JPH06162836A - Composite superconductor and superconducting coil - Google Patents

Composite superconductor and superconducting coil

Info

Publication number
JPH06162836A
JPH06162836A JP4132377A JP13237792A JPH06162836A JP H06162836 A JPH06162836 A JP H06162836A JP 4132377 A JP4132377 A JP 4132377A JP 13237792 A JP13237792 A JP 13237792A JP H06162836 A JPH06162836 A JP H06162836A
Authority
JP
Japan
Prior art keywords
composite
copper
purity aluminum
superconducting
aluminum material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4132377A
Other languages
Japanese (ja)
Other versions
JP3354171B2 (en
Inventor
Masamitsu Ichihara
政光 市原
Nobuo Aoki
青木  伸夫
Tomoyuki Kumano
智幸 熊野
Shinji Hakamata
真志 袴田
Satoru Hanai
哲 花井
Yoshihiro Wachi
良裕 和智
Akira Murase
曉 村瀬
Tsutomu Fujioka
勉 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
SWCC Corp
Original Assignee
Toshiba Corp
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Showa Electric Wire and Cable Co filed Critical Toshiba Corp
Priority to JP13237792A priority Critical patent/JP3354171B2/en
Publication of JPH06162836A publication Critical patent/JPH06162836A/en
Application granted granted Critical
Publication of JP3354171B2 publication Critical patent/JP3354171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To lower the composite specific resistance at very low temperatures of a composite material having high purity aluminum as a stabilizer. CONSTITUTION:A composite superconductor 20 is formed by joining a superconducting wire 10 and a composite material 21 together using solder 15, the composite material 21 comprising a tape-shaped copper member 12 joined to the broad surface of high purity aluminum 11 of rectangular cross section. When in use the composite superconductor 20 is disposed with the broad surface of the high purity aluminum 11 being parallel to an external magnetic field H. By disposing the composite superconductor in this way the composite specific resistance of the composite material 21 can be reduced significantly and the specific resistance of the whole conductor can be approximated to that of the high purity aluminum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合超電導々体および超
電導コイルに係り、特に安定化材として高純度アルミニ
ウム材を使用し、高磁界で優れた安定性を維持すること
のできる複合超電導々体および超電導コイルの改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite superconducting body and a superconducting coil, and particularly to a composite superconducting body which uses a high-purity aluminum material as a stabilizing material and can maintain excellent stability in a high magnetic field. And improvement of the superconducting coil.

【0002】[0002]

【従来の技術】従来、大型の超電導機器、例えば核融
合、エネルギー貯蔵、加速器等の大型超電導マグネット
に使用される超電導々体として、多芯構造の超電導線と
安定化材を半田で接合した複合超電導々体が知られてい
る。
2. Description of the Related Art Conventionally, as a superconducting body used for large-scale superconducting equipment, for example, large-scale superconducting magnets for nuclear fusion, energy storage, accelerators, etc., a multi-core structure superconducting wire and a stabilizer are combined with solder. Superconductors are known.

【0003】上記の複合超電導々体の安定化材として
は、銅またはアルミニウムが一般的に使用されている
が、銅はアルミニウムに比較して強度が大きく、また超
電導フィラメントとの強度差が小さいために加工性に優
れ、かつ半田付け性が良好である反面、極低温下での比
抵抗が大きく、これに対してアルミニウムは、銅に比べ
て極低温下での比抵抗が小さい利点を有するものの、強
度が小さく、かつ超電導フィラメントとの強度差が大き
いために加工し難い上、半田付け性が悪く超電導線と複
合化するのに問題があった。
Copper or aluminum is generally used as a stabilizer for the above-mentioned composite superconducting body, but copper has a higher strength than aluminum and a small strength difference from the superconducting filament. Although it has excellent workability and good solderability, it has a large resistivity at cryogenic temperature, whereas aluminum has the advantage that it has a lower resistivity at cryogenic temperature than copper. However, since the strength is small and the strength difference from the superconducting filament is large, it is difficult to process, and the solderability is poor and there is a problem in forming a composite with the superconducting wire.

【0004】しかしながら、高純度のアルミニウムは、
高磁界での磁気抵抗効果の増加が銅に比較して小さく、
従って高磁界下での比抵抗が小さくなり安定性に優れる
利点を有するため、高磁界用の導体として、超電導特性
の上からは安定化材としてアルミニウムを使用すること
が有利である。
However, high-purity aluminum is
The increase of the magnetoresistive effect in a high magnetic field is small compared to copper,
Therefore, since the specific resistance under a high magnetic field is small and the stability is excellent, it is advantageous to use aluminum as a stabilizing material as a conductor for a high magnetic field and from the viewpoint of superconducting properties.

【0005】上述のアルミニウムの難点を克服するため
に、一般にはアルミニウムを銅で被覆した複合体として
超電導線と複合化することが行われている。
In order to overcome the above-mentioned drawbacks of aluminum, it is generally practiced to form a composite of aluminum and copper with a superconducting wire.

【0006】このようなアルミニウム安定化超電導々体
としては、モノリス型、ハウジング型、撚線型あるいは
複合型の複合超電導々体が種々検討されてきている。
As such an aluminum-stabilized superconducting body, various monolithic, housing-type, twisted-type or composite-type composite superconducting bodies have been investigated.

【0007】上記のモノリス型の超電導々体は、銅マト
リックスを有する超電導線の内部に銅被覆アルミニウム
材を配置した構造を有するものであり、ハウジング型の
超電導々体は、断面凹状の2つの銅ハウジングを対向さ
せて配置し、この内部に銅マトリックスを有する超電導
線と銅被覆アルミニウム材を配置した構造を有し、また
撚線型の超電導々体は、銅マトリックスを有する超電導
線と銅被覆アルミニウム線を撚り合わせた構造を有す
る。さらに複合型の超電導々体は、銅マトリックスを有
する超電導線を撚り合わせ、これを圧縮成型した線材と
銅被覆アルミニウム材を複合化したものである。
The above-described monolith-type superconducting body has a structure in which a copper-coated aluminum material is arranged inside a superconducting wire having a copper matrix. The housing-type superconducting body is composed of two copper members having a concave cross section. The housing has a structure in which the superconducting wire having a copper matrix and a copper-coated aluminum material are arranged inside each other, and the stranded wire type superconductor is a superconducting wire having a copper matrix and a copper-coated aluminum wire. It has a twisted structure. Further, the composite type superconducting body is a composite of a wire material obtained by twisting superconducting wires having a copper matrix, compression-molding the superconducting wires, and a copper-coated aluminum material.

【0008】以上の複合超電導々体においては、超電導
線と銅被覆アルミニウム材とは一般に半田で接合される
ことにより一体化されている。
In the above composite superconducting body, the superconducting wire and the copper-clad aluminum material are generally integrated by being joined by solder.

【0009】高純度アルミニウムの比抵抗は、本発明者
等の実験結果によれば、ゼロ磁場で銅の比抵抗に比較し
て著しく小さく、かつ2〜6T(テスラ)の範囲でほぼ
一定の値を有しており、これに対して銅の比抵抗は、ゼ
ロ磁場でアルミニウムの比抵抗に比較して著しく大きい
上、2〜6T(テスラ)の範囲でその値が急激に上昇
し、高磁場、例えば6T(4.2K)で高純度アルミニ
ウムの約10倍以上の比抵抗を示す(特願平3−398
52号)。
According to the results of experiments conducted by the inventors of the present invention, the specific resistance of high-purity aluminum is significantly smaller than the specific resistance of copper at zero magnetic field, and has a substantially constant value in the range of 2 to 6 T (Tesla). On the other hand, the specific resistance of copper is significantly larger than that of aluminum in a zero magnetic field, and its value sharply rises in the range of 2 to 6 T (Tesla). For example, at 6T (4.2K), the specific resistance is about 10 times or more that of high-purity aluminum (Japanese Patent Application No. 3-398).
No. 52).

【0010】従って、安定化材として銅の一部を銅被覆
アルミニウム材に置き換えることにより、複合超電導々
体の合成比抵抗を著しく低下させることが可能となるこ
とが予測される。
Therefore, it is expected that the composite specific resistance of the composite superconductor can be remarkably reduced by substituting a part of copper as the stabilizer for the copper-coated aluminum material.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、高純度
アルミニウム材を銅で被覆し、これを超電導線と単に複
合化した状態、あるいは超電導線の内部に単に配置した
だけでは、それぞれ単独の比抵抗から計算した合成比抵
抗よりもその値が著しく大きくなるという現象が測定さ
れている。例えば、円形断面の高純度アルミニウム線の
外側にニオブの拡散バリアを配置し、さらに多芯超電導
線および安定化銅を順次配置した構造の複合超電導々体
においては、極低温で高純度アルミニウム本来の比抵抗
特性が得られず、高純度アルミニウムと銅の中間の比抵
抗特性を示すことが判明している(第37回低温工学発
表会B1−4)。
However, if the high-purity aluminum material is coated with copper and is simply combined with the superconducting wire, or if it is simply placed inside the superconducting wire, each of them has a specific resistance. It has been measured that the value is significantly larger than the calculated combined resistivity. For example, in a composite superconducting body in which a diffusion barrier of niobium is arranged outside a high-purity aluminum wire having a circular cross section, and further a multi-core superconducting wire and a stabilized copper are sequentially arranged, at the cryogenic temperature It has been found that the specific resistance characteristic is not obtained and the specific resistance characteristic is intermediate between that of high-purity aluminum and copper (the 37th low temperature engineering presentation B1-4).

【0012】従って、高純度アルミニウム材を用いた効
果が発揮できないという問題があった。本発明は上記の
問題を解決するためになされたもので、安定化材として
高純度アルミニウムを用いた場合の極低温下での比抵抗
特性を著しく向上させ、特に高磁界で優れた安定性を維
持することのできる複合超電導々体およびこれを用いた
超電導コイルを提供することをその目的とする。
Therefore, there is a problem that the effect of using the high-purity aluminum material cannot be exhibited. The present invention has been made to solve the above problems, and significantly improves the specific resistance characteristics at extremely low temperatures when high-purity aluminum is used as a stabilizing material, and particularly exhibits excellent stability in a high magnetic field. It is an object of the present invention to provide a composite superconducting body that can be maintained and a superconducting coil using the same.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、多芯構造の超電導線と安定化材とを接合
した複合超電導々体において、高純度アルミニウム材の
外側に少なくともその一部を除いて銅を被覆した断面形
状の安定化材を用いるものである。
In order to achieve the above object, the present invention provides a composite superconducting body in which a superconducting wire having a multi-core structure and a stabilizing material are joined, at least outside the high-purity aluminum material. A stabilizer having a cross-sectional shape coated with copper except for a part is used.

【0014】上記の複合超電導々体においては、安定化
材を矩形断面を有する高純度アルミニウム材の幅広面に
銅を接触せしめて形成することが好ましい。
In the above composite superconductor, it is preferable that the stabilizer is formed by contacting copper with a wide surface of a high-purity aluminum material having a rectangular cross section.

【0015】いずれの構造の複合超電導々体において
も、安定化材の軸方向と銅被覆材の除去された部分を含
む面が磁場の方向に位置するようにして使用することに
より、合成比抵抗を低下させることができる。
In the composite superconducting body of any structure, when the composite superconducting body is used so that the axial direction of the stabilizing material and the plane including the removed portion of the copper clad material are positioned in the direction of the magnetic field, the composite specific resistance is obtained. Can be reduced.

【0016】特に、矩形断面を有する高純度アルミニウ
ム材や高純度アルミニウムテープを安定化材として使用
する場合には、幅方向のみに銅を接触させた複合材を用
いてコイルを形成することにより著しくその合成比抵抗
を低下させることが可能となる。
In particular, when a high-purity aluminum material or a high-purity aluminum tape having a rectangular cross section is used as a stabilizer, it is possible to form a coil by using a composite material in which copper is contacted only in the width direction. It is possible to reduce the combined specific resistance.

【0017】以上から本発明の超電導コイルは、多芯構
造の超電導線と、矩形状の高純度アルミニウム材の幅広
面に銅を接触せしめた断面形状の安定化材とを接合し、
高純度アルミニウム材の幅広面がコイルの軸方向あるい
はコイルによって形成される磁場の方向に平行になるよ
うに巻回したものである。
From the above, in the superconducting coil of the present invention, a superconducting wire having a multi-core structure and a stabilizing material having a cross-sectional shape in which copper is brought into contact with a wide surface of a rectangular high-purity aluminum material are joined,
The high-purity aluminum material is wound such that the wide surface is parallel to the axial direction of the coil or the direction of the magnetic field formed by the coil.

【0018】[0018]

【作用】上記構成の複合超電導々体および超電導コイル
においては、高純度アルミニウム材の外側に少なくとも
その一部を除いて銅を被覆した断面形状の安定化材を用
いることにより、超電導々体の合成比抵抗を著しく低下
させることができるが、この現象は、超電導々体の合成
比抵抗が銅被覆アルミニウム材の形状と外部磁界に対す
る配置に依存するという本発明者等の知見に基づいてい
る。
In the composite superconducting body and the superconducting coil having the above-described structure, by using a stabilizing material having a cross-sectional shape in which at least a part of the high-purity aluminum material is coated with copper, the superconducting body is synthesized. Although the specific resistance can be remarkably reduced, this phenomenon is based on the findings of the present inventors that the composite specific resistance of the superconducting body depends on the shape of the copper-clad aluminum material and the arrangement with respect to the external magnetic field.

【0019】図7は高純度アルミニウム材と銅被覆高純
度アルミニウム材の極低温(4.2K)における比抵抗
の外部磁界に対する依存性を示したもので、同図におい
てAは外径φ1.446mmの円形断面の高純度アルミニ
ウム材を、またBは外径φ1.61mmで面積比Al:C
u=1:0.239の円形断面の銅被覆高純度アルミニ
ウム材を示し、ともに通電電流100Aで測定した結果
である。この場合、線径による比抵抗値の変動が小さい
結果も得られている。即ち、高純度アルミニウム材に銅
を被覆することにより、その合成比抵抗は理論値より著
しく増大する。 また、円形断面の銅被覆高純度アルミ
ニウム材の銅被覆材を一部除去した場合には、その除去
部の面積と外部磁界に対する位置関係によってその合成
比抵抗が変動するが、同図の斜線の範囲の値を示し、外
部磁界に垂直に位置する銅被覆材を一部除去した場合に
は、その合成比抵抗は高純度アルミニウム材の比抵抗に
近づく。
FIG. 7 shows the dependence of the specific resistance of the high-purity aluminum material and the copper-coated high-purity aluminum material at an extremely low temperature (4.2K) on the external magnetic field. In FIG. 7, A is the outer diameter φ1.446 mm. High circularity aluminum material with a circular cross section, and B is an outer diameter φ1.61mm and the area ratio is Al: C.
u = 1: 0.239 shows a copper-coated high-purity aluminum material having a circular cross section, both of which are the results measured at a current of 100 A. In this case, the result that the variation of the specific resistance value due to the wire diameter is small is also obtained. That is, by coating a high-purity aluminum material with copper, the composite specific resistance thereof is significantly increased from the theoretical value. When a part of the copper-clad material of copper-clad high-purity aluminum material with a circular cross section is removed, its combined resistivity fluctuates depending on the area of the removed part and the positional relationship with respect to the external magnetic field. When the copper coating material showing a value in the range and positioned perpendicular to the external magnetic field is partially removed, the combined specific resistance approaches the specific resistance of the high-purity aluminum material.

【0020】一方、図8は矩形断面の複合材についての
極低温(4.2K)における比抵抗の外部磁界に対する
依存性を示したもので、同図中のCおよびC´は断面
0.4×1.9(mm)の高純度アルミニウム材1の幅広
面に厚さ0.05mmの銅2、2´を接合した場合を示
し、また同図中のDおよびD´は断面0.5×2.0
(mm)の高純度アルミニウム材3に厚さ0.05mmの銅
4を被覆した場合を示している。これらの測定値の外部
磁界に対する試料の位置関係を、それぞれ図9(a)、
(b)および図10(a)、(b)に示した。この結果
から矩形断面の複合材の場合、高純度アルミニウム材の
幅広面が外部磁界の方向に平行になるように配置するこ
とにより、その合成比抵抗が低下し、特に外部磁界に対
して垂直方向に銅が配置されていない試料C´の合成比
抵抗は高純度アルミニウムの比抵抗に近い値を示すこと
が明らかである。
On the other hand, FIG. 8 shows the dependence of the specific resistance of a composite material having a rectangular cross section at an extremely low temperature (4.2 K) on the external magnetic field, and C and C'in the figure show a cross section of 0.4. The figure shows a case where 0.05 mm thick copper 2, 2'is joined to a wide surface of a high-purity aluminum material 1 of × 1.9 (mm), and D and D'in the figure are cross sections of 0.5 × 2.0
It shows a case where a high-purity aluminum material 3 (mm) is coated with copper 4 having a thickness of 0.05 mm. The positional relationship of the sample with respect to the external magnetic field of these measured values is shown in FIG.
It is shown in (b) and FIGS. 10 (a) and (b). From this result, in the case of a composite material with a rectangular cross section, by arranging the wide surface of the high-purity aluminum material so that it is parallel to the direction of the external magnetic field, its combined resistivity decreases, especially in the direction perpendicular to the external magnetic field. It is clear that the composite specific resistance of the sample C ′ in which copper is not arranged is close to the specific resistance of high-purity aluminum.

【0021】従って、上記の高純度アルミニウム材の幅
広面に銅を接合した複合材と超電導線とを接合した複合
超電導々体を用いて超電導コイルを製作した場合に、図
9(b)のように幅広面がコイルの軸方向あるいはコイ
ルによって形成される磁場の方向に平行になるように配
置することにより、その合成比抵抗が著しく低下し、耐
クエンチ特性を向上させることができる。
Therefore, when a superconducting coil is manufactured using a composite superconducting body in which a copper-bonded composite material and a superconducting wire are bonded to the wide surface of the high-purity aluminum material, as shown in FIG. 9 (b). By arranging the wide surface so as to be parallel to the axial direction of the coil or the direction of the magnetic field formed by the coil, the combined specific resistance thereof is significantly lowered, and the quenching resistance can be improved.

【0022】[0022]

【実施例】以下本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0023】図1は本発明の複合超電導々体の一実施例
の断面図を示したもので、10は超電導線、11は高純
度アルミニウム材、12は銅部材を示す。
FIG. 1 is a sectional view of an embodiment of the composite superconducting body of the present invention. 10 is a superconducting wire, 11 is a high-purity aluminum material, and 12 is a copper member.

【0024】超電導線10は、銅マトリックス13中に
多数本のNb3 SnやNb−Ti合金等のフィラメント
14を配置したもので、例えば銅被覆Nb−Ti線を断
面六角形に成形したシングル線の多数本を銅管中に収容
し、これに減面加工を施して矩形上に成形したものであ
る。
The superconducting wire 10 comprises a large number of filaments 14 made of Nb 3 Sn or Nb-Ti alloy in a copper matrix 13. For example, a copper-coated Nb-Ti wire is formed into a hexagonal cross section. A large number of these are housed in a copper tube, which is subjected to surface-reduction processing and molded into a rectangular shape.

【0025】複合超電導々体20は,この超電導線10
と矩形断面の高純度アルミニウム材11の幅広面にテー
プ状の銅部材12を接合した複合材21と半田15で接
合されている。
The composite superconducting body 20 is composed of the superconducting wire 10
And a composite material 21 in which a tape-shaped copper member 12 is bonded to a wide surface of a high-purity aluminum material 11 having a rectangular cross section, and the composite material 21 is bonded by solder 15.

【0026】上記の複合材21は、銅被覆アルミニウム
材を矩形断面に成形した後、厚さ方向の銅部材を機械的
に、あるいは化学的に除去することにより得られる。
The composite material 21 is obtained by forming a copper-coated aluminum material into a rectangular cross section and then mechanically or chemically removing the copper member in the thickness direction.

【0027】同図に示すように、この複合超電導々体2
0は外部磁場Hに対して高純度アルミニウム材11の幅
広面が平行になるように配置して用いられる。即ち、図
2に示すように、絶縁被覆を施した複合超電導々体20
´をコイル22の軸方向と高純度アルミニウム材11の
幅広面が平行になるように巻枠23上に巻回してマグネ
ットを形成する。このように複合超電導々体20´を配
置することにより、複合材21の比抵抗を著しく低減す
ることができ、導体全体の比抵抗を高純度アルニウム材
の比抵抗に近付けることが可能となる。
As shown in the figure, this composite superconductor 2
0 is arranged such that the wide surface of the high-purity aluminum material 11 is parallel to the external magnetic field H and is used. That is, as shown in FIG. 2, a composite superconducting body 20 provided with an insulating coating.
′ Is wound around the winding frame 23 so that the axial direction of the coil 22 and the wide surface of the high-purity aluminum material 11 are parallel to each other to form a magnet. By arranging the composite superconducting body 20 'in this way, the specific resistance of the composite material 21 can be remarkably reduced, and the specific resistance of the entire conductor can be brought close to the specific resistance of the high-purity aluminum material.

【0028】図3は本発明の複合超電導々体30の他の
実施例を示したもので、矩形断面の高純度アルミニウム
材11の幅広面に銅部材12を接合した複合材21の両
側に、矩形断面の多芯構造の超電導線10、10を配置
し、半田15で接合した構造を有する。
FIG. 3 shows another embodiment of the composite superconducting body 30 of the present invention, in which both sides of a composite material 21 in which a copper member 12 is joined to a wide surface of a high purity aluminum material 11 having a rectangular cross section, It has a structure in which superconducting wires 10 and 10 having a multi-core structure having a rectangular cross section are arranged and joined with solder 15.

【0029】また、図4は本発明の複合超電導々体31
の他の実施例を示したもので、断面凹状の銅ハウジング
部材32、32´の凹状部を対向させて配置し、この内
部に超電導線10を収容して半田15で接合したハウジ
ング構造の超電導線33の両側に複合材21,21を配
置して、半田15で接合したものである。
FIG. 4 shows a composite superconducting body 31 of the present invention.
Another embodiment of the present invention, in which the concave portions of the copper housing members 32, 32 'having a concave cross-section are arranged to face each other, the superconducting wire 10 is accommodated in the concave portions, and joined by solder 15 The composite materials 21 and 21 are arranged on both sides of the wire 33 and joined by the solder 15.

【0030】さらに図5は、本発明の複合超電導々体の
他の実施例の断面図を示したもので、複合超電導々体3
5は、円形断面の多芯超電導線36の複数本を、矩形断
面の高純度アルミニウム材11の幅広面にテープ状の銅
部材12を接合した複合材21の外側に撚り合わせ、こ
の複合材21と多芯超電導線36とを半田15で接合し
たものである。
FIG. 5 is a sectional view showing another embodiment of the composite superconducting body of the present invention. The composite superconducting body 3 is shown in FIG.
5 is a plurality of multifilamentary superconducting wires 36 having a circular cross section, which are twisted on the outside of a composite material 21 in which a tape-shaped copper member 12 is joined to a wide surface of a high purity aluminum material 11 having a rectangular cross section. And the multi-core superconducting wire 36 are joined by the solder 15.

【0031】上記の複合超電導々体30、31、35も
外部磁場Hに対して高純度アルミニウム材11の幅広面
が平行になるように配置して用いられる。
The above-mentioned composite superconductors 30, 31, and 35 are also arranged and used so that the wide surface of the high-purity aluminum material 11 is parallel to the external magnetic field H.

【0032】尚、上記の実施例において、同一部分は同
符号で示した。
In the above embodiment, the same parts are designated by the same reference numerals.

【0033】上記の実施例においては、いずれも複合材
を矩形断面の高純度アルミニウム材の幅広面にテープ状
の銅部材を接合して形成したが、複合材の構造はこれに
限らず、高純度アルミニウムの外側に少なくともその一
部を除いて銅を被覆した断面形状であれば、他の構造と
することもできる。図6はそのような例を示したもの
で、同図(a)は円形断面の高純度アルミニウム材40
を、また同図(b)は矩形断面の高純度アルミニウム材
41を用いて、それぞれ対抗する位置の一部を除いて銅
42、42´を接合したものである。この場合において
も、外部磁場Hと銅の除去された部分を結ぶ線とはほぼ
平行に配置して用いられる。但し、図1、3、4および
5に示す場合に比較して、その合成比抵抗は増大する。
In each of the above examples, the composite material is formed by joining the tape-shaped copper member to the wide surface of the high-purity aluminum material having a rectangular cross section, but the structure of the composite material is not limited to this. Other structures can be used as long as they have a cross-sectional shape in which copper is coated on the outside of at least a part of pure aluminum. FIG. 6 shows such an example. FIG. 6A shows a high-purity aluminum material 40 having a circular cross section.
Further, FIG. 2B shows a case where copper 42 and 42 'are joined together by using a high-purity aluminum material 41 having a rectangular cross section, except for a part of positions facing each other. Also in this case, the external magnetic field H and the line connecting the removed copper portions are arranged substantially parallel to each other. However, compared with the case shown in FIGS. 1, 3, 4 and 5, the combined specific resistance increases.

【0034】[0034]

【発明の効果】以上述べたように、本発明によれば、高
純度アルミニウム材の外側に少なくともその一部を除い
て銅を被覆した断面形状を有する安定化材を用いること
により、極低温下での合成比抵抗を低下させることがで
きるため、高磁界での安定性が向上し、耐クエンチ性に
優れた複合超電導々体および超電導コイルが得られる。
As described above, according to the present invention, by using a stabilizing material having a cross-sectional shape in which copper is coated on the outside of a high-purity aluminum material except at least a part thereof, it is possible to achieve a low temperature. Since it is possible to reduce the combined specific resistance at 1, the stability in a high magnetic field is improved, and a composite superconductor and a superconducting coil having excellent quenching resistance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合超電導々体の一実施例を示す断面
図。
FIG. 1 is a sectional view showing an embodiment of a composite superconducting body of the present invention.

【図2】本発明の超電導コイルの一実施例を示す断面
図。
FIG. 2 is a sectional view showing an embodiment of the superconducting coil of the present invention.

【図3】本発明の複合超電導々体の他の実施例を示す断
面図。
FIG. 3 is a sectional view showing another embodiment of the composite superconducting body of the present invention.

【図4】本発明の複合超電導々体の他の実施例を示す断
面図。
FIG. 4 is a sectional view showing another embodiment of the composite superconducting body of the present invention.

【図5】本発明の複合超電導々体の他の実施例を示す断
面図。
FIG. 5 is a sectional view showing another embodiment of the composite superconducting body of the present invention.

【図6】本発明の複合超電導々体に用いられる安定化材
の他の形状を示す断面図。
FIG. 6 is a cross-sectional view showing another shape of the stabilizing material used in the composite superconducting body of the present invention.

【図7】高純度アルミニウム材と銅被覆高純度アルミニ
ウム材の極低温における比抵抗の外部磁界に対する依存
性を示すグラフ。
FIG. 7 is a graph showing the dependence of the specific resistance of the high-purity aluminum material and the copper-coated high-purity aluminum material at an extremely low temperature on the external magnetic field.

【図8】矩形断面の複合材についての極低温における比
抵抗の外部磁界に対する依存性を示すグラフ。
FIG. 8 is a graph showing the dependence of the resistivity of a composite material having a rectangular cross section at an extremely low temperature on an external magnetic field.

【図9】(a),(b)はそれぞれ図8の試料C、C´
の外部磁界に対する位置関係を示す断面図。
9A and 9B are samples C and C'of FIG. 8, respectively.
FIG. 5 is a cross-sectional view showing the positional relationship of the to the external magnetic field.

【図10】(a),(b)はそれぞれ図8の試料D、D
´の外部磁界に対する位置関係を示す断面図。
10A and 10B are samples D and D of FIG. 8, respectively.
Sectional drawing which shows the positional relationship with respect to the external magnetic field of '.

【符号の説明】[Explanation of symbols]

1、11…高純度アルミニウム材 2、2´、4…銅 10………超電導線 12………銅部材 15………半田 20、20´、30、31、35…複合超電導々体 21………複合材 22………コイル 23………巻枠 31………多芯超電導線 A………高純度アルミニウム材 B………銅被覆高純度アルミニウム材 C、C´…矩形断面の高純度アルミニウム材幅広面に銅
を接合した試料。 D、D´…矩形断面の高純度アルミニウム材に銅を被覆
した試料。
1, 11 ... High-purity aluminum material 2, 2 ', 4 ... Copper 10 ... Superconducting wire 12 ... Copper member 15 ... Solder 20, 20', 30, 31, 35 ... Composite superconducting body 21 ... …… Composite material 22 ………… Coil 23 ………… Reel 31 ………… Multi-core superconducting wire A ………… High-purity aluminum material B ………… Copper coated high-purity aluminum material C, C ′… High rectangular cross section Pure aluminum material A sample with copper bonded to a wide surface. D, D '... A sample obtained by coating a high-purity aluminum material having a rectangular cross section with copper.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 伸夫 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 熊野 智幸 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 袴田 真志 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 花井 哲 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 和智 良裕 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 村瀬 曉 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 藤岡 勉 東京都千代田区内幸町1丁目1番6号 株 式会社東芝内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Nobuo Aoki No. 1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture, Showa Electric Wire & Cable Co., Ltd. (72) Tomoyuki Kumano 2 Sakae Oda, Kawasaki-ku, Kawasaki-shi, Kanagawa 1-1-1 Showa Electric Cable Co., Ltd. (72) Inventor Masashi Hakada 2-1-1 1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa Kanagawa Prefecture Satoshi Hanai Tsurumi Yokohama City, Kanagawa Prefecture 2-4 Suehiro-cho, Toshiba Keihin Office (72) Inventor Yoshihiro Wachi Yoshihiro Wachi 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Keihin Office (72) Inventor Murase Aki Kawasaki, Kawasaki, Kanagawa Komukai Toshiba Town No. 1 Incorporated Toshiba Corporation Research Institute (72) Inventor Tsutomu Fujioka 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo The inner

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多芯構造の超電導線と、これに接合され
た安定化材とからなる複合超電導々体において、前記安
定化材は、高純度アルミニウム材の外側に少なくともそ
の一部を除いて銅を被覆した断面形状を有することを特
徴とする複合超電導々体。
1. A composite superconducting body comprising a superconducting wire having a multi-core structure and a stabilizing material bonded to the superconducting wire, wherein the stabilizing material is provided outside the high-purity aluminum material except at least a part thereof. A composite superconducting body having a cross-sectional shape coated with copper.
【請求項2】 安定化材は、矩形断面を有する高純度ア
ルミニウム材の幅広面に銅を接触せしめて形成したこと
を特徴とする請求項1記載の複合超電導々体。
2. The composite superconducting body according to claim 1, wherein the stabilizing material is formed by contacting copper with a wide surface of a high-purity aluminum material having a rectangular cross section.
【請求項3】 多芯構造の超電導線と、これに接合され
た安定化材とからなる複合超電導々体を巻回した超電導
コイルにおいて、前記安定化材を、矩形断面を有する高
純度アルミニウム材の幅広面に銅を接触せしめて形成す
るとともに、前記高純度アルミニウム材の幅広面がコイ
ルの軸方向あるいはコイルによって形成される磁場の方
向に平行になるように配置したことを特徴とする超電導
コイル。
3. A superconducting coil formed by winding a composite superconducting body comprising a superconducting wire having a multi-core structure and a stabilizing material bonded to the superconducting wire, wherein the stabilizing material is a high-purity aluminum material having a rectangular cross section. Of the high-purity aluminum material is arranged such that the wide surface of the high-purity aluminum material is parallel to the axial direction of the coil or the direction of the magnetic field formed by the coil. .
JP13237792A 1992-05-25 1992-05-25 Composite superconductor and superconducting coil Expired - Lifetime JP3354171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13237792A JP3354171B2 (en) 1992-05-25 1992-05-25 Composite superconductor and superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13237792A JP3354171B2 (en) 1992-05-25 1992-05-25 Composite superconductor and superconducting coil

Publications (2)

Publication Number Publication Date
JPH06162836A true JPH06162836A (en) 1994-06-10
JP3354171B2 JP3354171B2 (en) 2002-12-09

Family

ID=15079960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13237792A Expired - Lifetime JP3354171B2 (en) 1992-05-25 1992-05-25 Composite superconductor and superconducting coil

Country Status (1)

Country Link
JP (1) JP3354171B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540565A (en) * 1999-03-22 2002-11-26 アメリカン スーパーコンダクター コーポレイション Current limiting composites
JP2005333040A (en) * 2004-05-21 2005-12-02 Furukawa Electric Co Ltd:The Superconducting coil
JP2006196720A (en) * 2005-01-14 2006-07-27 Masataka Iwakuma Superconductor and superconducting coil using the same
JP2009117202A (en) * 2007-11-07 2009-05-28 Sumitomo Electric Ind Ltd Superconductive tape, manufacturing method thereof, coil, and magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540565A (en) * 1999-03-22 2002-11-26 アメリカン スーパーコンダクター コーポレイション Current limiting composites
JP2005333040A (en) * 2004-05-21 2005-12-02 Furukawa Electric Co Ltd:The Superconducting coil
JP4652721B2 (en) * 2004-05-21 2011-03-16 古河電気工業株式会社 Superconducting coil
JP2006196720A (en) * 2005-01-14 2006-07-27 Masataka Iwakuma Superconductor and superconducting coil using the same
JP2009117202A (en) * 2007-11-07 2009-05-28 Sumitomo Electric Ind Ltd Superconductive tape, manufacturing method thereof, coil, and magnet

Also Published As

Publication number Publication date
JP3354171B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
US4743713A (en) Aluminum-stabilized NB3SN superconductor
US5104745A (en) Multifilament superconductor strand having an anti-diffusion barrier layer
US5929385A (en) AC oxide superconductor wire and cable
JPH06162836A (en) Composite superconductor and superconducting coil
US4218668A (en) Superconductive magnet device
JP3356459B2 (en) Superconducting coil
US4093817A (en) Superconductor
JPS6137764B2 (en)
JPH03150806A (en) Superconductor
JPH0676649A (en) Composite superconductor
JP2768844B2 (en) Superconductor and superconducting coil
JPS6340003B2 (en)
US6957093B2 (en) Structure and method of application for protecting the superconductivity of superconducting composites
JPS5958803A (en) Superconductive coil
JPS5923402B2 (en) superconducting wire
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPH0146963B2 (en)
JPS6312109A (en) Superconducting magnet
JP3036160B2 (en) Stabilizer for superconducting conductor
JP2001057118A (en) SUPERCONDUCTING WIRE OF Nb3Sn COMPOUND AND MANUFACTURE THEREOF
JPH0143410B2 (en)
EP0718898A1 (en) Compound superconducting wire
JPS5857887B2 (en) Compound superconducting coil
JPH02126519A (en) Superconducting conductor
JPS63304606A (en) Oxide superconducting bipolar magnet coil

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10