より1.55μm 帯の光信号を、端子より1.34
μm 帯の光信号を入力すると、端子へ両波長の光信号
が合波されて出力される。この場合、空いている端子
から1.48μm 帯の光信号を入力すると、その1.4
8μm帯の光信号は端子へ出力され、それにより光フ
ァイバ増幅器2を後方励起することができる。
In the second WDM coupler, an optical signal in the 1.55 μm band from the terminal and 1.34 from the terminal
When an optical signal in the μm band is input, the optical signals of both wavelengths are combined and output to the terminal. In this case, if the 1.48 μm band optical signal is input from the vacant terminal, the
The optical signal in the 8 μm band is output to the terminal, whereby the optical fiber amplifier 2 can be backward pumped.

【0014】この結果、従来ではWDMカプラを用いる
場合は二つの波長の合波・分波の用途にそれぞれ別々に
用い一つのポートは無駄になっていたが、上記のように
使用する波長を選べば3つの波長の光信号の合波・分波
を同時に行え、光部品数を増やすことなく、機能を増や
すことが可能になる。
As a result, conventionally, when the WDM coupler is used, it is used separately for the purpose of multiplexing and demultiplexing two wavelengths, and one port is wasted. However, the wavelength to be used can be selected as described above. For example, it is possible to combine and demultiplex optical signals of three wavelengths at the same time, and it is possible to increase the functions without increasing the number of optical components.

【0015】[0015]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図2には本発明の一実施例としての光増幅中継器
が示される。図において、1はファイバ融着型のWDM
(Wavelenght Division Multiplex :波長分割多重方
式)カプラであり、その端子には光ファイバ伝送路8
から光信号が入力され、その端子には励起用のレーザ
ダイオード4から1.48μm帯の励起光が入力されて
おり、また端子の後段には光ファイバ増幅器2が接続
され、端子の後段には1.34μm帯の光信号を感知
するホトダイオードからなる受光素子5が接続される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an optical amplification repeater as an embodiment of the present invention. In the figure, 1 is a fiber fusion type WDM
(Wavelenght Division Multiplex) A coupler with an optical fiber transmission line 8 at its terminal.
From the laser diode 4 for pumping is input to its terminal, and the optical fiber amplifier 2 is connected to the subsequent stage of the terminal, and the optical fiber amplifier 2 is connected to the subsequent stage of the terminal. A light receiving element 5 formed of a photodiode that senses an optical signal in the 1.34 μm band is connected.

【0016】図3の(A)、(B)には、この実施例の
WDMカプラ1の構成と特性が示される。ファイバ融着
型のWDMカプラは端子から端子への経路と端子
から端子への経路、あるいは端子から端子への経
路と端子から端子への経路で通過光信号の損失が波
長依存性を持つ。図3の(B)はこの波長依存性を示し
たものである。図示のように、WDMカプラ1は、ある
一定の波長周期で減衰、透過の特性を繰り返しており、
融着長L、融着間隔Dを適当に選ぶことで波長周期等が
選択できる。
3A and 3B show the structure and characteristics of the WDM coupler 1 of this embodiment. In the fiber-fusion type WDM coupler, the loss of the passing optical signal has wavelength dependence in the path from terminal to terminal and from terminal to terminal, or from terminal to terminal and terminal to terminal. FIG. 3B shows this wavelength dependence. As shown in the figure, the WDM coupler 1 repeats the characteristics of attenuation and transmission at a certain wavelength cycle,
The wavelength period and the like can be selected by appropriately selecting the fusion length L and the fusion interval D.

【0017】この性質を利用して、本実施例ではこの間
隔及び波長の値を図3の(B)のような特性を持つよう
に設定する。すなわち、→の経路では、端子から
入力されて端子に出力される光信号は、波長1.34
μm帯と1.48μm帯のものが減衰され、波長1.4
1μm帯と1.55μm帯のものが透過される。また
→の経路では、端子からに入力されて端子に出力
される光信号は、波長1.41μm帯と1.55μm帯
のものが減衰され、波長1.34μm帯と1.48μm
帯のものが透過される。→の経路と→の経路に
ついても同様であり、→の経路では、端子から入
力されて端子に出力される光信号は、波長1.34μ
m帯と1.48μm帯のものが透過され、波長1.41
μm帯と1.55μm帯のものが減衰される。また→
の経路では、端子からに入力されて端子に出力さ
れる光信号は、波長1.41μm帯と1.55μm帯の
ものが透過され、波長1.34μm帯と1.48μm帯
のものが減衰される。
Utilizing this property, the values of the interval and the wavelength are set so as to have the characteristics shown in FIG. 3B in this embodiment. That is, in the → route, the optical signal input from the terminal and output to the terminal has a wavelength of 1.34
The wavelengths of 1.4 μm and 1.48 μm are attenuated and the wavelength is 1.4.
The 1 μm band and the 1.55 μm band are transmitted. In the path of →, optical signals input from the terminal and output to the terminal are attenuated at wavelengths of 1.41 μm band and 1.55 μm band, and wavelengths of 1.34 μm band and 1.48 μm band are attenuated.
The band is transmitted. The same applies to the → route and → route. In the → route, the optical signal input from the terminal and output to the terminal has a wavelength of 1.34 μm.
The wavelengths of 1.41 μm and 1.48 μm are transmitted.
Those in the μm band and the 1.55 μm band are attenuated. Also →
In the path of, the optical signals input from the terminal and output to the terminal are transmitted at wavelengths of 1.41 μm band and 1.55 μm band, and attenuated at wavelengths of 1.34 μm band and 1.48 μm band. It

【0018】光ファイバ増幅器2は希土類元素ドープ光
ファイバにより1.48μm帯の励起光を用いて1.5
5μm帯の光信号を増幅する光増幅器である。この光フ
ァイバ増幅器2の出力信号はWDMカプラ1と同じ構成
のWDMカプラ3の端子に入力される。
The optical fiber amplifier 2 is a rare-earth element-doped optical fiber, and uses a pumping light in the 1.48 μm band for 1.5.
It is an optical amplifier that amplifies an optical signal in the 5 μm band. The output signal of the optical fiber amplifier 2 is input to the terminal of a WDM coupler 3 having the same configuration as the WDM coupler 1.

【0019】受光素子5で光/電気変換された監視制御
信号は電子回路6に入力されて処理された後、再びレー
ザダイオードからなる発光素子7により1.34μm帯
の光信号に電気/光変換されてWDMカプラ3の端子
に入力される。またWDMカプラ3の端子からは1.
48μm帯の励起光を入力することができるようになっ
ている。
The monitor / control signal optically / electrically converted by the light receiving element 5 is inputted to the electronic circuit 6 and processed, and then is again electrically / optically converted into an optical signal in the 1.34 μm band by the light emitting element 7 which is a laser diode. It is then input to the terminal of the WDM coupler 3. Also, from the terminal of the WDM coupler 3, 1.
The excitation light in the 48 μm band can be input.

【0020】この実施例装置の動作を以下に説明する。
この実施例の光増幅中継器が適用される光通信システム
では、主信号を1.55μm帯の光信号に、また監視制
御信号を1.34μm帯の光信号にそれぞれ乗せて光フ
ァイバ伝送路8を伝送する。いま光ファイバ伝送路8か
らこの1.55μm帯と1.34μm帯の光信号がWD
Mカプラ1の端子に入力されると、WDMカプラ1に
より1.55μm 帯の光信号(主信号)は端子側の光
増幅ファイバ2へ、1.3μm 帯の光信号(監視制御信
号)は端子側の受光素子5へそれぞれ分波される。
The operation of the apparatus of this embodiment will be described below.
In an optical communication system to which the optical amplification repeater of this embodiment is applied, an optical fiber transmission line 8 is prepared by adding a main signal to an optical signal in the 1.55 μm band and a supervisory control signal to an optical signal in the 1.34 μm band. To transmit. Now, the optical signals of the 1.55 μm band and the 1.34 μm band are transmitted from the optical fiber transmission line 8 to WD.
When input to the terminal of the M coupler 1, the WDM coupler 1 outputs the optical signal in the 1.55 μm band (main signal) to the optical amplification fiber 2 on the terminal side, and the optical signal in the 1.3 μm band (monitoring control signal) into the terminal. It is demultiplexed to the light receiving element 5 on the side.

【0021】またWDMカプラ1の端子にレーザダイ
オード4で発生した1.48μm 帯の励起光を入力する
ことにより、この1.48μm帯の励起光を端子にお
いて1.55μm 帯の光信号と合波して光増幅ファイバ
2へ入力することができ、これにより1.55μm帯の
光信号を前方励起により光増幅することができる。
Further, by inputting the 1.48 μm band pumping light generated by the laser diode 4 to the terminal of the WDM coupler 1, the 1.48 μm band pumping light is combined with the 1.55 μm band optical signal at the terminal. Then, the light signal can be input to the optical amplification fiber 2, whereby an optical signal in the 1.55 μm band can be optically amplified by forward pumping.

【0022】一方、1.34μm帯の光信号(監視制御
信号)は受光素子5で電気信号に変換され、電子回路6
ではこの監視制御信号に基づいて監視制御を行ったり増
幅等をした後に、発光素子7で再び1.34μm帯の光
信号に電気/光変換する。さらに、WDMカプラ3の端
子に入力し、これにより端子において1.34μm
帯の光信号と光ファイバ増幅器2で光増幅された1.5
5μm 帯の光信号を再び合波して、光ファイバ伝送路9
に出力する。
On the other hand, the optical signal (monitoring control signal) in the 1.34 μm band is converted into an electric signal by the light receiving element 5, and the electronic circuit 6
Then, after performing monitoring control or amplification based on this monitoring control signal, the light emitting element 7 again performs electrical / optical conversion into an optical signal in the 1.34 μm band. Furthermore, input to the terminal of the WDM coupler 3, and thereby 1.34 μm at the terminal.
The optical signal of the band and the optical signal amplified by the optical fiber amplifier 2 is 1.5.
The optical signal in the 5 μm band is recombined and the optical fiber transmission line 9
Output to.

【0023】また、このWDMカプラ3の端子から
1.48μm帯の励起光を入力すると、この励起光は端
子側に出力されて光ファイバ増幅器2を後方励起する
ことができる。
When pumping light in the 1.48 μm band is input from the terminal of the WDM coupler 3, this pumping light is output to the terminal side and the optical fiber amplifier 2 can be pumped backward.

【0024】本発明の実施にあたっては種々の変形形態
が可能である。例えば、上述の実施例では、WDMカプ
ラ1で分波した1.34μm帯の光信号を光/電気変換
した後に電子回路6で処理をして再び電気/光変換して
1.55μ帯の光信号と合波するようにしたが、本発明
はこれに限られるものではなく、これらの受光素子5、
電子回路6、発光素子7の代わりに光増幅器を用い、分
波した1.34μm帯の光信号を光増幅器で光信号のま
まで光増幅して1.55μm帯の光信号と再び合波する
ようにしてもよい。
Various modifications are possible in carrying out the present invention. For example, in the above-described embodiment, the optical signal in the 1.34 μm band demultiplexed by the WDM coupler 1 is optically / electrically converted, and then processed by the electronic circuit 6 to be electrically / optically converted again to generate an optical signal in the 1.55 μm band. Although the signal is multiplexed, the present invention is not limited to this, and these light receiving elements 5,
An optical amplifier is used instead of the electronic circuit 6 and the light emitting element 7, and the demultiplexed 1.34 μm band optical signal is optically amplified by the optical amplifier as it is and recombined with the 1.55 μm band optical signal. You may do it.

【0025】また1.34μm帯の光信号にのせる信号
は監視制御信号に限られるものではなく、この1.34
μm帯にも主信号をのせるようにして伝送信号の波長多
重を行うものであってもよい。
The signal to be put on the optical signal in the 1.34 μm band is not limited to the supervisory control signal.
The transmission signal may be wavelength-multiplexed by placing the main signal in the μm band.

【0026】図4には本発明の光増幅中継器を利用して
構成した中継局の例が示される。図中、11と15は前
述の実施例で説明した本発明の光増幅中継器であり、光
増幅器中継器11は上り回線用、光増幅中継器15は下
り回線用である。また12、13、14はWDMカプラ
1と同様な構成のWDMカプラであり、16、17はホ
トダイオードからなる発光素子である。
FIG. 4 shows an example of a relay station constructed by using the optical amplification repeater of the present invention. In the figure, 11 and 15 are the optical amplification repeaters of the present invention described in the above embodiments, the optical amplifier repeater 11 is for the upstream line, and the optical amplification repeater 15 is for the downlink line. Further, reference numerals 12, 13, and 14 are WDM couplers having the same configuration as that of the WDM coupler 1, and reference numerals 16 and 17 are light emitting elements formed of photodiodes.

【0027】上り回線においては、光ファイバ伝送路1
8から入力された光信号は光増幅中継器11で光増幅さ
れた後に、WDMカプラ12を介して光ファイバ伝送路
19に送出される。この光増幅中継器11の出力信号に
は1.48μm帯の励起光が若干残留しているが、この
励起光はWDMカプラ12の端子に分波されてWDM
カプラ13の端子に入力される。同様に、下り回線に
おいては、光増幅中継器15から出力された光信号はカ
プラ14を経て光ファイバ伝送路21に送出され、WD
Mカプラ14で分波された1.48μm帯の励起光はW
DMカプラ13の端子に入力される。
In the upstream line, the optical fiber transmission line 1
The optical signal input from 8 is optically amplified by the optical amplification repeater 11 and then transmitted to the optical fiber transmission line 19 via the WDM coupler 12. The output signal of the optical amplification repeater 11 contains a small amount of pumping light in the 1.48 μm band, but this pumping light is demultiplexed to the terminal of the WDM coupler 12 and then the WDM
It is input to the terminal of the coupler 13. Similarly, in the downlink, the optical signal output from the optical amplification repeater 15 is transmitted to the optical fiber transmission line 21 via the coupler 14 and
The 1.48 μm band pump light demultiplexed by the M coupler 14 is W
It is input to the terminal of the DM coupler 13.

【0028】この中継局での動作を以下に説明する。上
り伝送路18からの1.55μm 帯の光信号は光増幅中
継器11で増幅され、WDMカプラ12を通り、上り伝
送路19に出力される。この光増幅中継器11で使われ
ずに残った1.48μm帯の励起光は、WDMカプラ1
2によって分波され、さらにWDMカプラ13を通り、
下り回線側のWDMカプラ14に入力されて下り回線側
の光増幅中性器15に逆方向から入力され(WDMカプ
ラ3の端子に入力され)、これにより光増幅中継器1
5を後方励起することになる。この場合のWDMカプラ
12、13 14の損失は一台当たり0.7dBとして
2.1dBとなる。
The operation of this relay station will be described below. The 1.55 μm band optical signal from the upstream transmission line 18 is amplified by the optical amplification repeater 11, passes through the WDM coupler 12, and is output to the upstream transmission line 19. The 1.48 μm band pump light remaining without being used in the optical amplification repeater 11 is the WDM coupler 1
It is demultiplexed by 2 and further passes through the WDM coupler 13,
The signal is input to the WDM coupler 14 on the downlink side and then input to the optical amplification neutralizer 15 on the downlink side from the opposite direction (input to the terminal of the WDM coupler 3), whereby the optical amplification repeater 1
5 will be back-excited. In this case, the loss of the WDM couplers 12 and 13 14 is 2.1 dB assuming 0.7 dB per unit.

【0029】また、下り光増幅中継器15からの残留励
起光も同様な経路を通り、上り光増幅中継器11に入力
される。このように、図4の構成によれば、光増幅中継
器11、15の出力に残留した励起光を再び他方の回線
の光増幅中継器に逆方向から入力してそれを後方励起す
ることができるので、残留した励起光をも無駄なく有効
に利用することが可能となる。
The residual pumping light from the downstream optical amplification repeater 15 also enters the upstream optical amplification repeater 11 through the same path. As described above, according to the configuration of FIG. 4, the pumping light remaining at the outputs of the optical amplifying repeaters 11 and 15 can be input to the optical amplifying repeaters of the other line from the opposite direction and be pumped backward. Therefore, the remaining excitation light can be effectively used without waste.

【0030】また、WDMカプラ12、14で伝送路に
出力される1.55μm 帯の光信号の一部(約20dBダ
ウン)はWDMカプラ13へ入力されので、その一部の
光信号をそれぞれ受光素子16、17で受光して信号光
のモニタとすることができる。
Further, since a part (about 20 dB down) of the 1.55 μm band optical signal output to the transmission line by the WDM couplers 12 and 14 is input to the WDM coupler 13, that part of the optical signal is received respectively. Light can be received by the elements 16 and 17 and used as a monitor of signal light.

【0031】[0031]

【発明の効果】以上説明したように、光増幅中継システ
ムにおいて、例えば主信号を1.55μm帯の光信号
に、また監視制御信号や他の信号を1.34μm帯の光
信号に乗せて伝送することにより、1.34μm帯側の
信号は主信号にまったく影響されなく、どのような変調
方法でも良く、高いS/N比がとれるようになる。中継
器の構成としても、励起光用のWDMカプラを使用する
ことで損失等を増やすことなく簡単にできる。
As described above, in the optical amplification repeater system, for example, the main signal is carried on the 1.55 μm band optical signal, and the supervisory control signal and other signals are carried on the 1.34 μm band optical signal for transmission. By doing so, the signal on the 1.34 μm band side is not affected by the main signal at all, any modulation method may be used, and a high S / N ratio can be obtained. As for the configuration of the repeater, it is possible to simplify the configuration by using a WDM coupler for pumping light without increasing loss or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明の一実施例としての光増幅中継器を示す
図である。
FIG. 2 is a diagram showing an optical amplification repeater as an embodiment of the present invention.

【図3】実施例装置におけるファイバ融着型WDMカプ
ラの構成とその特性の例を示す図である。
FIG. 3 is a diagram showing an example of the configuration and characteristics of a fiber fusion-bonded WDM coupler in the apparatus of the embodiment.

【図4】本発明の光増幅中継器を利用した構成した中継
局を示す図である。
FIG. 4 is a diagram showing a relay station configured using the optical amplification repeater of the present invention.

【符号の説明】[Explanation of symbols]

1、3、12、13、14、 WDMカプラ 2 光ファイバ増幅器 4 励起レーザダイオードからなる発光素子(1.48
μm帯) 5 ホトダイオードからなる受光素子 6 電子回路 7 レーザダイオードからなる発光素子(1.34μm
帯) 8,9、18、19、20、21 光ファイバ伝送路 16、17 受光素子
1,3,12,13,14, WDM coupler 2 Optical fiber amplifier 4 Light emitting element composed of pump laser diode (1.48
μm band) 5 Photodetector consisting of photodiode 6 Electronic circuit 7 Light emitting device consisting of laser diode (1.34 μm
Band) 8, 9, 18, 19, 20, 21 Optical fiber transmission line 16, 17 Light receiving element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04J 14/02 8220−5K H04B 9/00 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H04J 14/02 8220-5K H04B 9/00 E

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1、第2の光波長帯で波長多重された
光信号を中継する光増幅中継器であって、 励起光を発生する励起光源(31)と、 該波長多重された光信号が入力されてこれを第1、第2
の光波長帯の光信号に分波するとともに、残りの入力端
子に該励起光源からの励起光が入力されてこれを該分波
された第1の光波長帯の光信号に合波する第1のWDM
カプラ(32)と、 該第1のWDMカプラで分波された第1の波長帯の光信
号を該励起光を用いて光増幅する光増幅器(33)と、 該第1のWDMカプラで分波された第2の波長帯の光信
号を再生中継する再生中継回路(34)と、 該光増幅器から出力された光信号と該再生中継回路から
出力された光信号を合波する第2のWDMカプラ(3
5)とを備えた光増幅中継器。
1. An optical amplification repeater for repeating an optical signal wavelength-multiplexed in first and second optical wavelength bands, comprising: a pumping light source (31) for generating pumping light; and the wavelength-multiplexed light. A signal is input and this is input to the first and second
While demultiplexing into the optical signal of the optical wavelength band of the first, the pumping light from the pumping light source is input to the remaining input terminal, and is multiplexed with the demultiplexed optical signal of the first optical wavelength band. WDM of 1
A coupler (32), an optical amplifier (33) for optically amplifying an optical signal of the first wavelength band demultiplexed by the first WDM coupler by using the pumping light, and a demultiplexer by the first WDM coupler. A regenerative repeater circuit (34) for regeneratively repeating the waved optical signal in the second wavelength band, and a second remultiplexer for multiplexing the optical signal output from the optical amplifier and the optical signal output from the regenerative repeater circuit. WDM coupler (3
5) An optical amplification repeater including
【請求項2】 該再生中継回路の代わりに、該第2の波
長帯の光信号を光信号のままで光増幅する第2の光増幅
器を備えたことを特徴とする請求項1記載の光増幅中継
器。
2. The optical device according to claim 1, further comprising a second optical amplifier which optically amplifies an optical signal in the second wavelength band as an optical signal, instead of the regenerative repeater circuit. Amplifying repeater.
【請求項3】 該第2のWDMカプラの残りの出力端子
に励起光が入力されるように構成され、この励起光を該
光増幅器に逆方向から入力してこれを後方励起するよう
に構成された請求項1または2記載の光増幅中継器。
3. A pump light is configured to be input to the remaining output terminal of the second WDM coupler, and the pump light is input to the optical amplifier from the opposite direction to pump the light backward. The optical amplification repeater according to claim 1 or 2.
【請求項4】 該第1、第2のWDMカプラは融着長、
融着間隔を適当に選ぶことで通過信号光の損失の波長周
期を選択できるファイバ融着型WDMカプラサであるこ
とを特徴とする請求項1〜3のいずれかに記載の光増幅
中継器。
4. The first and second WDM couplers are fused lengths,
The optical amplification repeater according to any one of claims 1 to 3, wherein the optical amplification repeater is a fiber fusion type WDM coupler which can select a wavelength period of loss of passing signal light by appropriately selecting a fusion interval.
JP4335525A 1992-11-20 1992-11-20 Optical amplifying repeater Withdrawn JPH06164515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4335525A JPH06164515A (en) 1992-11-20 1992-11-20 Optical amplifying repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4335525A JPH06164515A (en) 1992-11-20 1992-11-20 Optical amplifying repeater

Publications (1)

Publication Number Publication Date
JPH06164515A true JPH06164515A (en) 1994-06-10

Family

ID=18289551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4335525A Withdrawn JPH06164515A (en) 1992-11-20 1992-11-20 Optical amplifying repeater

Country Status (1)

Country Link
JP (1) JPH06164515A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256125B1 (en) 1997-04-30 2001-07-03 Nec Corporation WDM optical transmission system
US6535309B1 (en) 1998-03-20 2003-03-18 Fujitsu Limited Optical multiplexing/demultiplexing apparatus and optical multiplexing/demultiplexing method
US6542272B1 (en) 1998-02-24 2003-04-01 Nec Corporation Control signal transmission method and apparatus for optical transmission system
US7941049B2 (en) 2006-11-29 2011-05-10 Hitachi, Ltd. Optical transmission apparatus with optical amplifiers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256125B1 (en) 1997-04-30 2001-07-03 Nec Corporation WDM optical transmission system
US6320684B2 (en) 1997-04-30 2001-11-20 Nec Corporation WDM optical transmission system
US6542272B1 (en) 1998-02-24 2003-04-01 Nec Corporation Control signal transmission method and apparatus for optical transmission system
US6535309B1 (en) 1998-03-20 2003-03-18 Fujitsu Limited Optical multiplexing/demultiplexing apparatus and optical multiplexing/demultiplexing method
US7941049B2 (en) 2006-11-29 2011-05-10 Hitachi, Ltd. Optical transmission apparatus with optical amplifiers

Similar Documents

Publication Publication Date Title
KR100210969B1 (en) Optical communication system and optical amplifier
EP0449475B1 (en) Telemetry for optical fiber amplifier repeater
US6452701B1 (en) Wavelength division multiplexing communications network supervisory system
US6930823B2 (en) Optical transmission method and optical transmission system utilizing Raman amplification
KR900017321A (en) Optical branch device and optical transmission line network using the same
KR20040040659A (en) Passive optical network using loop back of multi-wavelength light generated at central office
JPH09116492A (en) Wavelength multiplex light amplifying/repeating method/ device
JP3790455B2 (en) Optical repeater supervisory control method and supervisory control system
JP2914334B2 (en) Optical amplifier output level control method for WDM communication system
JP4798997B2 (en) Method and apparatus for distributing pump energy from a single pump device to optical fibers located in different pairs of fibers
JP2951985B2 (en) Supervisory signal transfer device for optical repeaters
EP0943192B1 (en) Method and apparatus for saturating an optical amplifier chain to prevent over amplification of a wavelength division multiplexed signal
JPH06164515A (en) Optical amplifying repeater
EP1503528B1 (en) Optical amplifier and optical communication system
US7151630B2 (en) Raman amplification repeater
JP3239590B2 (en) Two-wavelength band amplifier and wavelength division multiplex transmission device using the same
JP2714611B2 (en) Optical repeater and optical transmission network using the same
KR20080099056A (en) Wavelength division multiplexing passive optical network using the remotely pumped optical amplifier
JP3432696B2 (en) Optical communication device, optical communication apparatus, optical communication system, and optical spectrum analyzer
US20230076588A1 (en) Monitoring signal light output apparatus, submarine apparatus, and optical communication system
JPH10262030A (en) Supervisory and controlling system in wdm light transmission and terminal station therefor
JPH02252330A (en) Wavelength multiplex coherent optical transmission system
JPH1155195A (en) Optical transmitter-receiver
JP2001274752A (en) Optical transmitter and optical receiver
JP2003332983A (en) Optical multiplexing/demultiplexing method and apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201