JPH06162837A - Composite superconductor and superconducting coil - Google Patents

Composite superconductor and superconducting coil

Info

Publication number
JPH06162837A
JPH06162837A JP4132378A JP13237892A JPH06162837A JP H06162837 A JPH06162837 A JP H06162837A JP 4132378 A JP4132378 A JP 4132378A JP 13237892 A JP13237892 A JP 13237892A JP H06162837 A JPH06162837 A JP H06162837A
Authority
JP
Japan
Prior art keywords
composite
purity aluminum
superconducting
copper
aluminum material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4132378A
Other languages
Japanese (ja)
Other versions
JP3356459B2 (en
Inventor
Masamitsu Ichihara
政光 市原
Nobuo Aoki
青木  伸夫
Tomoyuki Kumano
智幸 熊野
Shinji Hakamata
真志 袴田
Satoru Hanai
哲 花井
Yoshihiro Wachi
良裕 和智
Akira Murase
曉 村瀬
Tsutomu Fujioka
勉 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
SWCC Corp
Original Assignee
Toshiba Corp
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Showa Electric Wire and Cable Co filed Critical Toshiba Corp
Priority to JP13237892A priority Critical patent/JP3356459B2/en
Publication of JPH06162837A publication Critical patent/JPH06162837A/en
Application granted granted Critical
Publication of JP3356459B2 publication Critical patent/JP3356459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To lower the composite specific resistance at very low temperatures of a stabilizer made from high purity aluminum. CONSTITUTION:A composite superconductor 20 is formed by joining a composite material 21 and a superconducting wire 10 together using solder 15, the composite material 21 comprising high purity aluminum 11 of rectangular cross section and a covering material 12 formed on the outside of the high purity aluminum from a material with a Hall coefficient of the same sign as that of the high purity aluminum. When in use the composite superconductor is disposed with the broad surface of the high purity aluminum 11 being parallel to an external magnetic field H. Since the sign of the Hall element of the high purity aluminum is the same as that of the Hall element of the covering material at very low temperatures, the composite specific resistance of the composite material 21 can be reduced significantly by disposing the composite superconductor in this way, and as a result the specific resistance of the whole conductor can be approximated to that of the high purity aluminum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合超電導々体および超
電導コイルに係り、特に安定化材として高純度アルミニ
ウム材を使用し、高磁界で優れた安定性を維持すること
のできる複合超電導々体および超電導コイルの改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite superconducting body and a superconducting coil, and particularly to a composite superconducting body which uses a high-purity aluminum material as a stabilizing material and can maintain excellent stability in a high magnetic field. And improvement of the superconducting coil.

【0002】[0002]

【従来の技術】従来、大型の超電導機器、例えば核融
合、エネルギー貯蔵、加速器等の大型超電導マグネット
に使用される超電導々体として、多芯構造の超電導線と
安定化材を半田で接合した複合超電導々体が知られてい
る。
2. Description of the Related Art Conventionally, as a superconducting body used for large-scale superconducting equipment, for example, large-scale superconducting magnets for nuclear fusion, energy storage, accelerators, etc., a multi-core structure superconducting wire and a stabilizer are combined with solder. Superconductors are known.

【0003】上記の複合超電導々体の安定化材として
は、銅またはアルミニウムが一般的に使用されている
が、銅はアルミニウムに比較して強度が大きく、また超
電導フィラメントとの強度差が小さいために加工性に優
れ、かつ半田付け性が良好である反面、極低温下での比
抵抗が大きく、これに対してアルミニウムは、銅に比べ
て極低温下での比抵抗が小さい利点を有するものの、強
度が小さく、かつ超電導フィラメントとの強度差が大き
いために加工し難い上、半田付け性が悪く超電導線と複
合化するのに問題があった。
Copper or aluminum is generally used as a stabilizer for the above-mentioned composite superconducting body, but copper has a higher strength than aluminum and a small strength difference from the superconducting filament. Although it has excellent workability and good solderability, it has a large resistivity at cryogenic temperature, whereas aluminum has the advantage that it has a lower resistivity at cryogenic temperature than copper. However, since the strength is small and the strength difference from the superconducting filament is large, it is difficult to process, and the solderability is poor and there is a problem in forming a composite with the superconducting wire.

【0004】しかしながら、高純度のアルミニウムは、
高磁界での磁気抵抗効果の増加が銅に比較して小さく、
従って高磁界下での比抵抗が小さくなり安定性に優れる
利点を有するため、高磁界用の導体として、超電導特性
の上からは安定化材としてアルミニウムを使用すること
が有利である。
However, high-purity aluminum is
The increase of the magnetoresistive effect in a high magnetic field is small compared to copper,
Therefore, since the specific resistance under a high magnetic field is small and the stability is excellent, it is advantageous to use aluminum as a stabilizing material as a conductor for a high magnetic field and from the viewpoint of superconducting properties.

【0005】上述のアルミニウムの難点を克服するため
に、一般にはアルミニウムを銅で被覆した複合体として
超電導線と複合化することが行われている。
In order to overcome the above-mentioned drawbacks of aluminum, it is generally practiced to form a composite of aluminum and copper with a superconducting wire.

【0006】このようなアルミニウム安定化超電導々体
としては、モノリス型、ハウジング型、撚線型あるいは
複合型の複合超電導々体が種々検討されてきている。
As such an aluminum-stabilized superconducting body, various monolithic, housing-type, twisted-type or composite-type composite superconducting bodies have been investigated.

【0007】上記のモノリス型の超電導々体は、銅マト
リックスを有する超電導線の内部に銅被覆アルミニウム
材を配置した構造を有するものであり、ハウジング型の
超電導々体は、断面凹状の2つの銅ハウジングを対向さ
せて配置し、この内部に銅マトリックスを有する超電導
線と銅被覆アルミニウム材を配置した構造を有し、また
撚線型の超電導々体は、銅マトリックスを有する超電導
線と銅被覆アルミニウム線を撚り合わせた構造を有す
る。さらに複合型の超電導々体は、銅マトリックスを有
する超電導線を撚り合わせ、これを圧縮成型した線材と
銅被覆アルミニウム材を複合化したものである。
The above-described monolith-type superconducting body has a structure in which a copper-coated aluminum material is arranged inside a superconducting wire having a copper matrix. The housing-type superconducting body is composed of two copper members having a concave cross section. The housing has a structure in which the superconducting wire having a copper matrix and a copper-coated aluminum material are arranged inside each other, and the stranded wire type superconductor is a superconducting wire having a copper matrix and a copper-coated aluminum wire. It has a twisted structure. Further, the composite type superconducting body is a composite of a wire material obtained by twisting superconducting wires having a copper matrix, compression-molding the superconducting wires, and a copper-coated aluminum material.

【0008】以上の複合超電導々体においては、超電導
線と銅被覆アルミニウム材とは一般に半田で接合される
ことにより一体化されている。
In the above composite superconducting body, the superconducting wire and the copper-clad aluminum material are generally integrated by being joined by solder.

【0009】高純度アルミニウムの比抵抗は、本発明者
等の実験結果によれば、ゼロ磁場で銅の比抵抗に比較し
て著しく小さく、かつ2〜6T(テスラ)の範囲でほぼ
一定の値を有しており、これに対して銅の比抵抗は、ゼ
ロ磁場でアルミニウムの比抵抗に比較して著しく大きい
上、2〜6T(テスラ)の範囲でその値が急激に上昇
し、高磁場、例えば6T(4.2K)で高純度アルミニ
ウムの約10倍以上の比抵抗を示す(特願平3−398
52号)。
According to the results of experiments conducted by the inventors of the present invention, the specific resistance of high-purity aluminum is significantly smaller than the specific resistance of copper at zero magnetic field, and has a substantially constant value in the range of 2 to 6 T (Tesla). On the other hand, the specific resistance of copper is significantly larger than that of aluminum in a zero magnetic field, and its value sharply rises in the range of 2 to 6 T (Tesla). For example, at 6T (4.2K), the specific resistance is about 10 times or more that of high-purity aluminum (Japanese Patent Application No. 3-398).
No. 52).

【0010】従って、安定化材として銅の一部を銅被覆
アルミニウム材に置き換えることにより、複合超電導々
体の合成比抵抗を著しく低下させることが可能となるこ
とが予測される。
Therefore, it is expected that the composite specific resistance of the composite superconductor can be remarkably reduced by substituting a part of copper as the stabilizer for the copper-coated aluminum material.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、高純度
アルミニウム材を銅で被覆し、これを超電導線と単に複
合化した状態、あるいは超電導線の内部に単に配置した
だけでは、それぞれ単独の比抵抗から計算した合成比抵
抗よりもその値が著しく大きくなるという現象が測定さ
れている。例えば、円形断面の高純度アルミニウム線の
外側にニオブの拡散バリアを配置し、さらに多芯超電導
線および安定化銅を順次配置した構造の複合超電導々体
においては、極低温で高純度アルミニウム本来の比抵抗
特性が得られず、高純度アルミニウムと銅の中間の比抵
抗特性を示すことが判明している(第37回低温工学発
表会B1−4)。
However, if the high-purity aluminum material is coated with copper and is simply combined with the superconducting wire, or if it is simply placed inside the superconducting wire, each of them has a specific resistance. It has been measured that the value is significantly larger than the calculated combined resistivity. For example, in a composite superconducting body in which a diffusion barrier of niobium is arranged outside a high-purity aluminum wire having a circular cross section, and further a multi-core superconducting wire and a stabilized copper are sequentially arranged, at the cryogenic temperature It has been found that the specific resistance characteristic is not obtained and the specific resistance characteristic is intermediate between that of high-purity aluminum and copper (the 37th low temperature engineering presentation B1-4).

【0012】従って、高純度アルミニウム材を用いた効
果が発揮できないという問題があった。本発明は上記の
問題を解決するためになされたもので、安定化材として
高純度アルミニウムを用いた場合の極低温下での比抵抗
特性を著しく向上させ、特に高磁界で優れた安定性を維
持することのできる複合超電導々体およびこれを用いた
超電導コイルを提供することをその目的とする。
Therefore, there is a problem that the effect of using the high-purity aluminum material cannot be exhibited. The present invention has been made to solve the above problems, and significantly improves the specific resistance characteristics at extremely low temperatures when high-purity aluminum is used as a stabilizing material, and particularly exhibits excellent stability in a high magnetic field. It is an object of the present invention to provide a composite superconducting body that can be maintained and a superconducting coil using the same.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、多芯構造の超電導線と安定化材とを接合
した複合超電導々体において、高純度アルミニウム材と
同符号のホール係数を有する材料で高純度アルミニウム
材を被覆した複合材を安定化材として用いるものであ
る。
In order to achieve the above object, the present invention provides a composite superconducting body in which a superconducting wire having a multi-core structure and a stabilizing material are joined, and a hole having the same sign as a high-purity aluminum material. A composite material obtained by coating a high-purity aluminum material with a material having a coefficient is used as a stabilizer.

【0014】上記発明における高純度アルミニウム材と
同符号のホール係数を有する材料としては、ベリリウ
ム、インジウム、マグネシウム、カドミウム、鉄、モリ
ブデン、鉛、タンタル、タングステン、錫、亜鉛および
これ等の合金があり、特にベリリウム、インジウム、マ
グネシウムおよびこれ等の合金は極低温、高磁界下で高
純度アルミニウムと同じ正のホール係数を有するため、
これを用いることが好ましい。
Materials having the same sign as the high-purity aluminum material in the above invention include beryllium, indium, magnesium, cadmium, iron, molybdenum, lead, tantalum, tungsten, tin, zinc and alloys thereof. , In particular beryllium, indium, magnesium and their alloys have the same positive Hall coefficient as high-purity aluminum under cryogenic and high magnetic fields,
It is preferable to use this.

【0015】上記の複合超電導々体においては、安定化
材を矩形断面を有する高純度アルミニウム材の外側に高
純度アルミニウムと同じ正のホール係数を有する材料を
被覆して形成することが好ましい。この場合、安定化材
の幅広面が磁場の方向と平行となるようにして使用する
ことにより、合成比抵抗をより低下させることができ
る。
In the above composite superconductor, it is preferable that the stabilizing material is formed by coating a high-purity aluminum material having a rectangular cross section with a material having the same positive Hall coefficient as high-purity aluminum. In this case, the composite resistivity can be further reduced by using the stabilizing material such that the wide surface thereof is parallel to the direction of the magnetic field.

【0016】以上から本発明の超電導コイルは、多芯構
造の超電導線と、矩形状の断面を有する高純度アルミニ
ウム材の外側にベリリウム、インジウム、マグネシウム
またはこれ等の合金を被覆した複合材とを接合し、高純
度アルミニウム材の幅広面がコイルの軸方向あるいはコ
イルによって形成される磁場の方向に平行になるように
巻回したものである。
From the above, the superconducting coil of the present invention comprises a multiconducting superconducting wire and a composite material in which beryllium, indium, magnesium or an alloy thereof is coated on the outside of a high-purity aluminum material having a rectangular cross section. It is joined and wound so that the wide surface of the high-purity aluminum material is parallel to the axial direction of the coil or the direction of the magnetic field formed by the coil.

【0017】特に、矩形断面を有する高純度アルミニウ
ム材や高純度アルミニウムテープを安定化材として使用
する場合には、幅方向のみに高純度アルミニウム材と同
符号のホール係数を有する材料を接合した複合材を用い
てコイルを形成することにより著しくその合成比抵抗を
低下させることが可能となる。
Particularly, when a high-purity aluminum material having a rectangular cross section or a high-purity aluminum tape is used as a stabilizer, a composite material in which a material having a Hall coefficient of the same sign as that of the high-purity aluminum material is joined only in the width direction is used. By forming a coil using a material, it is possible to significantly reduce the combined specific resistance.

【0018】[0018]

【作用】上記構成の複合超電導々体および超電導コイル
においては、高純度アルミニウム材の外側に高純度アル
ミニウム材と同符号のホール係数を有する材料で被覆し
た複合材からなる安定化材を用いることにより、超電導
々体の合成比抵抗を著しく低下させることができるが、
この現象は、超電導々体の合成比抵抗が高純度アルミニ
ウム材と被覆材のホール係数および外部磁界に対する配
置に依存するという本発明者等の知見に基づいている。
In the composite superconducting body and the superconducting coil having the above-mentioned structure, by using the stabilizing material made of the composite material in which the outside of the high-purity aluminum material is coated with the material having the Hall coefficient of the same sign as the high-purity aluminum material. , It is possible to significantly reduce the combined resistivity of superconductors,
This phenomenon is based on the findings of the present inventors that the combined specific resistance of the superconductor depends on the Hall coefficient of the high-purity aluminum material and the coating material and the arrangement with respect to the external magnetic field.

【0019】図7は高純度アルミニウム材と銅被覆高純
度アルミニウム材の極低温(4.2K)における比抵抗
の外部磁界に対する依存性を示したもので、同図におい
てAは外径φ1.446mmの円形断面の高純度アルミニ
ウム材を、またBは外径φ1.61mmで面積比Al:C
u=1:0.239の円形断面の銅被覆高純度アルミニ
ウム材を示し、ともに通電電流100Aで測定した結果
である。この場合、線径による比抵抗の変動が小さい結
果も得られている。即ち、高純度アルミニウム材に銅を
被覆することにより、その合成比抵抗は理論値より著し
く増大する。
FIG. 7 shows the dependence of the specific resistance of the high-purity aluminum material and the copper-coated high-purity aluminum material at an extremely low temperature (4.2K) on the external magnetic field. In FIG. 7, A is the outer diameter φ1.446 mm. High circularity aluminum material with a circular cross section, and B is an outer diameter φ1.61mm and the area ratio is Al: C.
u = 1: 0.239 shows a copper-coated high-purity aluminum material having a circular cross section, both of which are the results measured at a current of 100 A. In this case, the result that the variation of the specific resistance due to the wire diameter is small is also obtained. That is, by coating a high-purity aluminum material with copper, the composite specific resistance thereof is significantly increased from the theoretical value.

【0020】一方、図8は矩形断面の複合材についての
極低温(4.2K)における比抵抗の外部磁界に対する
依存性を示したもので、同図中のCおよびC´は断面
0.4×1.9(mm)の高純度アルミニウム材1の幅広
面に厚さ0.05mmの銅2、2´を接合した場合を示
し、また同図中のDおよびD´は断面0.5×2.0
(mm)の高純度アルミニウム材3に厚さ0.05mmの銅
4を被覆した場合を示している。これらの測定値の外部
磁界に対する試料の位置関係を、それぞれ図9(a)、
(b)および図10(a)、(b)に示した。この結果
から矩形断面の複合材の場合、高純度アルミニウム材の
幅広面が外部磁界の方向に平行になるように配置するこ
とにより、その合成比抵抗が低下し、特に外部磁界に対
して垂直方向に銅が配置されていない試料C´の合成比
抵抗は高純度アルミニウムの比抵抗に近い値を示すこと
が明らかである。
On the other hand, FIG. 8 shows the dependence of the specific resistance of a composite material having a rectangular cross section at an extremely low temperature (4.2 K) on the external magnetic field, and C and C'in the figure show a cross section of 0.4. The figure shows a case where 0.05 mm thick copper 2, 2'is joined to a wide surface of a high-purity aluminum material 1 of × 1.9 (mm), and D and D'in the figure are cross sections of 0.5 × 2.0
It shows a case where a high-purity aluminum material 3 (mm) is coated with copper 4 having a thickness of 0.05 mm. The positional relationship of the sample with respect to the external magnetic field of these measured values is shown in FIG.
It is shown in (b) and FIGS. 10 (a) and (b). From this result, in the case of a composite material with a rectangular cross section, by arranging the wide surface of the high-purity aluminum material so that it is parallel to the direction of the external magnetic field, its combined resistivity decreases, especially in the direction perpendicular to the external magnetic field. It is clear that the composite specific resistance of the sample C ′ in which copper is not arranged is close to the specific resistance of high-purity aluminum.

【0021】以上の結果は、高純度アルミニウムと銅の
ホール係数が極低温で前者が正、かつ後者が負であるこ
とに基いている。
The above results are based on the fact that the Hall coefficients of high-purity aluminum and copper are extremely low and the former is positive and the latter is negative.

【0022】上記のホール係数とは、ホール効果に基く
定数であって、即ち、電流の流れている導体に垂直な磁
場を加えると、両者に垂直な方向に電場を生じて起電力
を生じ、直交座標で電流をIX 、磁束密度をBZ 、ホー
ル電場をEY とすると、R=EY /IX ・BZ で表さ
れ、ここでR(ホール係数)は、電流の担体が電子なら
ば負、正孔ならば正となる。
The above-mentioned Hall coefficient is a constant based on the Hall effect, that is, when a magnetic field perpendicular to a current flowing conductor is applied, an electric field is generated in a direction perpendicular to the two to generate an electromotive force, When the electric current is I X , the magnetic flux density is B Z , and the Hall electric field is E Y in Cartesian coordinates, it is represented by R = E Y / I X · B Z , where R (Hall coefficient) is the carrier of the electric current. If so, it becomes negative, and if it is hole, it becomes positive.

【0023】図11(a)、(b)に示すように、高純
度アルミニウム材5、5´の外側に銅6、6′を被覆し
た円形断面または矩形断面の複合材7、7′において
は、極低温で高純度アルミニウム材と銅のホール係数の
符号が反対であるために、互いに逆の起電力を生じ、こ
の起電力により複合材7、7′の断面内で電荷のドリフ
トを生ずるため合成比抵抗が増大する。
As shown in FIGS. 11 (a) and 11 (b), in a composite material 7 or 7'having a circular or rectangular cross section in which copper 6 or 6'is coated on the outside of a high-purity aluminum material 5 or 5 '. , Since the signs of the Hall coefficients of high-purity aluminum material and copper are opposite to each other at extremely low temperatures, electromotive forces opposite to each other are generated, and this electromotive force causes drift of charges in the cross section of the composite materials 7 and 7 '. The combined resistivity increases.

【0024】従って、上記の矩形断面の複合材の外側の
銅を、正のホール係数を有するベリリウム、インジウム
等と置換した複合材と超電導線とを接合した複合超電導
々体を用いて超電導コイルを製作した場合に、図9
(b)または図10(b)に示すように幅広面がコイル
の軸方向あるいはコイルによって形成される磁場の方向
に平行になるように配置することにより、その合成比抵
抗が著しく低下し、耐クエンチ特性を向上させることが
できる。
Therefore, a superconducting coil is formed by using a composite superconducting body obtained by joining a superconducting wire with a composite material in which copper on the outside of the above-mentioned rectangular section composite material is replaced with beryllium, indium or the like having a positive Hall coefficient. Figure 9 when manufactured
By arranging the wide surface in parallel with the axial direction of the coil or the direction of the magnetic field formed by the coil, as shown in FIG. The quench characteristic can be improved.

【0025】[0025]

【実施例】以下本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0026】図1は本発明の複合超電導々体の一実施例
の断面図を示したもので、10は超電導線、11は高純
度アルミニウム材、12はベリリウム、インジウム等か
らなる被覆材を示す。
FIG. 1 is a sectional view of an embodiment of the composite superconducting body of the present invention. 10 is a superconducting wire, 11 is a high-purity aluminum material, and 12 is a coating material made of beryllium, indium or the like. .

【0027】超電導線10は、銅マトリックス13中に
多数本のNb3 SnやNb−Ti合金等のフィラメント
14を配置したもので、例えば銅被覆Nb−Ti線を断
面六角形に成形したシングル線の多数本を銅管中に収容
し、これに減面加工を施して矩形状に成形したものであ
る。
The superconducting wire 10 is composed of a large number of filaments 14 made of Nb 3 Sn or Nb-Ti alloy in a copper matrix 13. For example, a copper-coated Nb-Ti wire is formed into a hexagonal cross section. A large number of these are housed in a copper tube, which is subjected to surface-reduction processing and molded into a rectangular shape.

【0028】複合超電導々体20は,この超電導線10
と矩形断面の高純度アルミニウム材11のの外側に被覆
材12を接合した複合材21と半田15で接合されてい
る。上記の複合材21は、円形断面の高純度アルミニウ
ムロッドをベリリウム、インジウム等からなる円筒状部
材中に収容し、これに静水圧押出加工および引抜加工を
施して矩形断面に成形することにより得られる。
The composite superconducting body 20 is composed of the superconducting wire 10
And a composite material 21 in which a coating material 12 is bonded to the outside of a high-purity aluminum material 11 having a rectangular cross section, and soldering 15. The composite material 21 is obtained by accommodating a high-purity aluminum rod having a circular cross section in a cylindrical member made of beryllium, indium or the like, and subjecting this to hydrostatic extrusion and drawing to form a rectangular cross section. .

【0029】同図に示すように、この複合超電導々体2
0は外部磁場Hに対して高純度アルミニウム材11の幅
広面が平行になるように配置して用いられる。即ち、図
2に示すように、絶縁被覆を施した複合超電導々体2
0′をコイル22の軸方向と高純度アルミニウム材11
の幅広面が平行になるように巻枠23上に巻回してマグ
ネットを形成する。このように複合超電導々体20´を
配置することにより、複合材21の比抵抗を著しく低減
することができ、導体全体の比抵抗を高純度アルニウム
材の比抵抗に近付けることが可能となる。
As shown in the figure, this composite superconducting body 2
0 is arranged such that the wide surface of the high-purity aluminum material 11 is parallel to the external magnetic field H and is used. That is, as shown in FIG. 2, a composite superconducting body 2 having an insulating coating is provided.
0'is the axial direction of the coil 22 and the high-purity aluminum material 11
The magnet is formed by winding on the winding frame 23 such that the wide surfaces of the magnets are parallel to each other. By arranging the composite superconducting body 20 'in this way, the specific resistance of the composite material 21 can be remarkably reduced, and the specific resistance of the entire conductor can be brought close to the specific resistance of the high-purity aluminum material.

【0030】図3は本発明の複合超電導々体30の他の
実施例を示したもので、矩形断面の高純度アルミニウム
材11の外側に被覆材12を接合した複合材21の両側
に、矩形断面の多芯構造の超電導線10、10を配置
し、半田15で接合した構造を有する。
FIG. 3 shows another embodiment of the composite superconducting body 30 of the present invention, in which a rectangular shape is provided on both sides of a composite material 21 in which a coating material 12 is joined to the outside of a high-purity aluminum material 11 having a rectangular cross section. It has a structure in which superconducting wires 10 and 10 having a multi-core structure of a cross section are arranged and joined with solder 15.

【0031】また、図4は本発明の複合超電導々体31
の他の実施例を示したもので、断面凹状の銅ハウジング
部材32、32′の凹状部を対向させて配置し、この内
部に超電導線10を収容して半田15で接合したハウジ
ング構造の超電導線33の両側に複合材21′、21′
を配置して、半田15で接合したものである。この場
合、複合材21′は矩形断面の高純度アルミニウム材1
1の幅広面に被覆材12が接合されている。
FIG. 4 shows a composite superconducting body 31 of the present invention.
Another embodiment of the present invention, in which the concave portions of the copper housing members 32, 32 'having a concave cross section are arranged so as to face each other, the superconducting wire 10 is accommodated therein, and joined by solder 15, Composite material 21 ', 21' on both sides of line 33
Are arranged and joined by the solder 15. In this case, the composite material 21 'is a high-purity aluminum material 1 having a rectangular cross section.
The covering material 12 is joined to the wide surface 1 of FIG.

【0032】さらに図5は、本発明の複合超電導々体の
他の実施例の断面図を示したもので、複合超電導々体3
5は、円形断面の多芯超電導線36の複数本を、矩形断
面の高純度アルミニウム材11の幅広面に被覆材12を
接合した複合材21′の外側に撚り合わせ、この複合材
21′と多芯超電導線36とを半田15で接合したもの
である。
Further, FIG. 5 is a sectional view showing another embodiment of the composite superconducting body of the present invention. The composite superconducting body 3 is shown in FIG.
Reference numeral 5 indicates that a plurality of multifilamentary superconducting wires 36 each having a circular cross section are twisted on the outside of a composite material 21 'in which a covering material 12 is joined to a wide surface of a high-purity aluminum material 11 having a rectangular cross section. The multi-core superconducting wire 36 is joined with the solder 15.

【0033】このように本発明の複合超電導々体は、種
々の構造に形成することが可能であるが、図6は撚線構
造の例を示したものである。この導体40においては、
高純度アルミニウム材11の外側に被覆材12を接合し
た円形断面の複合材41を中心として、これと同径の多
芯超電導線36の6本をその外側に撚り合わせ、これ等
を半田15で接合して形成されている。
As described above, the composite superconducting body of the present invention can be formed into various structures, and FIG. 6 shows an example of a twisted wire structure. In this conductor 40,
Centering around the composite material 41 having a circular cross section in which the coating material 12 is joined to the outside of the high-purity aluminum material 11, six multicore superconducting wires 36 having the same diameter as this are twisted on the outside, and these are soldered 15 It is formed by joining.

【0034】上記の複合超電導々体30、31、35も
外部磁場Hに対して高純度アルミニウム材11の幅広面
が平行になるように配置して用いられる。
The above-mentioned composite superconductors 30, 31, 35 are also arranged and used so that the wide surface of the high-purity aluminum material 11 is parallel to the external magnetic field H.

【0035】尚、上記の実施例1〜6において同一の部
分は同符号で示した。
In the above-mentioned first to sixth embodiments, the same parts are designated by the same reference numerals.

【0036】[0036]

【発明の効果】以上述べたように、本発明によれば、高
純度アルミニウム材とこの高純度アルミニウム材と同符
号のホール係数を有する材料で形成した被覆材からなる
複合材を安定化材として用いることにより、極低温下で
の合成比抵抗を低下させることができるため、高磁界で
の安定性が向上し、耐クエンチ性に優れた複合超電導々
体および超電導コイルが得られる。
As described above, according to the present invention, a composite material composed of a high-purity aluminum material and a covering material formed of a material having the same Hall coefficient as that of the high-purity aluminum material is used as a stabilizer. By using it, the combined specific resistance under cryogenic temperature can be lowered, so that the stability in a high magnetic field is improved, and a composite superconducting body and a superconducting coil excellent in quenching resistance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合超電導々体の一実施例を示す断面
図。
FIG. 1 is a sectional view showing an embodiment of a composite superconducting body of the present invention.

【図2】本発明の超電導コイルの一実施例を示す断面
図。
FIG. 2 is a sectional view showing an embodiment of the superconducting coil of the present invention.

【図3】本発明の複合超電導々体の他の実施例を示す断
面図。
FIG. 3 is a sectional view showing another embodiment of the composite superconducting body of the present invention.

【図4】本発明の複合超電導々体の他の実施例を示す断
面図。
FIG. 4 is a sectional view showing another embodiment of the composite superconducting body of the present invention.

【図5】本発明の複合超電導々体の他の実施例を示す断
面図。
FIG. 5 is a sectional view showing another embodiment of the composite superconducting body of the present invention.

【図6】本発明の複合超電導々体の他の実施例を示す断
面図。
FIG. 6 is a sectional view showing another embodiment of the composite superconducting body of the present invention.

【図7】高純度アルミニウム材と銅被覆高純度アルミニ
ウム材の極低温における比抵抗の外部磁界に対する依存
性を示すグラフ。
FIG. 7 is a graph showing the dependence of the specific resistance of the high-purity aluminum material and the copper-coated high-purity aluminum material at an extremely low temperature on the external magnetic field.

【図8】矩形断面の複合材についての極低温における比
抵抗の外部磁界に対する依存性を示すグラフ。
FIG. 8 is a graph showing the dependence of the resistivity of a composite material having a rectangular cross section at an extremely low temperature on an external magnetic field.

【図9】(a),(b)はそれぞれ図8の試料C、C´
の外部磁界に対する位置関係を示す断面断面図。
9A and 9B are samples C and C'of FIG. 8, respectively.
FIG. 3 is a cross-sectional cross-sectional view showing the positional relationship of the with respect to an external magnetic field.

【図10】(a),(b)はそれぞれ図8の試料D、D
´の外部磁界に対する位置関係を示す断面図。
10A and 10B are samples D and D of FIG. 8, respectively.
Sectional drawing which shows the positional relationship with respect to the external magnetic field of '.

【図11】(a),(b)はそれぞれ本発明の複合超電
導々体の作用を説明する断面図。
11 (a) and 11 (b) are cross-sectional views for explaining the operation of the composite superconductor according to the present invention.

【符号の説明】[Explanation of symbols]

1,3,5,5´,11…高純度アルミニウム材、 2,2′,4,6,6′…銅 10,36…超電導線 12………被覆材 15………半田 20、20′、30、31、35、40…複合超電導々
体 21,21′,41…複合材 22………コイル 23………巻枠 A………高純度アルミニウム材 B………銅被覆高純度アルミニウム材 C、C′…矩形断面の高純度アルミニウム材の幅広面に
銅を接合した試料。 D、D′…矩形断面の高純度アルミニウム材に銅を被覆
した試料。
1,3,5,5 ', 11 ... High-purity aluminum material, 2,2', 4,6,6 '... Copper 10,36 ... Superconducting wire 12 ......... Coating material 15 ......... Solder 20,20' , 30, 31, 35, 40 ... Composite superconductor 21,21 ', 41 ... Composite material 22 ... Coil 23 ... Reel A ... High-purity aluminum material B -... Copper-coated high-purity aluminum Material C, C '... A sample in which copper is joined to a wide surface of a high-purity aluminum material having a rectangular cross section. D, D '... A sample in which a high-purity aluminum material having a rectangular cross section is coated with copper.

フロントページの続き (72)発明者 青木 伸夫 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 熊野 智幸 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 袴田 真志 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 花井 哲 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 和智 良裕 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 村瀬 曉 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 藤岡 勉 東京都千代田区内幸町1丁目1番6号 株 式会社東芝内Front page continuation (72) Nobuo Aoki 2-1-1, Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Electric Wire & Cable Co., Ltd. (72) Tomoyuki Kumano 2--1 Oda, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 in Showa Cable Denki Co., Ltd. (72) Inventor Masashi Hamada 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture (72) In Showa Cable Denki Co., Ltd. 2-4 Shares in Toshiba Keihin Plant (72) Inventor Yoshihiro Wachi Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture 2-4 Shares in Toshiba Keihin Plant (72) Inventor Murase Akira Komukai Toshiba, Sachi-ku, Kawasaki-shi, Kanagawa No. 1 in the Town Toshiba Research Institute, Inc. (72) Inventor Tsutomu Fujioka 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside the Toshiba Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多芯構造の超電導線と、これに接合され
た安定化材とからなる複合超電導々体において、前記安
定化材は、高純度アルミニウム材とこの高純度アルミニ
ウム材と同符号のホール係数を有する材料で形成した被
覆材からなる複合材であることを特徴とする複合超電導
々体。
1. A composite superconducting body comprising a superconducting wire having a multi-core structure and a stabilizing material joined to the superconducting wire, wherein the stabilizing material has a high-purity aluminum material and the same sign as the high-purity aluminum material. A composite superconductor characterized by being a composite material comprising a coating material formed of a material having a Hall coefficient.
【請求項2】 被覆材は、ベリリウム、インジウム、マ
グネシウムまたはこれ等の合金であることを特徴とする
請求項1記載の複合超電導々体。
2. The composite superconductor according to claim 1, wherein the coating material is beryllium, indium, magnesium or an alloy thereof.
【請求項3】 多芯構造の超電導線と、これに接合され
た安定化材とからなる複合超電導々体を巻回した超電導
コイルにおいて、前記安定化材を、矩形断面を有する高
純度アルミニウム材の外側にベリリウム、インジウム、
マグネシウムまたはこれ等の合金を被覆した複合材によ
り形成するとともに、前記高純度アルミニウム材の幅広
面がコイルの軸方向あるいはコイルによって形成される
磁場の方向に平行になるように配置したことを特徴とす
る超電導コイル。
3. A superconducting coil formed by winding a composite superconducting body composed of a superconducting wire having a multi-core structure and a stabilizing material bonded to the superconducting wire, wherein the stabilizing material is a high-purity aluminum material having a rectangular cross section. Beryllium, indium,
It is formed of a composite material coated with magnesium or an alloy thereof, and is arranged so that the wide surface of the high-purity aluminum material is parallel to the axial direction of the coil or the direction of the magnetic field formed by the coil. Superconducting coil.
【請求項4】 複合材は、矩形断面を有する高純度アル
ミニウム材の幅広面にベリリウム、インジウム、マグネ
シウムまたはこれ等の合金を接合した被覆材よりなるこ
とを特徴とする請求項3記載の超電導コイル。
4. The superconducting coil according to claim 3, wherein the composite material is a covering material in which beryllium, indium, magnesium, or an alloy thereof is bonded to a wide surface of a high-purity aluminum material having a rectangular cross section. .
JP13237892A 1992-05-25 1992-05-25 Superconducting coil Expired - Lifetime JP3356459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13237892A JP3356459B2 (en) 1992-05-25 1992-05-25 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13237892A JP3356459B2 (en) 1992-05-25 1992-05-25 Superconducting coil

Publications (2)

Publication Number Publication Date
JPH06162837A true JPH06162837A (en) 1994-06-10
JP3356459B2 JP3356459B2 (en) 2002-12-16

Family

ID=15079985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13237892A Expired - Lifetime JP3356459B2 (en) 1992-05-25 1992-05-25 Superconducting coil

Country Status (1)

Country Link
JP (1) JP3356459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277322A (en) * 1999-03-26 2000-10-06 Toshiba Corp High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277322A (en) * 1999-03-26 2000-10-06 Toshiba Corp High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system

Also Published As

Publication number Publication date
JP3356459B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
GB1580719A (en) Aluminum-stabilised multifilamentarx superconductor and method of its manufacture
JPS6039705A (en) Aluminum stabilized superconductive conductor
US4743713A (en) Aluminum-stabilized NB3SN superconductor
DE1932086B2 (en) Waveguide made of superconductor material and a metal that is normally electrically conductive at the operating temperature of the superconductor material
US4791241A (en) Stabilized superconducting wire
US20080287303A1 (en) Nb3Sn superconducting wire, precursor or same, and method for producing precursor
US5929385A (en) AC oxide superconductor wire and cable
JP3354171B2 (en) Composite superconductor and superconducting coil
EP2333793B1 (en) Superconductors with improved mechanical strength
US4218668A (en) Superconductive magnet device
JP3356459B2 (en) Superconducting coil
US3616530A (en) Method of fabricating a superconducting composite
US4093817A (en) Superconductor
US5628835A (en) Nb3 Al Group superconductor containing ultrafine Nb2 Al particles
JPH0676649A (en) Composite superconductor
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
US6957093B2 (en) Structure and method of application for protecting the superconductivity of superconducting composites
JPH0143410B2 (en)
Gregory Conventional wire and cable technology
JP2001057118A (en) SUPERCONDUCTING WIRE OF Nb3Sn COMPOUND AND MANUFACTURE THEREOF
JPH0146963B2 (en)
JP2768844B2 (en) Superconductor and superconducting coil
JP3036160B2 (en) Stabilizer for superconducting conductor
JP3428771B2 (en) Nb3Sn compound superconducting wire
JP2749136B2 (en) Aluminum stabilized superconducting wire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10