JPS60144752A - Production of electrophotographic sensitive body - Google Patents

Production of electrophotographic sensitive body

Info

Publication number
JPS60144752A
JPS60144752A JP5684A JP5684A JPS60144752A JP S60144752 A JPS60144752 A JP S60144752A JP 5684 A JP5684 A JP 5684A JP 5684 A JP5684 A JP 5684A JP S60144752 A JPS60144752 A JP S60144752A
Authority
JP
Japan
Prior art keywords
powder
layer
source
forming
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5684A
Other languages
Japanese (ja)
Inventor
Masahiro Sasaki
正廣 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP5684A priority Critical patent/JPS60144752A/en
Publication of JPS60144752A publication Critical patent/JPS60144752A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enable production of a photosensitive body having a uniform density distribution, an increase in electrifying potential and a decrease in the variance thereof by supplying gradually a material for vacuum deposition to an evaporating source and forming instantaneously the film thereof. CONSTITUTION:Powder SeTe is weighed into a powder supply device 14 and an evaporating source 12 is electrically heated after evacuation to form an electric charge transfer layer 21 on a conductive substrate 11. An evaporating source 13 is then electrically heated to >=400 deg.C prescribed temp. and thereafter the function to supply the powder is started to conduct the powder by a guide 15 to the source 13 and to supply continuously by each small amt. to said source so that the supplied powder is nearly instantaneously evaporated without forming a molten pool in the evaporating source, thus forming an electric charge generating layer 22. If the density distribution of the Te compsn. of a photosensitive body 2 obtd. in such a way is analyzed from the surface to the inside of the photosensitive layer, the resultant film is remarkably improved not only on the compsn. deviation of the Te density with respect to the base material but also in the variance among samples.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子写真感光体の製造方法、更に詳しく言えば
少な(とも三元素以上の合金或いは化合物からなる物質
の層で構成される電子写真感光体の層を真空蒸着法〔こ
より成膜する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an electrophotographic photoreceptor, and more specifically, to an electrophotographic photoreceptor comprising a layer of a material consisting of an alloy or compound of three or more elements. The present invention relates to a method of forming a layer using a vacuum evaporation method.

従来技術 従来、′電子写真感光体の高感度化の要求に伴ない種々
の増感剤を蒸着法により混入して目的を達成しようとす
る努力がなされている。しかし構成成分の蒸気圧、原子
量等により、蒸発源の組成が時間と共に変化し、これに
伴ない膜の組成も厚さ方向に変ってしまうという不都合
がある。この不都合は、例えば感光体の製品ばらつき増
大に伴なう不良率の増大や感光体交換時に伴なう複写条
件の再設定の必要性等多大なコスト上昇を引き起す。ま
た、研死、開発段階に於ける成膜上の問題もあり、従来
の方法では成膜不可能な成分の組み合せもしばしば発生
し、その材料1頓策範囲が限定されるという不都合もあ
り、より良いものをより早(開発しようという研究目的
に対して障害となっていた。
BACKGROUND OF THE INVENTION Conventionally, in response to the demand for higher sensitivity of electrophotographic photoreceptors, efforts have been made to achieve this goal by incorporating various sensitizers by vapor deposition. However, there is a problem in that the composition of the evaporation source changes over time due to the vapor pressure, atomic weight, etc. of the constituent components, and the composition of the film changes accordingly. This inconvenience causes a significant increase in costs, such as an increase in the defective rate due to increased product variation in photoconductors and the necessity of resetting copying conditions when replacing photoconductors. In addition, there are problems with film formation at the polishing and development stages, and combinations of ingredients that cannot be formed into films using conventional methods often occur, which limits the range of solutions for each material. This was an obstacle to the research goal of developing better products faster.

発明の目的 本発明の目的は、前記の不都合を解消し、製品ばらつき
が少な(、不良ギの少ない感光体の設計に合致した成膜
を可能とする蒸着方法による電子写真感光体の製造方法
を提供することにある。
Purpose of the Invention The purpose of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor using a vapor deposition method that eliminates the above-mentioned disadvantages and enables film formation that meets the design of the photoreceptor with less product variation (and fewer defects). It is about providing.

発明の構成 本発明の電子写真感光体の製造方法は少なくとも三元素
以上の合金または化合物からなる物質の層を有する電子
写真感光体の製造方法において、前記の物質が蒸発し得
る温度以上の温度に予め保持した蒸発源に、前記の物質
を少量ずつ連続的に供給し基板上に真空蒸着して成膜す
ることを特徴とするものである。
Structure of the Invention The method for producing an electrophotographic photoreceptor of the present invention is a method for producing an electrophotographic photoreceptor having a layer of a substance made of an alloy or a compound of at least three elements, wherein the temperature is higher than the temperature at which the substance can evaporate. This method is characterized in that the above-mentioned substance is continuously supplied in small amounts to an evaporation source held in advance and is vacuum-deposited onto a substrate to form a film.

本発明の電子写真感光体の製造方法の詳細を図面を用い
て説明する。
The details of the method for manufacturing an electrophotographic photoreceptor of the present invention will be explained with reference to the drawings.

電子写真感光体は最も単純な場合、導電性基板と感光層
の二層から成立している。その他付加機能を持たせ性能
を向上する目的で基板からの電荷注入阻止層、電荷輸送
層、電荷発生層、表面からの電荷注入阻止層、表面層等
を別に或いは同時に設ける場合があるが、何れの層の場
合も本発明の方法に會まれるものであり、本発明が限定
されるものではない。
In its simplest form, an electrophotographic photoreceptor consists of two layers: a conductive substrate and a photosensitive layer. In order to provide additional functions and improve performance, a charge injection blocking layer from the substrate, a charge transport layer, a charge generation layer, a charge injection blocking layer from the surface, a surface layer, etc. may be provided separately or simultaneously. The method of the present invention can also be applied to the case of a layer of 2, and the present invention is not limited thereto.

以下、説明を簡略化する為に、最も一般的な電子写真感
光体5e−8eTaの二層系感光体に関し、本発明の方
法を5eTeの二元素合金を蒸着する際に、使用した例
について説明する。
In order to simplify the explanation, an example will be described below in which the method of the present invention was used to deposit a two-element alloy of 5eTe with respect to the most common electrophotographic photoreceptor, 5e-8eTa, a two-layer photoreceptor. do.

5c−5eTa二層系成光体はSeの電荷輸送層と5e
Taの電荷発生層を意味する。SeにTeを混入する目
的はSeにTeを混入していくと、5eTeの半導体と
して性質はバンドギヤ、ブが狭(なり、光が照射された
場合゛電子が容易に充満帯から伝導体に励起され易(な
ること、即ち感光体が高感度化され高速複写が可能にな
るばかりでな(、長波長な光質にも感度を有する様にな
り、半導体レーザープリンター用の感光体としても利用
されることである。この5e−8eTe系感光体感光来
第1図に要部を示した真空蒸着機により製造される。
The 5c-5eTa bilayer photoformer has a charge transport layer of Se and a 5e
It means a Ta charge generation layer. The purpose of mixing Te into Se is that when Te is mixed into Se, the properties of 5eTe as a semiconductor become narrow (band gear), and when irradiated with light, electrons are easily excited from the filled band to the conductor. In other words, photoreceptors have not only become more sensitive and capable of high-speed copying, but also become sensitive to long-wavelength light, and are also used as photoreceptors for semiconductor laser printers. This 5e-8eTe photoreceptor is manufactured using a vacuum evaporation machine whose main parts are shown in FIG.

図中1は真空蒸着機、11は導電性基板、12は電荷輸
送層蒸着用蒸発源、13は電荷発生層蒸着用蒸発源を表
わす。蒸発源12にSe、蒸発源13に5eTeを秤量
し、排気した後、蒸発源12を通電加熱し、導電性基板
上に電荷輸送層21を形成した後蒸発源13を通電加熱
し電荷発生層22も形成するこの様なプロセスを経て得
られた電子写真感光体を第2図に示す。この感光体のT
e組成の濃度分布を表面から感光層内部に亘・り分析し
た結果を同一条件で行った4例について第3図に示す。
In the figure, 1 is a vacuum evaporator, 11 is a conductive substrate, 12 is an evaporation source for charge transport layer deposition, and 13 is an evaporation source for charge generation layer deposition. After weighing and evacuation of Se in the evaporation source 12 and 5eTe in the evaporation source 13, the evaporation source 12 is heated with electricity to form a charge transport layer 21 on the conductive substrate, and then the evaporation source 13 is heated with electricity to form a charge generation layer. FIG. 2 shows an electrophotographic photoreceptor obtained through such a process in which No. 22 is also formed. T of this photoreceptor
FIG. 3 shows the results of analyzing the concentration distribution of the e composition from the surface to the interior of the photosensitive layer for four cases conducted under the same conditions.

第3図から明らかな様に母材料に対する組成ずれとサン
プル間の濃度ばらつきが著しい。この組成ずれを改善す
る為に種々の提案がなされているが何れも組成制御が繁
雑であったり、また複雑な計算をした後、次の蒸着に際
し、秤量する原材料を変化させたり、蒸発源に残った原
料を廃棄したりする等根本的な解決には至っていないの
が現状である。
As is clear from FIG. 3, the composition deviation with respect to the base material and the concentration variation between samples are significant. Various proposals have been made to improve this compositional deviation, but all of them require complicated compositional control, or require complicated calculations to be performed, such as changing the weighed raw materials for the next deposition, or changing the evaporation source. At present, fundamental solutions such as disposal of leftover raw materials have not been reached.

本発明の方法は、例えば第4図に示す様な、真空蒸着装
置に於て、蒸発源12にSs、50μ〜1、、望ましく
は150μ〜350μの粉末5aTe或いはSeとTe
の混合物を収納且つ供給する機構を持つ装置14に5e
Teを秤量し排気後蓋発源12を通電加熱し導電性基板
上に電荷輸送層を形成した後蒸発源13を所定の温度4
00℃以上、望ましくは500’Q以上に通電加熱を施
した後、粉体供給機能を開始し粉体をガイド15により
蒸発源へ導き、少量ずつ連続的に供給し、供給された粉
体が蒸発源中で溶融溜りを形成することなく、はぼ瞬時
に蒸発してしまう様にして電荷発生層を形成する。この
様にして得られた感光体のTe組成の濃度分布を表面か
ら感光層内部に亘り分析した結果を同一条件で行った4
例について第5図に示す。第5図に示すようにT@濃度
の母材料に対する組成ずれは勿論、サンプル間のばらつ
きも著しく改善された成膜が得られる。
In the method of the present invention, for example, in a vacuum evaporation apparatus as shown in FIG.
5e to a device 14 having a mechanism for storing and supplying a mixture of
After weighing and evacuation of Te, the lid generator 12 is heated with electricity to form a charge transport layer on the conductive substrate, and then the evaporation source 13 is heated to a predetermined temperature 4.
After applying electrical heating to 00°C or higher, preferably 500'Q or higher, the powder supply function is started, and the powder is guided to the evaporation source by the guide 15, and is continuously supplied little by little until the supplied powder is heated. To form a charge generation layer in such a way that it evaporates almost instantaneously without forming a molten pool in an evaporation source. The concentration distribution of the Te composition of the photoreceptor thus obtained was analyzed from the surface to the inside of the photosensitive layer, and the results were analyzed under the same conditions.
An example is shown in FIG. As shown in FIG. 5, a film can be obtained in which not only the composition deviation of the T@ concentration with respect to the base material but also the variation between samples is significantly improved.

本発明は前例の電荷発生層にのみ適用できるだけでな(
、必要に応じ電子写真感光体の総ての構成要素に適用出
来る。
The present invention is not only applicable to the charge generation layer of the previous example (
, can be applied to all constituent elements of an electrophotographic photoreceptor, if necessary.

例えば、電子写真感光体支持体上に導電層としてNiC
r 、■ro (インジウム・スズオキサイド)SO5
等の合金や化合物を形成する際、または基板からの電荷
注入を阻止する目的で形成する。
For example, NiC can be used as a conductive layer on an electrophotographic photoreceptor support.
r, ■ro (indium tin oxide) SO5
It is formed when forming alloys or compounds such as, or for the purpose of blocking charge injection from the substrate.

Sin、 5i()2、MtF、 、TiO□の如き化
合物等線て層に適用出来る。実施例に記した増感層をこ
関してもSe系材料にTeを増感剤としてドープする系
ばかりでな(、Sbs Bis In、 Tz%As%
S%Ct、V等の二種以上0)合金やCdS、 CdS
e、 PbS等の化合物等にも適用出来る。更には、磁
気潜像を形成するようなCo−N i −p % Co
−F e 30イCrOH等の磁性材料は勿論、電子X
線写真感光体の背面側に位置する様に配置された増感を
目的とした各種螢光体層も電子写真感光体の構成要素と
して本発明方法の対象に含まれるものである。
Compounds such as Sin, 5i()2, MtF, TiO□ can be applied to the layer. Regarding the sensitizing layers described in the examples, all of them are systems in which Se-based materials are doped with Te as a sensitizer (Sbs Bis In, Tz%As%
Two or more types of S%Ct, V, etc.0) Alloys, CdS, CdS
It can also be applied to compounds such as e, PbS, etc. Furthermore, Co-N i -p % Co which forms a magnetic latent image
-F e 30 I Not only magnetic materials such as CrOH, but also electron
Various phosphor layers for the purpose of sensitization, which are disposed on the back side of the line photographic photoreceptor, are also included in the method of the present invention as constituent elements of the electrophotographic photoreceptor.

以下、実施例および比較例により本発明の製造方法を説
明する。
The manufacturing method of the present invention will be explained below using Examples and Comparative Examples.

実施例 第4図に示した装置に、酸化アルミニウム処理を施した
アルミ基板11、電荷輸送層蒸着用蒸発源12にSe、
電荷発生層蒸着用粉体供給手段14fこ5e−Ta合金
をそれぞれ収容した後、10−’torrになるまで排
気した。次いでアルεニウム基板を70°Cに加熱する
と共に電荷輸送層蒸着用蒸発源を加熱して、Seの蒸着
を行ないアルミニウム基板上に無定形Seの電荷輸送層
を形成した。
Example The apparatus shown in FIG. 4 was equipped with an aluminum substrate 11 treated with aluminum oxide, an evaporation source 12 for depositing a charge transport layer with Se,
After each of the charge generating layer deposition powder supply means 14f contained the 5e-Ta alloy, it was evacuated to a pressure of 10-'torr. Next, the aluminum substrate was heated to 70° C. and the evaporation source for depositing the charge transport layer was heated to deposit Se, thereby forming a charge transport layer of amorphous Se on the aluminum substrate.

この際蒸発速度は5μ/−で行ない、膜厚は55μmで
あった。電荷輸送層を形成した後、電荷発生層蒸着用蒸
発源13を加熱し、電荷発生: 層蒸着用粉体供給手段
からこの蒸発源13に少量ずつ5s−Te合金を供給し
て、電荷発生層の蒸着を行なった。この5s−Te合金
はToを40重量%含有し、粒径が150〜350μm
の範囲にある微粉末であり、蒸発源13を450℃に加
熱し、蒸発速度が0.5μ/−になる様5e−Te合金
を供給し、膜厚が1 /Jmの電荷発生層を形成した。
At this time, the evaporation rate was 5 μ/-, and the film thickness was 55 μm. After forming the charge transport layer, the evaporation source 13 for charge generation layer deposition is heated to generate charges. 5s-Te alloy is supplied little by little from the powder supply means for layer deposition to this evaporation source 13 to form the charge generation layer. was vapor-deposited. This 5s-Te alloy contains 40% by weight of To and has a grain size of 150 to 350 μm.
The evaporation source 13 is heated to 450°C, and the 5e-Te alloy is supplied so that the evaporation rate is 0.5μ/- to form a charge generation layer with a thickness of 1/Jm. did.

この電荷発生層の形成に於いて、供給手段14から供給
されたS e −T e合金は蒸発源13上で瞬時lこ
蒸発し、蒸発源13中で5e−Te合金の溶融液溜まり
を形成することがなかった。
In forming this charge generation layer, the S e -Te alloy supplied from the supply means 14 is instantaneously evaporated on the evaporation source 13 to form a pool of molten 5e-Te alloy in the evaporation source 13 . There was nothing to do.

同様の操作を行ない、合計10本の感光体を作製し、電
子写真特性を測定した。
A total of 10 photoreceptors were manufactured by performing the same operation, and their electrophotographic characteristics were measured.

比較例 第1図に示した装置で、12fこSe%13に5s−T
a合金を収容し、電荷輸送層の形成を実施例と同様に行
った。電荷発生層の形成では、S e−Te合金をTe
が40重量%含まれた、外径6■、厚さ2mのベレット
状の5e−Te合金を用い蒸着した。
Comparative Example Using the apparatus shown in Figure 1, 5s-T was applied to 12fSe%13.
The a-alloy was accommodated, and the charge transport layer was formed in the same manner as in the example. In the formation of the charge generation layer, the S e-Te alloy is
A pellet-shaped 5e-Te alloy with an outer diameter of 6 cm and a thickness of 2 m containing 40% by weight of was vapor-deposited.

実施例と同様の操作を行ない、合計1o本の感光体を作
製し、電子写真特性を測定した。
A total of 10 photoreceptors were manufactured by performing the same operations as in the examples, and their electrophotographic characteristics were measured.

実施例、比較例の電子写真特性の測定結果を第6図Iこ
示す。第6図から明らかなように、本発明の方法による
感光体では帯電電位が平均900 Vでありσが30 
Vであった。これに対し比較例の方法tこよる感光体で
は帯電電位が平均750 Vであり、σが145Vであ
った。即ち本発明による感光体は帯電電位が高(、かつ
そのバラツキも小さくできることが明らかとなった〇感
光体表面から膜厚方向のTe濃度を測定したところ本発
明では第5図に、また比較例では第3図に示すとおりで
あり、本発明による感光体は膜厚方向に均一の濃度を示
すが、比較例による感光体は、表面側と輸送層側とでは
濃度が太きくことなり、かつ各感光体間のバラツキも大
きい。
The measurement results of electrophotographic characteristics of Examples and Comparative Examples are shown in FIG. As is clear from FIG. 6, the photoreceptor according to the method of the present invention has an average charging potential of 900 V and σ of 30 V.
It was V. On the other hand, in the photoreceptor according to the method t of the comparative example, the charging potential was 750 V on average, and σ was 145 V. In other words, it has been revealed that the photoreceptor according to the present invention has a high charging potential (and its variation can be reduced). When the Te concentration in the film thickness direction from the surface of the photoreceptor was measured, it was shown in Fig. 5 in the present invention, and in the comparative example. As shown in FIG. 3, the photoreceptor according to the present invention exhibits a uniform density in the film thickness direction, but the photoreceptor according to the comparative example has a thicker concentration on the surface side and the transport layer side, and There is also large variation between each photoreceptor.

発明の効果 本発明の電子写真感光体の製造方法は、真空蒸着すべき
物質を蒸発源に徐々に供給し、瞬時に成膜せしめるよう
にしたものであり、濃度分布が均一な感光体を製造でき
、その結果、帯電電位が高くかつそのバラツキの小さい
感光体を製造することができる。
Effects of the Invention The method for manufacturing an electrophotographic photoreceptor of the present invention is such that a substance to be vacuum-deposited is gradually supplied to an evaporation source to form a film instantly, and a photoreceptor with a uniform concentration distribution can be manufactured. As a result, it is possible to manufacture a photoreceptor with a high charging potential and a small variation in charging potential.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の真空蒸着装置の正面概要図、第2図は二
層系電子写真感光体の断面図、第3図は従来方法で成膜
した二層系電子写真感光体のTe濃度分布を示すグラフ
、第4図は本発明の製造方法を実施するのに使用する真
空蒸着装置例の正面概要図、第5図は本発明方法Eこよ
り成膜した二層系電子写真感光体のTe9度分布を示す
グラフ、第6図は本発明方法及び従来方法で成膜した二
層系感光体の帯電電位のバラツキを示す図である。 図中符号: l・・・真空蒸着装置:11・・・導電性基板:12;
・・・電荷輸送、用蒸発源:13・・・電荷発生層用蒸
発源:14・・・供給粉体容器;15・・・粉体ガイド
;2・・・電子写真感光体:21・・−電荷輸送層;2
2・・・電荷発生層。 第 1 図 第 2 図 第3図
Figure 1 is a schematic front view of a conventional vacuum evaporation apparatus, Figure 2 is a cross-sectional view of a two-layer electrophotographic photoreceptor, and Figure 3 is the Te concentration distribution of a two-layer electrophotographic photoreceptor formed by a conventional method. FIG. 4 is a schematic front view of an example of a vacuum evaporation apparatus used to carry out the manufacturing method of the present invention, and FIG. FIG. 6 is a graph showing the degree distribution, and is a diagram showing variations in the charging potential of two-layer photoreceptors formed by the method of the present invention and the conventional method. Symbols in the figure: l...Vacuum deposition device: 11...Conductive substrate: 12;
...Evaporation source for charge transport: 13...Evaporation source for charge generation layer: 14...Supply powder container; 15...Powder guide; 2...Electrophotographic photoreceptor: 21... -Charge transport layer; 2
2... Charge generation layer. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 少な(とも三元素以上の合金または化合物からなる物質
の層を有する電子写真感光体の製造方法において、前記
の物質が蒸発し得る温度以上の温度に予め保持した蒸発
源に、前記の物質を少量ずつ供給し基板上に真空蒸着し
て成膜することを特徴とする電子写真感光体の製造方法
In a method for manufacturing an electrophotographic photoreceptor having a layer of a substance made of an alloy or a compound of three or more elements, a small amount of the substance is placed in an evaporation source that has been maintained in advance at a temperature higher than the temperature at which the substance can evaporate. A method for manufacturing an electrophotographic photoreceptor, characterized in that a film is formed on a substrate by vacuum evaporation.
JP5684A 1984-01-05 1984-01-05 Production of electrophotographic sensitive body Pending JPS60144752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5684A JPS60144752A (en) 1984-01-05 1984-01-05 Production of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5684A JPS60144752A (en) 1984-01-05 1984-01-05 Production of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS60144752A true JPS60144752A (en) 1985-07-31

Family

ID=11463561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5684A Pending JPS60144752A (en) 1984-01-05 1984-01-05 Production of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS60144752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842973A (en) * 1988-04-08 1989-06-27 Xerox Corporation Vacuum deposition of selenium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842973A (en) * 1988-04-08 1989-06-27 Xerox Corporation Vacuum deposition of selenium alloy

Similar Documents

Publication Publication Date Title
EP0489443B1 (en) Vacuum evaporation system
US4842973A (en) Vacuum deposition of selenium alloy
US3524745A (en) Photoconductive alloy of arsenic,antimony and selenium
JPS6198358A (en) Non-homogenous electrophotographic image forming member comprising amorphous silicon and silica
JPS60144752A (en) Production of electrophotographic sensitive body
US4758487A (en) Electrostatographic imaging members with amorphous boron
JPH0217021B2 (en)
JPS6045078A (en) Photoconductive member
JPS6383732A (en) Electrophotographic sensitive body
JPH0683091A (en) Electrophotographic sensitive body and manufacture thereof
JPS58132244A (en) Photoconductive member
JPS58111045A (en) Photoconductive member
JPS60140354A (en) Electrophotographic sensitive body
JPS62278565A (en) Selenium-tellurium material for electrophotographic sensitive body
JPS62294256A (en) Production of electrophotographic sensitive body
JPS59223437A (en) Electrophotographic sensitive body
JPH0373856B2 (en)
JPS6348558A (en) Electrophotographic sensitive body
JPS62288105A (en) Selenium-tellurium material for photo-sensitive material for electro-photography and production thereof
JPH0546536B2 (en)
JPH0279046A (en) Electrophotographic sensitive body
JPH0546537B2 (en)
JPH058421B2 (en)
JPH0216913B2 (en)
JPS63200157A (en) Photoreceptive member for electrophotography