JPH06161137A - Manufacture of electrophotographic selenium photosensitive body - Google Patents

Manufacture of electrophotographic selenium photosensitive body

Info

Publication number
JPH06161137A
JPH06161137A JP30738692A JP30738692A JPH06161137A JP H06161137 A JPH06161137 A JP H06161137A JP 30738692 A JP30738692 A JP 30738692A JP 30738692 A JP30738692 A JP 30738692A JP H06161137 A JPH06161137 A JP H06161137A
Authority
JP
Japan
Prior art keywords
layer
selenium
vapor deposition
photoconductor
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30738692A
Other languages
Japanese (ja)
Inventor
Naoyuki Senba
直幸 仙庭
Akio Muramatsu
昭雄 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP30738692A priority Critical patent/JPH06161137A/en
Publication of JPH06161137A publication Critical patent/JPH06161137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To provide a method of stably manufacturing a selenium laminated photosensitive body with little surface defect. CONSTITUTION:Positive hole injection layer evaporation material 4, charge generating layer evaporation material 5 and surface protecting layer evaporation material 6 of a granular selenium group of 1.0mum-1.7mum in grain diameter are placed on a rotary belt 1, in a charge pattern shown by dotted lines. The rotary belt 1 is rotatory-driven in the direction of an arrow mark A to feed each evaporation material successively to evaporation source 3, preheated to high temperature, for flash evaporation. A positive hole injection layer, a charge generating layer and a surface protecting layer are thereby formed successively on a charge transport layer formed on a base body by normal resistance heating system vacuum evaporation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子写真用機能分離
型セレン積層感光体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a function-separated selenium laminated photoreceptor for electrophotography.

【0002】[0002]

【従来の技術】電子写真用感光体として従来より多用さ
れているセレン感光体は、アルミニウム合金などの導電
性材料からなる円筒状基体の外表面上にセレン系材料を
真空蒸着して成膜することにより製造される。セレン感
光体は、従来は、セレン系材料を一層に蒸着して感光体
層とする単層型感光体であったが、近年、高感度,高耐
久性の要望が強くなり、また、電子写真応用装置の多様
化により特定の波長の光に高感度の感光体が必要とされ
るようになり、感光体層を機能分離した多層膜とする積
層感光体が開発され実用化されてきている。例えば、近
年急速に普及してきている半導体レーザプリンタに用い
られる感光体は、長波長の半導体レーザ光(波長780
nm)に高感度で、かつ、高耐久性であることが要求さ
れるが、この要求を満たすために、例えば図2の模式的
断面図に示すように、基体11上に純Seまたは低Te
濃度のSe/Te合金からなる電荷輸送層12、5重量
%〜25重量%Te濃度のSe/Te合金からなる正孔
注入層13、高Te濃度のSe/Te合金からなる電荷
発生層14、純Se,Se/Te合金,Se/As合金
などからなる表面保護層15を順次積層形成した積層感
光体とされる。各層の膜厚は、その機能の面より、電荷
輸送層は数十ミクロンオーダー、正孔注入層は数ミクロ
ンオーダー以下、電荷発生層はサブミクロンオーダー、
表面保護層は数ミクロンオーダーとされる。このような
積層セレン感光体の製造に際しては、比較的厚膜の電荷
輸送層は、蒸発源に充填された蒸着材料を真空中で加熱
して蒸発させる通常の抵抗加熱蒸着法で良好に形成でき
るが、薄膜の正孔注入層,電荷発生層,表面保護層を膜
厚均一に均質に成膜するためには通常の抵抗加熱蒸着法
では難しく、蒸着材料を細かい粒状にして高温に保たれ
た蒸発源の中に落とし各粒を瞬間的に蒸発させてしまう
フラッシュ蒸着法により成膜することが行われている。
2. Description of the Related Art A selenium photoreceptor, which has been widely used as an electrophotographic photoreceptor, is formed by vacuum-depositing a selenium-based material on the outer surface of a cylindrical substrate made of a conductive material such as an aluminum alloy. It is manufactured by Conventionally, the selenium photoconductor was a single-layer type photoconductor in which a selenium-based material was vapor-deposited in one layer to form a photoconductor layer. However, in recent years, there has been a strong demand for high sensitivity and high durability. Due to the diversification of applied devices, a photosensitive member having a high sensitivity to light of a specific wavelength has been required, and a laminated photosensitive member in which a photosensitive member layer is a multilayer film having functionally separated layers has been developed and put into practical use. For example, a photoconductor used in a semiconductor laser printer, which has been rapidly spread in recent years, is a semiconductor laser beam having a long wavelength (wavelength 780).
nm) is required to have high sensitivity and high durability. In order to satisfy this requirement, pure Se or low Te on the substrate 11 is provided as shown in the schematic sectional view of FIG. 2, for example.
Concentration Se / Te alloy charge transport layer 12, 5 wt% to 25 wt% Te concentration Se / Te alloy hole injection layer 13, high Te concentration Se / Te alloy charge generation layer 14, It is a laminated photoreceptor in which the surface protective layer 15 made of pure Se, Se / Te alloy, Se / As alloy or the like is sequentially laminated. From the viewpoint of function, the thickness of each layer is several tens of microns for the charge transport layer, several microns or less for the hole injection layer, and submicron order for the charge generation layer.
The surface protective layer is on the order of a few microns. In manufacturing such a laminated selenium photoreceptor, the charge transport layer having a relatively thick film can be favorably formed by an ordinary resistance heating evaporation method in which the evaporation material filled in the evaporation source is heated and evaporated in a vacuum. However, it is difficult to form the thin film hole injection layer, charge generation layer, and surface protection layer uniformly and uniformly by the ordinary resistance heating vapor deposition method. A film is formed by a flash vapor deposition method in which particles are dropped into an evaporation source and each particle is instantaneously evaporated.

【0003】[0003]

【発明が解決しようとする課題】ところが、フラッシュ
蒸着法では表面欠陥のない膜を安定して成膜することは
極めて難しいという問題がある。一方、電子写真用感光
体の場合、その感光体層の表面品質により得られる画像
品質が大きく左右されるが、セレン積層感光体において
は、上述のように表面層がフラッシュ蒸着で成膜される
ために、表面欠陥の少ない層を安定して成膜することは
難しく、製造歩留りが不安定であるという問題があっ
た。
However, there is a problem that it is extremely difficult to stably form a film having no surface defects by the flash vapor deposition method. On the other hand, in the case of a photoconductor for electrophotography, the image quality obtained depends largely on the surface quality of the photoconductor layer, but in the selenium laminated photoconductor, the surface layer is formed by flash vapor deposition as described above. Therefore, it is difficult to stably form a layer having few surface defects, and there is a problem that the manufacturing yield is unstable.

【0004】この発明は、上述の問題点を解消して、表
面欠陥の少ないセレン積層感光体を安定して製造するこ
とが可能な電子写真用セレン感光体の製造方法を提供す
ることを解決しようとする課題とする。
The present invention solves the above problems and provides a method for producing a selenium photoconductor for electrophotography, which can stably produce a selenium laminated photoconductor with few surface defects. And the subject.

【0005】[0005]

【課題を解決するための手段】上記の課題は、この発明
によれば、導電性基体上にセレン系材料を多段真空蒸着
して積層された感光体層を形成する電子写真用セレン感
光体の製造方法において、前記感光体層のうちの少なく
とも表面層を粒径1.0mm以上1.7mm以下の範囲
内の粒状のセレン系蒸着材料をフラッシュ蒸着すること
により形成することによって解決される。セレン系蒸着
材料の粒径を1.2mm以上1.5mm以下の範囲内と
するとより好適である。
SUMMARY OF THE INVENTION According to the present invention, the above-mentioned problems are solved in an electrophotographic selenium photoconductor in which a selenium-based material is multi-stage vacuum-deposited on a conductive substrate to form a laminated photoconductor layer. In the manufacturing method, at least the surface layer of the photoreceptor layer is formed by flash vapor-depositing a granular selenium-based vapor deposition material having a particle diameter of 1.0 mm or more and 1.7 mm or less. It is more preferable to set the particle size of the selenium-based vapor deposition material within the range of 1.2 mm or more and 1.5 mm or less.

【0006】感光体層が電荷輸送層,正孔注入層,電荷
発生層,表面保護層からなる場合には、正孔注入層,電
荷発生層および表面保護層をフラッシュ蒸着により形成
すると好適である。
When the photoreceptor layer is composed of a charge transport layer, a hole injection layer, a charge generation layer and a surface protection layer, it is preferable to form the hole injection layer, the charge generation layer and the surface protection layer by flash vapor deposition. .

【0007】[0007]

【作用】フラッシュ蒸着に用いるセレン系蒸着材料を粒
状としその粒径を1.0mm以上1.7mm以下の範囲
内,より望ましくは1.2mm以上1.5mm以下の範
囲内に揃えることにより、蒸発源への蒸着材料供給量の
バラツキを少なくすることができ空焚などの不具合の発
生を防ぐことがてき、また、前もって高温に加熱されて
いる蒸発源に次々と供給され瞬時に蒸発していく蒸着材
料の蒸発挙動のバラツキを少なく抑え突沸現象などの発
生を抑制することができ、膜厚均一で欠陥の少ない膜を
成膜することができる。感光体層の少なくとも表面層を
上述のように粒径を揃えた蒸着材料をフラッシュ蒸着し
て成膜することにより、表面欠陥の少ないセレン積層感
光体を安定して製造することが可能となる。
[Function] Evaporation is performed by granulating the selenium-based vapor deposition material used for flash vapor deposition and adjusting the particle size within the range of 1.0 mm to 1.7 mm, more preferably 1.2 mm to 1.5 mm. It is possible to reduce the variation in the amount of vapor deposition material supplied to the source and prevent the occurrence of problems such as empty heating.In addition, it is sequentially supplied to the evaporation sources that have been heated to a high temperature in advance and vaporizes instantly. It is possible to suppress variations in the evaporation behavior of the evaporation material, suppress the occurrence of bumping phenomenon, etc., and form a film with a uniform film thickness and few defects. By flash-depositing at least the surface layer of the photoconductor layer using the vapor deposition material having a uniform particle size as described above to form a film, it is possible to stably manufacture a selenium laminated photoconductor with few surface defects.

【0008】[0008]

【実施例】以下、この発明の実施例を図を参照しながら
説明する。図1は、この発明の製造方法におけるフラッ
シュ蒸着法の要部説明図を示す。図1において、1は蒸
着材料を蒸発源3に供給するためのロータリーベルトで
あって、ローター2と図示はしてない他方のローターと
の間に張られており、図示はしてない駆動機構により矢
印Aのように回転駆動する。ロータリーベルト1上に点
線で示すようなチャージパターンで正孔注入層用蒸着材
料4,電荷発生層用蒸着材料5,表面保護層用蒸着材料
6をそれぞれ載置しておき、ロータリーベルト1を矢印
Aのように回転駆動することにより、前もって高温に加
熱されている蒸発源3に各蒸着材料が順次供給されて、
図示はしてない基体上に形成されている電荷輸送層上に
正孔注入層,電荷発生層,表面保護層が順次フラッシュ
蒸着で形成されて感光体が作製される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view of a main part of a flash vapor deposition method in the manufacturing method of the present invention. In FIG. 1, reference numeral 1 denotes a rotary belt for supplying a vapor deposition material to an evaporation source 3, which is stretched between the rotor 2 and the other rotor (not shown) and is a drive mechanism (not shown). Is driven to rotate as indicated by arrow A. The hole injection layer vapor deposition material 4, the charge generation layer vapor deposition material 5, and the surface protective layer vapor deposition material 6 are placed on the rotary belt 1 in a charge pattern as shown by dotted lines, and the rotary belt 1 is indicated by an arrow. By rotating like A, each vapor deposition material is sequentially supplied to the evaporation source 3 which has been heated to a high temperature in advance,
A hole injection layer, a charge generation layer, and a surface protection layer are sequentially formed on a charge transport layer formed on a substrate (not shown) by flash vapor deposition to produce a photoconductor.

【0009】アルミニウム合金からなる円筒状の基体の
外表面に、通常の抵抗加熱蒸着法で純Seを真空蒸着し
て、膜厚50μmの電荷輸送層を形成する。この電荷輸
送層上に、図1に示した方法で、Te5.5重量%〜2
5重量%のSe/Te合金,Te45重量%のSe/T
e合金,As1.5重量%のSe/As合金を順次フラ
ッシュ蒸着して、膜厚3μmの正孔注入層,膜厚0.2
μmの電荷発生層,膜厚膜厚3μmの表面保護層を順次
成膜して、実施例の感光体を製作した。フラッシュ蒸着
に用いた各層の蒸着材料の粒径は1.2mm〜1.5m
mとし、蒸発源温度は340℃とした。
Pure Se is vacuum-deposited on the outer surface of a cylindrical base body made of an aluminum alloy by an ordinary resistance heating vapor deposition method to form a charge transport layer having a thickness of 50 μm. Te 5.5 wt% to 2 wt% Te is formed on the charge transport layer by the method shown in FIG.
5 wt% Se / Te alloy, Te 45 wt% Se / T
e alloy and As / As alloy of 1.5 wt% As are sequentially flash-deposited to form a hole injection layer having a film thickness of 3 μm and a film thickness of 0.2
A charge generation layer having a thickness of 3 μm and a surface protective layer having a thickness of 3 μm were sequentially formed to manufacture the photoreceptor of the example. The particle size of the vapor deposition material used for flash vapor deposition is 1.2 mm to 1.5 m.
m and the evaporation source temperature was 340 ° C.

【0010】比較のために、各層のフラッシュ蒸着に粒
径が0.2mm〜0.7mm程度の範囲でばらついてい
る従来の蒸着材料を用いたこと以外は実施例と同様にし
て比較例の感光体を作製した。このようにして得られた
実施例,比較例のそれぞれ10製造ロットの感光体につ
いて、感光体表面凸状欠陥の発生状況を調べた。その結
果を図3の線図に示す。図3において、横軸は表面凸状
欠陥の径を示し、縦軸は各大きさの表面凸状欠陥の発生
率を比較例の感光体の場合の平均値(従来の感光体のレ
ベル,図3では一点鎖線で示す)を100%として実施
例の感光体における発生率を示す。○印は平均値を示
し、縦の実線でばらつきを示す。
For comparison, the photosensitive material of the comparative example was prepared in the same manner as in the example except that the conventional vapor deposition material having a particle size in the range of 0.2 mm to 0.7 mm was used for the flash vapor deposition of each layer. The body was made. With respect to the photoconductors of 10 manufacturing lots of each of the examples and the comparative examples thus obtained, the occurrence state of convex defects on the photoconductor surface was examined. The result is shown in the diagram of FIG. In FIG. 3, the horizontal axis represents the diameter of surface convex defects, and the vertical axis represents the occurrence rate of surface convex defects of each size in the case of the photoreceptor of the comparative example (level of the conventional photoreceptor, 3 shows the occurrence rate in the photoconductor of the example with 100% as shown by the one-dot chain line). A circle indicates an average value, and a vertical solid line indicates variation.

【0011】図3に見られるように、どの径の表面凸状
欠陥においても実施例の感光体は比較例の感光体に比し
て大幅に減少しており、画像品質への影響が大きくなる
径3mm以上の表面凸状欠陥の発生を実施例の感光体で
は比較例の感光体の40%〜60%に低減できることが
判る。なお、電子写真特性は両者間で差は認められなか
った。
As can be seen from FIG. 3, the surface-imperfect defects of any diameter have a significantly reduced amount of the photosensitive member of the example as compared with the photosensitive member of the comparative example, which has a large effect on the image quality. It can be seen that the occurrence of surface convex defects having a diameter of 3 mm or more can be reduced to 40% to 60% of the photoconductor of the comparative example with respect to the photoconductor of the comparative example. The electrophotographic characteristics were not different between the two.

【0012】上述の実施例においては、フラッシュ蒸着
に用いる各層の蒸着材料の粒径を1.2mm〜1.5m
mとしたが、粒径の範囲を1.0mm〜1.7mm程度
と広くした場合にもほぼ同等の効果が得られた。
In the above embodiment, the grain size of the vapor deposition material for each layer used for flash vapor deposition is 1.2 mm to 1.5 m.
Although m was used, a substantially similar effect was obtained even when the particle size range was widened to about 1.0 mm to 1.7 mm.

【0013】[0013]

【発明の効果】この発明においては、導電性基体上にセ
レン系材料を多段真空蒸着して積層された感光体層を形
成する電子写真用セレン感光体の製造方法において、前
記感光体層のうちの少なくとも表面層を粒径1.0mm
以上1.7mm以下の範囲内の粒状のセレン系蒸着材料
をフラッシュ蒸着することにより形成する。このような
製造方法により、表面欠陥の少ないセレン積層感光体を
安定して製造することが可能となる。
According to the present invention, in the method for producing a selenium photoconductor for electrophotography, wherein a selenium-based material is multi-stage vacuum-deposited on a conductive substrate to form a laminated photoconductor layer. At least the surface layer has a grain size of 1.0 mm
It is formed by flash vapor deposition of a granular selenium-based vapor deposition material within the range of 1.7 mm or less. By such a manufacturing method, it becomes possible to stably manufacture a selenium laminated photoreceptor having few surface defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の製造方法におけるフラッシュ蒸着法
の一例の要部説明図
FIG. 1 is an explanatory view of a main part of an example of a flash vapor deposition method in a manufacturing method of the present invention.

【図2】セレン積層感光体の一例の模式的断面図FIG. 2 is a schematic cross-sectional view of an example of a selenium laminated photoconductor.

【図3】感光体の表面凸状欠陥の発生率を示す線図FIG. 3 is a graph showing the incidence of convex defects on the surface of the photoconductor.

【符号の説明】[Explanation of symbols]

1 ロータリーベルト 2 ローター 3 蒸発源 4 正孔注入層用蒸着材料 5 電荷発生層用蒸着材料 6 表面保護層用蒸着材料 11 基体 12 電荷輸送層 13 正孔注入層 14 電荷発生層 15 表面保護層 1 Rotary Belt 2 Rotor 3 Evaporation Source 4 Vapor Deposition Material for Hole Injection Layer 5 Vapor Deposition Material for Charge Generation Layer 6 Vapor Deposition Material for Surface Protection Layer 11 Base 12 Charge Transport Layer 13 Hole Injection Layer 14 Charge Generation Layer 15 Surface Protection Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】導電性基体上にセレン系材料を多段真空蒸
着して積層された感光体層を形成する電子写真用セレン
感光体の製造方法において、前記感光体層のうちの少な
くとも表面層が粒径1.0mm以上1.7mm以下の範
囲内の粒状のセレン系蒸着材料をフラッシュ蒸着するこ
とにより形成されることを特徴とする電子写真用セレン
感光体の製造方法。
1. A method for producing a selenium photoconductor for electrophotography, comprising forming a photoconductor layer by vacuum-depositing a selenium-based material on a conductive substrate in multiple stages, wherein at least a surface layer of the photoconductor layer is A method for producing a selenium photoreceptor for electrophotography, which is formed by flash vapor deposition of a granular selenium-based vapor deposition material having a particle size of 1.0 mm or more and 1.7 mm or less.
【請求項2】セレン系蒸着材料の粒径が1.2mm以上
1.5mm以下の範囲内であることを特徴とする請求項
1記載の電子写真用セレン感光体の製造方法。
2. The method for producing a selenium photoreceptor for electrophotography according to claim 1, wherein the particle size of the selenium-based vapor deposition material is in the range of 1.2 mm or more and 1.5 mm or less.
【請求項3】感光体層が電荷輸送層,正孔注入層,電荷
発生層,表面保護層からなり、正孔注入層,電荷発生層
および表面保護層がフラッシュ蒸着により形成されるこ
とを特徴とする請求項1または2記載の電子写真用セレ
ン感光体の製造方法。
3. The photoconductor layer comprises a charge transport layer, a hole injection layer, a charge generation layer and a surface protection layer, and the hole injection layer, the charge generation layer and the surface protection layer are formed by flash deposition. The method for producing a selenium photoreceptor for electrophotography according to claim 1 or 2.
JP30738692A 1992-11-18 1992-11-18 Manufacture of electrophotographic selenium photosensitive body Pending JPH06161137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30738692A JPH06161137A (en) 1992-11-18 1992-11-18 Manufacture of electrophotographic selenium photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30738692A JPH06161137A (en) 1992-11-18 1992-11-18 Manufacture of electrophotographic selenium photosensitive body

Publications (1)

Publication Number Publication Date
JPH06161137A true JPH06161137A (en) 1994-06-07

Family

ID=17968431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30738692A Pending JPH06161137A (en) 1992-11-18 1992-11-18 Manufacture of electrophotographic selenium photosensitive body

Country Status (1)

Country Link
JP (1) JPH06161137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013626A1 (en) * 2009-07-31 2011-02-03 富士フイルム株式会社 Vapor deposition material for organic device and method for manufacturing organic device
US20220349044A1 (en) * 2020-04-09 2022-11-03 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Device for vapor depositing metal
US11815742B2 (en) 2017-11-05 2023-11-14 Optotune Ag Tunable non-round spectacles with immersed lens shaper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013626A1 (en) * 2009-07-31 2011-02-03 富士フイルム株式会社 Vapor deposition material for organic device and method for manufacturing organic device
US11815742B2 (en) 2017-11-05 2023-11-14 Optotune Ag Tunable non-round spectacles with immersed lens shaper
US20220349044A1 (en) * 2020-04-09 2022-11-03 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Device for vapor depositing metal

Similar Documents

Publication Publication Date Title
US5759725A (en) Photoconductors and electrophotographic photoreceptors containing amorphous fullerenes
JPH0364062B2 (en)
US4609605A (en) Multi-layered imaging member comprising selenium and tellurium
JPH06161137A (en) Manufacture of electrophotographic selenium photosensitive body
JPH01315766A (en) Manufacture of image forming member for xerography
US4554230A (en) Electrophotographic imaging member with interface layer
US4822712A (en) Reduction of selenium alloy fractionation
US4837099A (en) Multilayer photoconductor for electrophotography
US4490451A (en) Multilayer electrophotographic recording material comprises a selenium-tellurium first layer and selenium-arsenic containing second layer
JPH0973180A (en) Photoconductive body and photosensitive body
US4868077A (en) Layered photosensitive material for electrophotography comprising selenium, arsenic and tellurium
US5021310A (en) Electrophotographic photoreceptor
JPH0792610B2 (en) Electrophotographic photoconductor
JPH0217021B2 (en)
JP3011184B2 (en) Selenium photoconductor for electrophotography
JPS6377060A (en) Manufacture of electrophotographic sensitive body
JPS60140354A (en) Electrophotographic sensitive body
USRE35246E (en) Layed photosensitive material and electrophotography comprising selenium, arsenic and tellurium
HU187919B (en) Method for making photoelectrically sensitive and conductive layer
JPS6064357A (en) Electrophotographic sensitive body made of selenium
JPH04223475A (en) Production of electrophotographic sensitive body
JPS58179843A (en) Electrophotographic receptor
JPS58174952A (en) Electrophotographic receptor
JPS60144752A (en) Production of electrophotographic sensitive body
JPH01279749A (en) Apparatus for producing elecrophotographic sensitive body