JPH06163601A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH06163601A
JPH06163601A JP31701492A JP31701492A JPH06163601A JP H06163601 A JPH06163601 A JP H06163601A JP 31701492 A JP31701492 A JP 31701492A JP 31701492 A JP31701492 A JP 31701492A JP H06163601 A JPH06163601 A JP H06163601A
Authority
JP
Japan
Prior art keywords
layer
current channel
lattice
alas
inas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31701492A
Other languages
Japanese (ja)
Other versions
JP2917719B2 (en
Inventor
Yasunobu Nashimoto
泰信 梨本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31701492A priority Critical patent/JP2917719B2/en
Publication of JPH06163601A publication Critical patent/JPH06163601A/en
Application granted granted Critical
Publication of JP2917719B2 publication Critical patent/JP2917719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent performance degradation due to crystal transition fault caused when an In composition ratio is made larger. CONSTITUTION:On a semi-insulation InP substrate 1, an InAs/AlAs super lattice buffer layer 2, an InxGa1-xAs current channel layer 3, an InyAl1-yAs electron supply layer 4, and an InxGa1-xAs contact layer 5 are formed. Relating to the super lattice layer 2, the ratio t1/t2, between the thickness t1 of an InAs layer 10 and that t2 of an AlAs layer 11, gradually changes as they proceed to an upper layer, so that lattice conformity is obtained with the semi-insulation InP substrate 1 and the AlAs layer 11. Thanks to the super lattice layer 2, inter-lattice distortion between the semi-insulation InP substrate 1 and the InxGa1-xAs current channel layer 3 is relaxed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体を用いた電
界効果トランジスタに関し、特に半導体ヘテロ接合を有
する電界効果トランジスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor using a compound semiconductor, and more particularly to a field effect transistor having a semiconductor heterojunction.

【0002】[0002]

【従来の技術】InP基板と格子整合するIn0.53Ga
0.47Asは電子の移動度および飽和速度がGaAsより
も大きく、1GHz以上の高周波FETに適した半導体
材料として、In0.53Ga0.47Asを電流チャネルとす
るFETの試作が進められている。
2. Description of the Related Art In 0.53 Ga lattice-matched with an InP substrate
0.47 As has a higher electron mobility and saturation velocity than GaAs, and as a semiconductor material suitable for a high frequency FET of 1 GHz or more, trial manufacture of an FET using In 0.53 Ga 0.47 As as a current channel is underway.

【0003】例えばアンドープIn0.53Ga0.47Asと
格子整合(格子定数が一致)して、電子親和力が小さい
N型In0.52Al0.48Asとをヘテロ接合させると、ア
ンドープIn0.53Ga0.47Asのヘテロ接合界面に移動
度の高い二次元電子ガスと称する電子の蓄積層が形成さ
れる。この二次元電子ガスを電流チャネルとするFET
において、遮断周波数fT =250GHzが得られてい
る。これは他のどの材料系よりも優れたものである。
[0003] for example, undoped In 0.53 Ga 0.47 As lattice-matched (lattice constant match) and, when the heterojunction and a small electron affinity N-type In 0.52 Al 0.48 As, a heterojunction interface of the undoped In 0.53 Ga 0.47 As An electron accumulation layer called a two-dimensional electron gas having high mobility is formed on the surface. FET using this two-dimensional electron gas as a current channel
In, the cutoff frequency f T = 250 GHz is obtained. This is superior to any other material system.

【0004】InX Ga1-X AsのIn組成比を高める
と、電子移動度および飽和速度が増加し、二次元電子ガ
スの電子濃度が増加することが実証されている。そこで
In0.53Ga0.47As電流チャネル層のIn組成比を高
くして、さらにfT を向上させる試みがなされている。
[0004] Increasing the In composition ratio of In X Ga 1-X As, electron mobility and saturation velocity increases, the electron concentration of the two-dimensional electron gas has been demonstrated to increase. Therefore, attempts have been made to increase the In composition ratio of the In 0.53 Ga 0.47 As current channel layer to further improve f T.

【0005】つぎに従来のFETについて図2を参照し
て説明する。これはG.I.NgらがIEEE Tra
nsactions on Electron Dev
ices,vol.36,no.10,pp.2249
〜2259,1989で報告したものと同様である。
Next, a conventional FET will be described with reference to FIG. This is G. I. Ng and others are IEEE Tra
nsactions on Electron Dev
ices, vol. 36, no. 10, pp. 2249
˜2259, 1989.

【0006】半絶縁性InP基板1に格子整合するアン
ドープIn0.52Al0.48Asバッファ層2a、格子定数
が大きいアンドープInx Ga1-X As(0.53<X
<1)電流チャネル層3、InP基板1と格子整合する
SiドープN型In0.52Al0.48As電子供給層4aお
よびSiドープN型In0.53Ga0.47Asコンタクト層
5aが成長されている。
Undoped In 0.52 Al 0.48 As buffer layer 2a lattice-matched to the semi-insulating InP substrate 1, undoped In x Ga 1-X As (0.53 <X) having a large lattice constant.
<1) current channel layer 3, Si-doped N-type In 0.52 Al 0.48 As electron supply layer 4a and the Si-doped N-type In 0.53 Ga 0.47 As contact layer 5a of the InP substrate 1 and the lattice matching is grown.

【0007】電子がN型In0.52Al0.48As電子供給
層4aからアンドープInx Ga1-X As電流チャネル
層3に移動して二次元電子ガスが形成される。ゲート電
極7によってソース電極8とドレイン電極9との間の二
次元電子ガスの電子濃度を変調して、ソース電極8とド
レイン電極9との間に流れる電流を制御する。
Electrons move from the N-type In 0.52 Al 0.48 As electron supply layer 4a to the undoped In x Ga 1 -x As current channel layer 3 to form a two-dimensional electron gas. The gate electrode 7 modulates the electron concentration of the two-dimensional electron gas between the source electrode 8 and the drain electrode 9 to control the current flowing between the source electrode 8 and the drain electrode 9.

【0008】[0008]

【発明が解決しようとする課題】従来のFETではfT
を向上させようとしてアンドープInx Ga1-X As電
流チャネル層の組成比が0.7を越えると、Inx Ga
1-X As電流チャネル層とアンドープIn0.52Al0.48
Asバッファ層との間の格子定数の差が大きくなって、
結晶中の格子間歪が増大する。Inx Ga1-X As電流
チャネル層に転移欠陥が発生して、FETの性能が劣化
する。
In the conventional FET, f T
When the composition ratio of the undoped In x Ga 1-X As current channel layer exceeds 0.7 in an attempt to improve the, an In x Ga
1-X As current channel layer and undoped In 0.52 Al 0.48
The difference in the lattice constant with the As buffer layer becomes large,
The interstitial strain in the crystal increases. Dislocation defects occur in the In x Ga 1-x As current channel layer, and the performance of the FET deteriorates.

【0009】[0009]

【課題を解決するための手段】本発明の電界効果トラン
ジスタは、半導体基板の一主面上に異なる2種の半導体
層を交互に積層した超格子バッファ層および電流チャネ
ル層が形成され、前記超格子バッファ層が前記半導体基
板との接合面で格子整合し、かつ前記電流チャネル層と
の接合面でも格子整合するものである。
A field effect transistor of the present invention comprises a superlattice buffer layer and a current channel layer in which two different types of semiconductor layers are alternately laminated on one main surface of a semiconductor substrate. The lattice buffer layer is lattice-matched at the junction surface with the semiconductor substrate and is also lattice-matched at the junction surface with the current channel layer.

【0010】[0010]

【作用】MBE(分子線エピタキシアル)法によって、
結晶転移欠陥が発生しない膜厚で格子定数の異なる2種
類の化合物半導体層を交互に積層成長した超格子層が形
成されている。
[Function] By the MBE (Molecular Beam Epitaxy) method,
A superlattice layer is formed by alternately laminating two kinds of compound semiconductor layers having different lattice constants and having a film thickness that does not cause crystal transition defects.

【0011】この各層の厚さを5nm以下に制限するこ
とにより、格子定数の差が7%もあるInAsとAlA
sとを交互に数100nm以上積層させることができ
る。またInPと格子整合するIn0.52Al0.47Asに
相当するInAs/AlAs超格子層を形成することが
できる。
By limiting the thickness of each layer to 5 nm or less, InAs and AlA having a lattice constant difference of 7% can be obtained.
It is possible to alternately stack s and several hundred nm or more. Further, it is possible to form an InAs / AlAs superlattice layer corresponding to In 0.52 Al 0.47 As that lattice-matches with InP.

【0012】InAs層の厚さt1 とAlAs層の厚さ
2 との比t1 /t2 を0.52/0.48≒1.08
とすれば、InAs層とAlAs層とを交互に積層した
超格子層はIn0.52Al0.48As層と同じ格子定数と見
なすことができ、InP基板と格子整合する。
The ratio t 1 / t 2 between the thickness t 1 of the InAs layer and the thickness t 2 of the AlAs layer is 0.52 / 0.48≈1.08.
Then, the superlattice layer in which the InAs layer and the AlAs layer are alternately laminated can be regarded as having the same lattice constant as the In 0.52 Al 0.48 As layer, and is lattice-matched with the InP substrate.

【0013】さらにこの超格子層のt1 /t2 を徐々に
増加させて、その上のInx Ga1-X As電流チャネル
層(0.7<X<1)と格子定数を一致させるようにす
る。
Further, the t 1 / t 2 of the superlattice layer is gradually increased so that the lattice constant is matched with that of the In x Ga 1-x As current channel layer (0.7 <X <1) thereon. To

【0014】[0014]

【実施例】本発明の第1の実施例について図1(a)お
よび(b)を参照して説明する。
EXAMPLE A first example of the present invention will be described with reference to FIGS. 1 (a) and 1 (b).

【0015】Feをドープした面方位(100)の半絶
縁性InP基板1上にMBE法によりアンドープInA
s層10とアンドープAlAs層11とを交互に積層し
たAlAs/InAs超格子バッファ層2、アンドープ
InX Ga1-X As電流チャネル層3、SiドープN型
InY Al1-Y As電子供給層4およびSiドープN型
InX Ga1-X Asコンタクト層5が順次エピタキシア
ル成長されている。
On the semi-insulating InP substrate 1 having a plane orientation (100) doped with Fe, undoped InA by the MBE method.
AlAs / InAs superlattice buffer layer 2 in which s layers 10 and undoped AlAs layers 11 are alternately stacked, undoped In X Ga 1-X As current channel layer 3, Si-doped N type In Y Al 1-Y As electron supply layer 4 and Si-doped N-type In x Ga 1-x As contact layer 5 are sequentially epitaxially grown.

【0016】アンドープInX Ga1-X As電流チャネ
ル層3のIn組成比Xは0.8、厚さは15nmとし
た。N型InY Al1-Y As電子供給層4のIn組成比
Yは、InX Ga1-X As電流チャネル層3とほぼ同一
の格子定数となるようにY=0.8とし、Siのドーピ
ング濃度を2×1018cm-3とし、厚さを40nmとし
た。N型InX Ga1-X Asコンタクト層5もInX
1-X As電流チャネル層3と格子定数を一致させるよ
うにY=0.8とし、Siのドーピング濃度を1×10
19cm-3とし、厚さを50nmとした。
The undoped In X Ga 1-X As current channel layer 3 had an In composition ratio X of 0.8 and a thickness of 15 nm. The In composition ratio Y of the N-type In Y Al 1-Y As electron supply layer 4 is set to Y = 0.8 so that the In composition ratio Y of the N-type In Y Al 1-Y As electron supply layer 4 becomes almost the same as that of the In X Ga 1-X As current channel layer 3, and Si of The doping concentration was 2 × 10 18 cm −3 and the thickness was 40 nm. The N-type In X Ga 1-X As contact layer 5 is also In X G
a 1−X As current channel layer 3 and Y = 0.8 so as to match the lattice constant, and the doping concentration of Si is 1 × 10.
The thickness was set to 19 cm −3 and the thickness was set to 50 nm.

【0017】つぎにInAs/AlAs超格子層2につ
いて、図1(b)を参照して詳しく説明する。
Next, the InAs / AlAs superlattice layer 2 will be described in detail with reference to FIG.

【0018】半絶縁性InP基板1界面ではInAs層
10の厚さt1 とAlAs層の厚さt2 との比t1 /t
2 が0.52/0.48に近く、InPと格子定数がほ
ぼ一致するt1 =t2 =5nmとした。InAs/Al
As超格子層2の上層になるにつれてt1 +t2 =10
nmを維持しながらt1 /t2 を徐々に大きくして、ア
ンドープInX Ga1-X As電流チャネル層3(X=
0.8)の界面において格子定数を合わせるようにt1
=8nm、t2 =2nmとして、InAs/AlAs超
格子層2の全体の厚さを500nmとした。
At the interface of the semi-insulating InP substrate 1, the ratio of the thickness t 1 of the InAs layer 10 to the thickness t 2 of the AlAs layer t 1 / t.
2 was close to 0.52 / 0.48, and t 1 = t 2 = 5 nm at which the lattice constant substantially matches that of InP. InAs / Al
As the upper layer of the As superlattice layer 2 increases, t 1 + t 2 = 10
The thickness of t 1 / t 2 is gradually increased while maintaining nm, and the undoped In X Ga 1-X As current channel layer 3 (X =
0.8), so that the lattice constants are matched at the interface t 1
= 8 nm and t 2 = 2 nm, the total thickness of the InAs / AlAs superlattice layer 2 was set to 500 nm.

【0019】N型InX Ga1-X Asコンタクト層5に
オーミック接触するAu−Ge/Ni(金−ゲルマニウ
ム−ニッケル)からなるソース電極8およびドレイン電
極9が形成されている。N型InX Ga1-X Asコンタ
クト層5がエッチングされて形成されたリセス領域のN
型InY Al1-Y As電子供給層4にショットキ接合す
るAl(アルミニウム)からなるゲート電極7が形成さ
れている。
[0019] N-type In X Ga 1-X As ohmic contact with the contact layer 5 Au-Ge / Ni (gold - germanium - nickel) source and drain electrodes 8 and 9 made of is formed. N in the recess region formed by etching the N-type In X Ga 1-X As contact layer 5
A gate electrode 7 made of Al (aluminum) that forms a Schottky junction with the type In Y Al 1 -Y As electron supply layer 4 is formed.

【0020】ゲート電極7に印加される電圧によってソ
ース電極8とドレイン電極9との間のアンドープInX
Ga1-X As電流チャネル層3に流れる電流が制御され
る。
The undoped In X between the source electrode 8 and the drain electrode 9 is controlled by the voltage applied to the gate electrode 7.
The current flowing through the Ga 1-X As current channel layer 3 is controlled.

【0021】アンドープInX Ga1-X As電流チャネ
ル層3のIn組成比Xを0.8にすると、従来のFET
ではIn0.52Al0.48Asバッファ層およびInP基板
との格子定数の違いが大きくなり、格子間歪による転移
欠陥が生じて性能劣化を生じる。一方、本実施例ではI
nAs/AlAs超格子層2が、InX Ga1-X As電
流チャネル層3との界面および半絶縁性InP基板1と
の界面のいずれでもほぼ格子整合している。
When the In composition ratio X of the undoped In X Ga 1-X As current channel layer 3 is 0.8, the conventional FET
In this case, the difference in lattice constant between the In 0.52 Al 0.48 As buffer layer and the InP substrate becomes large, and dislocation defects due to interstitial strain occur, resulting in performance deterioration. On the other hand, in this embodiment, I
NAS / AlAs superlattice layer 2, are substantially lattice matched any of the interface between the interface and the semi-insulating InP substrate 1 and In X Ga 1-X As current channel layer 3.

【0022】半絶縁性InP基板1とInX Ga1-X
s電流チャネル層3との格子定数の違いによって生じる
格子間の歪はInAs/AlAs超格子層2超格子で緩
和されて結晶中に転移欠陥は発生しない。したがって本
実施例のFETではInX Ga1-X As電流チャネル層
のIn組成比XをInPと格子整合する0.53から
0.8に増加させた分だけ電子移動度、飽和速度の増加
および二次元電子ガスの電子濃度が増加する。In組成
比Xを0.8に増加させたとき従来のFETに生じてい
た性能劣化の問題を解消することができた。
Semi-insulating InP substrate 1 and In X Ga 1-X A
The interstitial strain caused by the difference in lattice constant from the s-current channel layer 3 is relaxed by the InAs / AlAs superlattice layer 2 superlattice, and no dislocation defect occurs in the crystal. Therefore, in the FET of the present embodiment, the electron mobility and the saturation velocity are increased by the amount corresponding to the increase in the In composition ratio X of the In x Ga 1 -x As current channel layer from 0.53 which is lattice-matched with InP to 0.8. The electron concentration of the two-dimensional electron gas increases. When the In composition ratio X was increased to 0.8, the problem of performance deterioration that occurred in the conventional FET could be solved.

【0023】つぎに本発明の第2の実施例について説明
する。
Next, a second embodiment of the present invention will be described.

【0024】第1の実施例では半絶縁性InP基板を用
いたが、本実施例ではInP基板の代りにCrをドープ
した半絶縁性GaAs基板を用いた。
Although the semi-insulating InP substrate was used in the first embodiment, a Cr-doped semi-insulating GaAs substrate was used in this embodiment instead of the InP substrate.

【0025】GaAsはAlAsと格子定数がほぼ一致
するので、InAs/AlAs超格子の膜厚比を変える
必要がある。半絶縁性GaAs基板側では、InAs層
の厚さt1 とAlAs層の厚さt2 との比t1 /t2
0すなわちt1 =0、t2 =10nmとして、t1 +t
2 =10nmを維持しながら上層になるにつれて徐々に
1 /t2 を大きくして、InX Ga1-X As電流チャ
ネル層(X=0.8)側でt1 /t2 =0.8/0.2
になるようにt1 =8nm、t2 =2nmとする。
Since GaAs has almost the same lattice constant as AlAs, it is necessary to change the film thickness ratio of the InAs / AlAs superlattice. On the semi-insulating GaAs substrate side, the ratio of the thickness t 1 of the InAs layer to the thickness t 2 of the AlAs layer t 1 / t 2 =
0, that is, t 1 = 0 and t 2 = 10 nm, t 1 + t
2 = 10 nm is maintained and t 1 / t 2 is gradually increased toward the upper layer, and t 1 / t 2 = 0.0 on the In x Ga 1 -x As current channel layer (X = 0.8) side. 8 / 0.2
So that t 1 = 8 nm and t 2 = 2 nm.

【0026】本実施例では第1の実施例に比べて半導体
基板とInX Ga1-X As電流チャネル層との間の格子
定数の差が大きいので、格子間歪を緩和するためInA
s/AlAs超格子層の厚さを第1の実施例の倍の10
00nmとした。
In this embodiment, the difference in the lattice constant between the semiconductor substrate and the In x Ga 1 -x As current channel layer is larger than that in the first embodiment, and therefore InA is used to relax the interstitial strain.
The thickness of the s / AlAs superlattice layer is 10 times that of the first embodiment.
It was set to 00 nm.

【0027】そのほかは第1の実施例と同様にして、第
1の実施例と同様の性能を得ることができた。結晶転移
欠陥に起因する性能劣化は認められなかった。
Other than that, the same performance as that of the first embodiment could be obtained in the same manner as the first embodiment. No performance deterioration due to crystal transition defects was observed.

【0028】InP基板よりも安価で、機械的強度や取
り扱い易さの優れたGaAs基板を用いることができる
という利点もある。
There is also an advantage that a GaAs substrate, which is cheaper than the InP substrate and is excellent in mechanical strength and handleability, can be used.

【0029】[0029]

【発明の効果】半導体基板上にInAs層とAlAs層
とを交互に積層したInAs/AlAs超格子層および
InX Ga1-X As電流チャネル層が形成され、超格子
層が半導体基板側および電流チャネル層側で格子整合す
るように、InAs層の厚さt1 とAlAs層の厚さt
2 との比t1 /t2 を徐々に大きくした。
[Effect of the Invention] InAs layer and the AlAs layer InAs / AlAs superlattice layers of alternately laminated and In X Ga 1-X As current channel layer is formed on a semiconductor substrate, the superlattice layer is a semiconductor substrate and the current The InAs layer has a thickness t 1 and the AlAs layer has a thickness t so that lattice matching is achieved on the channel layer side.
2 and of the ratio t 1 / t 2 was gradually increased.

【0030】この超格子層によって半導体基板とInX
Ga1-X As電流チャネル層との格子定数の差で生じる
格子間歪が緩和され、InX Ga1-X As電流チャネル
層中における転移欠陥の発生が抑制されて、FETの性
能劣化の問題を解消することができた。
With this superlattice layer, the semiconductor substrate and the In x
The interstitial strain caused by the difference in the lattice constant from the Ga 1 -X As current channel layer is relaxed, the occurrence of dislocation defects in the In x Ga 1-X As current channel layer is suppressed, and the performance of the FET is degraded. Could be resolved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の第1の実施例を示す断面図で
ある。(b)はInAs/AlAs超格子層を示す拡大
断面図である。
FIG. 1A is a sectional view showing a first embodiment of the present invention. (B) is an enlarged sectional view showing an InAs / AlAs superlattice layer.

【図2】従来のFETを示す断面図である。FIG. 2 is a cross-sectional view showing a conventional FET.

【符号の説明】[Explanation of symbols]

1 半絶縁性InP基板 2 InAs/AlAs超格子バッファ層 2a In0.52Al0.48Asバッファ層 3 InX Ga1-X As電流チャネル層 4 InY Al1-Y As電子供給層 4a In0.53Al0.48As電子供給層 5 InX Ga1-X Asコンタクト層 5a In0.53Ga0.47Asコンタクト層 6 リセス 7 ゲート電極 8 ソース電極 9 ドレイン電極 10 InAs層 11 AlAs層1 Semi-insulating InP substrate 2 InAs / AlAs superlattice buffer layer 2a In 0.52 Al 0.48 As buffer layer 3 In X Ga 1-X As current channel layer 4 In Y Al 1-Y As electron supply layer 4a In 0.53 Al 0.48 As Electron supply layer 5 In X Ga 1-X As contact layer 5a In 0.53 Ga 0.47 As contact layer 6 Recess 7 Gate electrode 8 Source electrode 9 Drain electrode 10 InAs layer 11 AlAs layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面上に異なる2種の半
導体層を交互に積層した超格子バッファ層および電流チ
ャネル層が形成され、前記超格子バッファ層が前記半導
体基板との接合面で格子整合し、かつ前記電流チャネル
層との接合面でも格子整合することを特徴とする電界効
果トランジスタ。
1. A superlattice buffer layer and a current channel layer in which two different types of semiconductor layers are alternately laminated are formed on one main surface of a semiconductor substrate, and the superlattice buffer layer is formed on a junction surface with the semiconductor substrate. A field-effect transistor which is lattice-matched and lattice-matched at a junction surface with the current channel layer.
【請求項2】 超格子層がInAs層およびAlAs層
からなり、電流チャネル層がInGaAs層からなる請
求項1記載の電界効果トランジスタ。
2. The field effect transistor according to claim 1, wherein the superlattice layer comprises an InAs layer and an AlAs layer, and the current channel layer comprises an InGaAs layer.
JP31701492A 1992-11-26 1992-11-26 Field effect transistor Expired - Fee Related JP2917719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31701492A JP2917719B2 (en) 1992-11-26 1992-11-26 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31701492A JP2917719B2 (en) 1992-11-26 1992-11-26 Field effect transistor

Publications (2)

Publication Number Publication Date
JPH06163601A true JPH06163601A (en) 1994-06-10
JP2917719B2 JP2917719B2 (en) 1999-07-12

Family

ID=18083456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31701492A Expired - Fee Related JP2917719B2 (en) 1992-11-26 1992-11-26 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2917719B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111039A (en) * 1994-07-25 2001-04-20 Hitachi Ltd Lattice-mismatched stacked-layered crystal structure and semiconductor device using the same
US6291842B1 (en) 1998-03-12 2001-09-18 Nec Corporation Field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111039A (en) * 1994-07-25 2001-04-20 Hitachi Ltd Lattice-mismatched stacked-layered crystal structure and semiconductor device using the same
US6291842B1 (en) 1998-03-12 2001-09-18 Nec Corporation Field effect transistor

Also Published As

Publication number Publication date
JP2917719B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
US6177685B1 (en) Nitride-type III-V HEMT having an InN 2DEG channel layer
US20010020700A1 (en) Semiconductor device
JP3173080B2 (en) Field effect transistor
JPH0815213B2 (en) Field effect transistor
WO2020116147A1 (en) Field effect transistor and method for manufacturing same
US20040169194A1 (en) Semiconductor device
JPH07183494A (en) Heterojunction fet
JP2804041B2 (en) Field-effect transistor
JP3141838B2 (en) Field effect transistor
JP2964637B2 (en) Field effect transistor
JP3094500B2 (en) Field effect transistor
JP2917719B2 (en) Field effect transistor
JP3158467B2 (en) InAlAs / InGaAs heterojunction structure field effect transistor
JP2500457B2 (en) Heterojunction field effect transistor
JP3122471B2 (en) Field effect transistor
JPH04298050A (en) Heterostructure device having strained carrier supply layer
JP3122474B2 (en) Field effect transistor
van der Zanden et al. Comparison of Metamorphic InGaAs/InAlAs HEMT’s on GaAs with InP based LM HEMT’s
JPS609174A (en) Semiconductor device
JP3423812B2 (en) HEMT device and manufacturing method thereof
JP3122472B2 (en) Field effect transistor
JP2800245B2 (en) Semiconductor device
JPH06244217A (en) Heterojunction semiconductor device
JP3122473B2 (en) Field effect transistor
JPH09283745A (en) High-electron mobility transistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990323

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees