JPH06164013A - Method for heating and joining piezoelectric body and substrate - Google Patents

Method for heating and joining piezoelectric body and substrate

Info

Publication number
JPH06164013A
JPH06164013A JP33673792A JP33673792A JPH06164013A JP H06164013 A JPH06164013 A JP H06164013A JP 33673792 A JP33673792 A JP 33673792A JP 33673792 A JP33673792 A JP 33673792A JP H06164013 A JPH06164013 A JP H06164013A
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric body
pzt
piezoelectric
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33673792A
Other languages
Japanese (ja)
Other versions
JP3416968B2 (en
Inventor
Hidekazu Takada
英一 高田
Katsuhiko Tanaka
克彦 田中
Yoichi Mochida
洋一 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP33673792A priority Critical patent/JP3416968B2/en
Publication of JPH06164013A publication Critical patent/JPH06164013A/en
Application granted granted Critical
Publication of JP3416968B2 publication Critical patent/JP3416968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a method for heating and joining a piezoelectric body and a substrate without any warpage and crack and characteristic deterioration in a joint body even if they are cooled to normal temperatures after they are heated and joined. CONSTITUTION:The temperature dependency of average expansion coefficients of a piezoelectric body (PZT (1) and PZT (2)) which is heated and joined to Si substrate and the Si substrate from normal temperatures is obtained. In the case of the piezoelectric body PZT (1), the average expansion coefficient from the normal temperatures matches that of the Si substrate from the normal temperatures near 500 deg.C. On the other hand, in the case of the piezoelectric body PZT (2), it approaches the average expansion coefficient of the Si substrate from the normal temperatures near 300 deg.C. When the piezoelectric body PZT (1) is heated and joined to the Si substrate near 500 deg.C and the piezoelectric body PZT (2) is heated and joined near 300 deg.C, the heat shrinkable deformation of the piezoelectric body and that of the Si substrate are nearly equal when they are cooled to the normal temperatures thus preventing warpage and crack of a joined body and deterioration of characteristics of the piezoelectric body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧力センサ、加速度セ
ンサ、ジャイロ等のセンサや圧電アクチュエータ等の電
気機械相互変換デバイス等に使用される圧電体接合体の
製造に関し、特に、圧電体と基板の加熱接合方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of a piezoelectric body assembly for use in sensors such as pressure sensors, acceleration sensors, gyros and the like, and electromechanical interconversion devices such as piezoelectric actuators, and more particularly to piezoelectric bodies and substrates. The present invention relates to a heat bonding method.

【0002】[0002]

【従来の技術】図3には、圧電体と基板との従来の加熱
接合方法の構成が示されている。図3の(a)の接合方
法は一般にガラス接合といわれ、例えば、Si基板2の
表面に低融点のガラス層3を形成し、このガラス層3上
に圧電体1を重ね、圧電体1側から加圧しながら全体を
加熱して圧電体1をSi基板2に接合するものである。
このときの接合温度は400 〜700 ℃である。また、図3
の(b)に示される接合方法は陽極接合といわれ、例え
ば、前記ガラス接合方法と同様に、Si基板2の表面に
ガラス層3を形成し、このガラス層3上に圧電体1を重
ねる。この圧電体1上に電極4を設け、Si基板2と圧
電体1間に電圧を印加して静電引力でSi基板2とガラ
ス層3の両界面およびガラス層3と圧電体1の両界面を
化学結合で接着させるものである。このときの接合温度
は300 〜600 ℃となる。
2. Description of the Related Art FIG. 3 shows the structure of a conventional method for heating and joining a piezoelectric body and a substrate. The bonding method shown in FIG. 3A is generally called glass bonding. For example, a glass layer 3 having a low melting point is formed on the surface of a Si substrate 2, and a piezoelectric body 1 is stacked on the glass layer 3 so that the piezoelectric body 1 side is formed. The piezoelectric body 1 is bonded to the Si substrate 2 by heating the whole while applying pressure.
The joining temperature at this time is 400 to 700 ° C. Also, FIG.
The bonding method shown in (b) is called anodic bonding. For example, as in the glass bonding method, the glass layer 3 is formed on the surface of the Si substrate 2, and the piezoelectric body 1 is superposed on the glass layer 3. An electrode 4 is provided on the piezoelectric body 1, and a voltage is applied between the Si substrate 2 and the piezoelectric body 1 to cause electrostatic attraction to both interfaces between the Si substrate 2 and the glass layer 3 and between the glass layer 3 and the piezoelectric body 1. Are bonded by chemical bonding. The bonding temperature at this time is 300 to 600 ° C.

【0003】[0003]

【発明が解決しようとする課題】ところで、圧電体1に
はチタン酸ジルコン酸鉛等からなる組成の異なるPZT
(1)やPZT(2)等があるが、図2に示されるよう
に、Si基板の熱膨張係数に対して圧電体PZT(1)
と圧電体PZT(2)の熱膨張係数は大きく異なり、前
記ガラス接合方法や陽極接合方法を用いて圧電体1とS
i基板2を接合する場合に接合温度は300 ℃以上が必要
であるため、この300 ℃以上の温度から接合体を常温ま
で冷却させると、前記圧電体1とSi基板2との熱膨張
係数の相違から圧電体1とSi基板2の接合体に応力が
生じ、接合体に反り割れが起こる虞がある。反り割れが
起こると接合体の特性が劣化する等の問題があった。
By the way, the piezoelectric body 1 is made of PZT composed of lead zirconate titanate or the like and having a different composition.
Although there are (1) and PZT (2), as shown in FIG. 2, the piezoelectric body PZT (1) is different from the thermal expansion coefficient of the Si substrate.
And the piezoelectric body PZT (2) have large thermal expansion coefficients, and the piezoelectric body 1 and the S
When the i substrate 2 is bonded, the bonding temperature needs to be 300 ° C. or higher. Therefore, when the bonded body is cooled to room temperature from the temperature of 300 ° C. or higher, the thermal expansion coefficient of the piezoelectric body 1 and the Si substrate 2 becomes Due to the difference, stress may be generated in the bonded body of the piezoelectric body 1 and the Si substrate 2, and the bonded body may be warped and cracked. When warp cracks occur, there are problems such as deterioration of the properties of the bonded body.

【0004】本発明は上記課題を解決するためになされ
たものであり、その目的は、圧電体と基板とを加熱接合
後、常温に冷却しても、接合体に反り割れや特性劣化の
ない圧電体と基板の加熱接合方法を提供するものであ
る。
The present invention has been made in order to solve the above problems, and an object thereof is to prevent warping cracks and deterioration of characteristics of a bonded body even if the piezoelectric body and a substrate are heated and bonded and then cooled to room temperature. A method for heating and joining a piezoelectric body and a substrate is provided.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明は、基板に圧電体を重ね、加熱して圧電体と基板と
を接合する圧電体と基板の加熱接合方法において、接合
温度から常温までの基板と圧電体の熱収縮変形が一致又
は近くなるように接合温度を設定して圧電体と基板とを
加熱接合することを特徴として構成されている。
In order to achieve the above object, the present invention is constructed as follows. That is, according to the present invention, in the heating and bonding method of the piezoelectric body and the substrate, in which the piezoelectric body is superposed on the substrate and heated to bond the piezoelectric body and the substrate, the thermal contraction deformation of the substrate and the piezoelectric body from the bonding temperature to the room temperature is the same. Alternatively, the bonding temperature is set so as to be close to each other, and the piezoelectric body and the substrate are bonded by heating.

【0006】[0006]

【作用】圧電体と基板とを加熱接合する際に、圧電体と
基板のそれぞれの常温からの平均膨張係数が一致又は近
くなる温度を設定し、この設定温度で圧電体と基板とを
加熱接合して常温まで冷却する。これにより、圧電体と
基板との熱収縮変形を一致又は近づけることができ、接
合体の反り割れを防ぐ。これにより、圧電体の特性劣化
を防止する。
When the piezoelectric body and the substrate are heat-bonded, the temperatures at which the average expansion coefficients of the piezoelectric body and the substrate are equal or close to each other are set, and the piezoelectric body and the substrate are heat-bonded at this set temperature. Then cool to room temperature. As a result, the heat shrinkage deformations of the piezoelectric body and the substrate can be matched or made close to each other, and warpage cracking of the bonded body can be prevented. This prevents the characteristic deterioration of the piezoelectric body.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、本実施例の説明において、従来例と同一の
名称部分には同一符号を付し、その詳細な重複説明は省
略する。
Embodiments of the present invention will be described below with reference to the drawings. In the description of the present embodiment, the same reference numerals will be given to the same names as those in the conventional example, and detailed description thereof will be omitted.

【0008】本実施例は、従来例と同様に、基板に圧電
体を重ね、加熱して圧電体と基板を接合するもので、本
実施例の特徴的なことは、圧電体と基板との接合温度か
ら常温までの熱収縮変形が一致又は近くなるように接合
温度を設定し、この接合温度で圧電体1とSi基板2と
を加熱接合するものである。
This embodiment is similar to the conventional example in that a piezoelectric body is superposed on a substrate and heated to bond the piezoelectric body and the substrate. The characteristic feature of this embodiment is that the piezoelectric body and the substrate are joined together. The joining temperature is set so that the heat shrinkage deformation from the joining temperature to the room temperature is equal to or close to each other, and the piezoelectric body 1 and the Si substrate 2 are heated and joined at this joining temperature.

【0009】図2には圧電体とSi基板との熱膨張係数
の温度依存性が示されている。同図において、組成の異
なる圧電体PZT(1)とPZT(2)とでは温度によ
って熱膨張係数が大きく異なり、Si基板の熱膨張係数
のカーブと全く異なっているが、ある温度範囲では一致
する。そして、圧電体のキューリー点附近で熱膨張係数
が小さくなり、それ以後、熱膨張係数が大きくなる傾向
にある。
FIG. 2 shows the temperature dependence of the coefficient of thermal expansion between the piezoelectric body and the Si substrate. In the figure, the coefficient of thermal expansion of the piezoelectric bodies PZT (1) and PZT (2) having different compositions greatly differs depending on the temperature, which is completely different from the curve of the coefficient of thermal expansion of the Si substrate, but they match in a certain temperature range. . The coefficient of thermal expansion tends to decrease near the Curie point of the piezoelectric body, and thereafter the coefficient of thermal expansion tends to increase.

【0010】ところで、圧電体1とSi基板2とを接合
温度Tb で接合させて常温Tm まで冷却すると、接合体
の圧電体1に加わる応力σは次のように示すことができ
る。
By the way, when the piezoelectric body 1 and the Si substrate 2 are bonded at the bonding temperature T b and cooled to room temperature T m , the stress σ applied to the piezoelectric body 1 of the bonded body can be expressed as follows.

【0011】 σ1 =ε1 1 /(1−ν)=(α1 −α2 )(Tb −Tm )E1 /(1−ν )Σ 1 = ε 1 E 1 / (1-ν) = (α 1 −α 2 ) (T b −T m ) E 1 / (1-ν)

【0012】ここで、ε1 は圧電体の歪み、E1 は圧電
体のヤング率、νはポアソン比、α1 は圧電体の熱膨張
係数、α2 はSi基板の熱膨張係数、Tb は接合温度、
mは常温である。Tm ,E1 ,νは一定のため、Tb
が大きくなり圧電体とSi基板との熱膨張係数の差が大
きくなると、応力が大きくなることがわかる。これか
ら、圧電体の熱膨張係数とSi基板の熱膨張係数の差を
小さくすれば、応力は小さくなることがわかる。
Here, ε 1 is strain of the piezoelectric material, E 1 is Young's modulus of the piezoelectric material, ν is Poisson's ratio, α 1 is thermal expansion coefficient of the piezoelectric material, α 2 is thermal expansion coefficient of Si substrate, T b Is the junction temperature,
T m is room temperature. Since T m , E 1 , and ν are constant, T b
It can be seen that the stress increases as the difference between the thermal expansion coefficients of the piezoelectric body and the Si substrate increases with increasing. From this, it is understood that if the difference between the thermal expansion coefficient of the piezoelectric body and the thermal expansion coefficient of the Si substrate is made small, the stress becomes small.

【0013】前記のように、圧電体1とSi基板2との
熱膨張係数の差を小さくできれば圧電体1に加わる応力
σは小さくなる。ところで、図2に示すように、例えば
Si基板2の熱膨張係数と圧電体PZT(1)の熱膨張
係数は350 ℃附近でほぼ一致するが、この温度で両者を
接合し、接合体を常温に戻すと、接合温度から常温まで
の圧電体1とSi基板2の熱膨張係数が大きく異なるた
め、圧電体1とSi基板2との熱収縮変形に大きな相違
を生じ、接合体に加わる応力を小さくすることができな
い。
As described above, if the difference in the coefficient of thermal expansion between the piezoelectric body 1 and the Si substrate 2 can be made small, the stress σ applied to the piezoelectric body 1 becomes small. By the way, as shown in FIG. 2, for example, the coefficient of thermal expansion of the Si substrate 2 and the coefficient of thermal expansion of the piezoelectric body PZT (1) are almost the same at around 350 ° C. Returning to 1, since the thermal expansion coefficient of the piezoelectric body 1 and the Si substrate 2 is greatly different from the bonding temperature to the room temperature, a large difference occurs in the thermal contraction deformation between the piezoelectric body 1 and the Si substrate 2, and the stress applied to the bonded body is reduced. It cannot be made smaller.

【0014】そこで発明者は、圧電体1とSi基板2と
の常温から接合温度までの平均膨張係数が同程度の場合
には、接合温度から常温に戻したときに熱収縮変形が同
程度になって接合体に加わる応力が小さくなることに着
目し、図1に示す如く、圧電体1とSi基板2との常温
からの平均膨張係数を求めてみた。圧電体PZT(1)
の常温からの平均膨張係数は500 ℃附近でSi基板2の
平均膨張係数と一致し、圧電体PZT(2)では300 ℃
附近でSi基板2の平均膨張係数に近づいている。
Therefore, the inventors have found that when the piezoelectric body 1 and the Si substrate 2 have the same average expansion coefficient from room temperature to the joining temperature, the heat shrinkage deformation becomes similar when the joint temperature is returned to the room temperature. Focusing on the fact that the stress applied to the bonded body becomes small, the average expansion coefficient of the piezoelectric body 1 and the Si substrate 2 from room temperature was calculated as shown in FIG. Piezoelectric PZT (1)
The average expansion coefficient from room temperature is around 500 ° C, which is the same as the average expansion coefficient of the Si substrate 2, and the piezoelectric PZT (2) has an average expansion coefficient of 300 ° C.
It is close to the average expansion coefficient of the Si substrate 2.

【0015】そこで、前記圧電体1とSi基板2の常温
からの平均膨張係数のデータに基づき、圧電体1とSi
基板2とを、図3の(b)に示す陽極接合方法で接合し
て接合体を形成した。Si基板2の表面に低融点のガラ
ス層3を形成し、このガラス層3に前記圧電体1(PZ
T(1)又はPZT(2))を重ね合わせ、この圧電体
1とSi基板2とを陽極接合する。このとき、圧電体P
ZT(1)の場合には500 ℃附近の接合温度で接合し、
圧電体PZT(2)の場合には300 ℃附近の接合温度で
接合した。
Therefore, based on the data of the average expansion coefficient of the piezoelectric body 1 and the Si substrate 2 from room temperature, the piezoelectric body 1 and Si
The substrate 2 was bonded by the anodic bonding method shown in FIG. 3B to form a bonded body. A low melting point glass layer 3 is formed on the surface of the Si substrate 2, and the piezoelectric body 1 (PZ
T (1) or PZT (2) are superposed, and the piezoelectric body 1 and the Si substrate 2 are anodically bonded. At this time, the piezoelectric body P
In the case of ZT (1), the joining is performed at a joining temperature near 500 ° C,
In the case of the piezoelectric body PZT (2), the joining was performed at a joining temperature near 300 ° C.

【0016】本実施例によれば、圧電体1とSi基板2
との常温からの平均膨張係数が一致するか近くなるよう
な接合温度で圧電体1とSi基板2を接合するので、接
合体を常温に冷却したときに、圧電体1とSi基板2の
熱収縮変形が一致又は近くなるため接合体の反り割れ等
の不具合がなく、圧電体1へ加わる応力が殆どないので
圧電体1の特性劣化を防止することができる。
According to this embodiment, the piezoelectric body 1 and the Si substrate 2 are
Since the piezoelectric body 1 and the Si substrate 2 are bonded at a bonding temperature at which the average expansion coefficient from the room temperature is equal to or close to that of the room temperature, the heat of the piezoelectric body 1 and the Si substrate 2 is reduced when the bonded body is cooled to room temperature. Since the shrinkage deformations are equal to or close to each other, there is no problem such as warpage cracking of the bonded body, and there is almost no stress applied to the piezoelectric body 1, so that characteristic deterioration of the piezoelectric body 1 can be prevented.

【0017】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、上記
実施例では、圧電体としてチタン酸ジルコン酸鉛等のP
ZT系の材料を用いたが、例えば、チタン酸鉛系の材料
でもよく、圧電性材料であればその材質を限定しない。
The present invention is not limited to the above-mentioned embodiment, and various embodiments can be adopted. For example, in the above embodiment, P such as lead zirconate titanate is used as the piezoelectric body.
Although the ZT-based material is used, for example, a lead titanate-based material may be used, and the material is not limited as long as it is a piezoelectric material.

【0018】また、上記実施例では、圧電体とSi基板
との接合に陽極接合方法を用いたが、例えば、従来例に
示したようにガラス接合方法でもよく、加熱接合方法で
あればその接合方法は問わない。
Further, in the above embodiment, the anodic bonding method was used for bonding the piezoelectric body and the Si substrate, but for example, the glass bonding method may be used as shown in the conventional example, and if it is the heating bonding method, the bonding is performed. The method does not matter.

【0019】さらに、上記実施例では、圧電体1に接合
する基板をSi基板2としたが、この基板は、例えば、
セラミック基板でもよく、圧電体1に加熱接合可能な材
料であればその材質を問わない。
Further, in the above embodiment, the substrate bonded to the piezoelectric body 1 is the Si substrate 2, but this substrate is, for example,
A ceramic substrate may be used, and any material may be used as long as it can be heat-bonded to the piezoelectric body 1.

【0020】[0020]

【発明の効果】本発明は、圧電体と基板との加熱接合に
際し、接合温度から常温までの圧電体と基板の熱収縮変
形が一致又は近くなるように接合温度を設定して圧電体
と基板とを加熱接合するので接合体の反り割れ等の不具
合がなく、圧電体へ加わる応力が殆どないので圧電体の
特性劣化を防止することができる。
According to the present invention, when the piezoelectric body and the substrate are joined by heating, the joining temperature is set so that the thermal contraction deformation of the piezoelectric body and the substrate from the joining temperature to room temperature are the same or close to each other. Since they are heat-bonded to each other, there is no problem such as warpage cracking of the bonded body, and there is almost no stress applied to the piezoelectric body, so that deterioration of the characteristics of the piezoelectric body can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の圧電体とSi基板の常温からの平均
膨張係数の温度依存性を示す説明図である。
FIG. 1 is an explanatory diagram showing the temperature dependence of the average expansion coefficient of a piezoelectric body and a Si substrate of this embodiment from room temperature.

【図2】同圧電体とSi基板の熱膨張係数の温度依存性
を示す説明図である。
FIG. 2 is an explanatory diagram showing temperature dependence of thermal expansion coefficients of the piezoelectric body and the Si substrate.

【図3】圧電体とSi基板との各種接合構成の説明図で
ある。
FIG. 3 is an explanatory diagram of various bonding configurations of a piezoelectric body and a Si substrate.

【符号の説明】[Explanation of symbols]

1 圧電体 2 Si基板 3 ガラス層 4 電極 1 Piezoelectric substance 2 Si substrate 3 Glass layer 4 Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板に圧電体を重ね、加熱して圧電体と
基板とを接合する圧電体と基板の加熱接合方法におい
て、接合温度から常温までの基板と圧電体の熱収縮変形
が一致又は近くなるように接合温度を設定して圧電体と
基板とを加熱接合することを特徴とする圧電体と基板の
加熱接合方法。
1. A method for heating and joining a piezoelectric body and a substrate, wherein a piezoelectric body is superposed on a substrate and heated to join the piezoelectric body and the substrate, in which the thermal contraction deformation of the substrate and the piezoelectric body is the same from the joining temperature to room temperature. A method for heating and joining a piezoelectric body and a substrate, wherein the joining temperature is set so as to be close to each other and the piezoelectric body and the substrate are joined together by heating.
JP33673792A 1992-11-24 1992-11-24 Heat bonding method of piezoelectric body and substrate Expired - Lifetime JP3416968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33673792A JP3416968B2 (en) 1992-11-24 1992-11-24 Heat bonding method of piezoelectric body and substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33673792A JP3416968B2 (en) 1992-11-24 1992-11-24 Heat bonding method of piezoelectric body and substrate

Publications (2)

Publication Number Publication Date
JPH06164013A true JPH06164013A (en) 1994-06-10
JP3416968B2 JP3416968B2 (en) 2003-06-16

Family

ID=18302259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33673792A Expired - Lifetime JP3416968B2 (en) 1992-11-24 1992-11-24 Heat bonding method of piezoelectric body and substrate

Country Status (1)

Country Link
JP (1) JP3416968B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894972A (en) * 1986-12-19 1990-01-23 Central Glass Company, Limited Window assembly and method of producing same
US6874212B2 (en) * 2000-08-31 2005-04-05 Agilent Technologies, Inc. Method of making an acoustic wave resonator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894972A (en) * 1986-12-19 1990-01-23 Central Glass Company, Limited Window assembly and method of producing same
US6874212B2 (en) * 2000-08-31 2005-04-05 Agilent Technologies, Inc. Method of making an acoustic wave resonator

Also Published As

Publication number Publication date
JP3416968B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
Lefki et al. Measurement of piezoelectric coefficients of ferroelectric thin films
Wise Displacement properties of RAINBOW and THUNDER piezoelectric actuators
JPH05267742A (en) Piezoelectric/electrostrictive film element
JP2738706B2 (en) Manufacturing method of laminated piezoelectric element
US9784758B2 (en) Resonating beam accelerometer
JP2001326399A (en) Actuator device
US20100293770A1 (en) Method for manufacturing acoustic wave device
JPH07221129A (en) Method of enclosing ceramic device to seal it to composite construction body
JP3961182B2 (en) Anodic bonding method
US7045933B2 (en) Flat actuator or sensor with internal prestress
JPH06164013A (en) Method for heating and joining piezoelectric body and substrate
US6897123B2 (en) Bonding of parts with dissimilar thermal expansion coefficients
US20060286388A1 (en) Anodic bonding process for ceramics
JP3419008B2 (en) Method for manufacturing piezoelectric element
JPH06232472A (en) Manufacture of piezo-electric element
JP3114459B2 (en) Method for manufacturing piezoelectric element
JPH04167580A (en) Laminated piezoelectric actuator element
JPH08293632A (en) Bimorph piezoelectric element and manufacture thereof
JPH06131934A (en) Insulator
JPH06164009A (en) Laminated piezoelectric actuator
JPH10242534A (en) Micro device having hollow beam and its manufacture
JPH01165147A (en) Ceramic substrate
JPS63288077A (en) Electrostrictive ceramic material and polarization operation thereof
JPS63260085A (en) Piezoelectric actuator
JPH01205580A (en) Piezoelectric element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10