JPH06160068A - Radiation transmission type measuring method for thickness of pipe-like material - Google Patents

Radiation transmission type measuring method for thickness of pipe-like material

Info

Publication number
JPH06160068A
JPH06160068A JP31522092A JP31522092A JPH06160068A JP H06160068 A JPH06160068 A JP H06160068A JP 31522092 A JP31522092 A JP 31522092A JP 31522092 A JP31522092 A JP 31522092A JP H06160068 A JPH06160068 A JP H06160068A
Authority
JP
Japan
Prior art keywords
measuring
outer diameter
thickness
wall thickness
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31522092A
Other languages
Japanese (ja)
Inventor
Norio Konya
範雄 紺屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31522092A priority Critical patent/JPH06160068A/en
Publication of JPH06160068A publication Critical patent/JPH06160068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To control measuring errors caused by decentering, a center deviation and outer diameter variation of a pipe-like material by measuring the center deviation and outer diameter of the pipe-like material, finding values of an outer radius center position and an outer radius and furthermore discovering thickness from the other values of an inner radius and an inner radius center position. CONSTITUTION:A pipe like material P is carried in the direction of an arrow mark F with a carrying roller 5 driven with a drive motor 6. A pulse generator 8 is connected to a shaft 9 of the drive motor 6 and an outer diameter measuring value is tracked up to a thickness measuring point. A thickness measuring device 20 composed of a laser type center deviation and outer diameter measuring device 10 constituted of four light casting devices and a light receiving device and three groups of radiation transmission type thickness gages narrows distance L as close as possible and is provided. When measuring signals transmitted from the generator 8, the measuring device 10 and the other measuring device 20 are input to an operation device 30, the operation device 30 serves to find a coordinate of an outer radius center point and the outer radius from the center deviation and the outer diameter of the pipe-like material P really measured with the measuring device 10 and correct a really measured value determined with the other measuring device 20 by means thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、管状材の放射線透過式
肉厚測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation transparent wall thickness measuring method for tubular materials.

【0002】[0002]

【従来の技術】従来、継目無鋼管などの管壁厚み(以
下、単に肉厚という)をアズロールの熱間状態で測定す
る手段として、たとえば特公昭60− 44602号公報に提案
されているような肉厚測定方法がある。ここで、上記特
公昭60− 44602号の内容について以下に説明する。まず
図5を用いてその原理について説明すると、管状材Pの
断面における管周長を3等分する点A,BおよびCにお
ける各肉厚寸法t1 ,t2 およびt3 を測定により求め
る場合、A点ないしC点のそれぞれに対応して、測定用
放射線ビーム3を放射する線源1とこれを収容して所定
の方向に放射線ビーム3を指向させる線源容器2と、管
状材Pの管壁を透過してきた放射線ビームを検出する検
出器4とからなる測定系が設けられる。なお、各符号数
字には、所属の測定系を表す文字A,BまたはCが添字
してある。また、管壁を透過してきたビームの検出器4
Aないし4Cによる検出出力をI1 ないしI3 とし、管
壁が存在しなかった場合の検出出力をそれぞれI1O,I
2OおよびI3Oとする。
2. Description of the Related Art Conventionally, as a means for measuring the wall thickness (hereinafter simply referred to as wall thickness) of a seamless steel pipe or the like in the hot state of Azroll, for example, as disclosed in Japanese Patent Publication No. 44602/1985. There is a wall thickness measuring method. Here, the contents of the above Japanese Patent Publication No. 60-44602 will be described below. First, the principle will be described with reference to FIG. 5. In the case where the wall thickness dimensions t 1 , t 2 and t 3 at points A, B and C that divide the pipe circumference in the cross section of the tubular material P into three equal parts are obtained by measurement. , A radiation source 1 for emitting a measurement radiation beam 3, a radiation source container 2 for accommodating the radiation source 3 for directing the radiation beam 3 in a predetermined direction, and a tubular member P. A measurement system including a detector 4 for detecting the radiation beam transmitted through the tube wall is provided. Each code numeral is suffixed with the letters A, B or C representing the measurement system to which it belongs. Also, the detector 4 for the beam that has passed through the tube wall
The detection outputs from A to 4C are I 1 to I 3, and the detection outputs when there is no tube wall are I 1O and I, respectively.
2O and I 3O .

【0003】そこで、検出器4の出力Iと肉厚寸法tと
の間には、一般的な放射線透過型厚さ計の基本式として
次の関係式が成立している。 I1 =I1O exp{−μk(t1 +t3 )} …………(1) I2 =I2O exp{−μk(t2 +t1 )} …………(2) I2 =I3O exp{−μk(t3 +t2 )} …………(3) ただし、μは使用した放射線の管壁材質に対する線吸収
係数であり、kは測定点を透過する放射線ビームの管壁
における透過長さSをその点における肉厚寸法tで割っ
た値である。測定点における放射線ビームの透過方向と
管状材の直径方向とのなす角度θが零であればkは1と
なる。
Therefore, between the output I of the detector 4 and the wall thickness dimension t, the following relational expression is established as a basic expression of a general radiation transmission type thickness gauge. I 1 = I 1O exp {−μk (t 1 + t 3 )} ………… (1) I 2 = I 2O exp {−μk (t 2 + t 1 )} ………… (2) I 2 = I 3O exp {-μk (t 3 + t 2 )} ………… (3) where μ is the linear absorption coefficient of the radiation used for the tube wall material, and k is the tube wall of the radiation beam passing through the measurement point. It is a value obtained by dividing the transmission length S by the wall thickness dimension t at that point. If the angle θ between the transmission direction of the radiation beam and the diameter direction of the tubular member at the measurement point is zero, k becomes 1.

【0004】さて、上記(1) ないし(3) 式を連立方程式
としてその解を求めると、(4) ないし(6) 式のようにな
る。
When the above equations (1) to (3) are used as simultaneous equations and the solution is obtained, the equations (4) to (6) are obtained.

【0005】[0005]

【数1】 [Equation 1]

【0006】したがって、放射線ビームの検出器出力I
1O,I1 ,I2O,I2 , I3O, I3および定数μ,kか
ら演算により肉厚寸法t1 ,t2 およびt3 を求めるこ
とができる。以上の説明は、測定点が3個の場合であっ
たが、一般に測定点がn個の場合に、上記した測定方法
を拡張することができる。すなわち、n個の測定点にお
ける肉厚寸法をt1 ,t2 ,…tn とすると、各厚み寸
法の間に(7) 式のようなサイクリックに変化する一定の
関係式(連立方程式)が成立する。なお、この関係式は
前記(1) ないし(3) 式等を対数変換することにより得ら
れるものである。
Therefore, the detector output I of the radiation beam
The wall thickness dimensions t 1 , t 2 and t 3 can be calculated from 1O , I 1 , I 2O , I 2 , I 3O and I 3 and the constants μ and k. Although the above description has been made on the case of three measurement points, in general, the above-mentioned measurement method can be extended to the case of n measurement points. That is, assuming that the wall thickness dimensions at the n measurement points are t 1 , t 2 , ... T n , a constant relational expression (simultaneous equations) that cyclically changes between the respective thickness dimensions, such as equation (7). Is established. This relational expression is obtained by logarithmically converting the above expressions (1) to (3).

【0007】[0007]

【数2】 [Equation 2]

【0008】ところで、前記した係数k(=S/t)は
予め知り得るとしているが、厳密に考えると非常に困難
であることから、前出特公昭60− 44602号においては、
以下のような手順を用いて斜め方向肉厚を測定するよう
にしたものである。すなわち、図6に示すように、管状
材Pの測定点A,B,Cを点Oを中心とする平均的な外
径の半径寸法をRo とし、同様に平均的な内径の半径寸
法をRi 、各放射線ビームの交点A,B,Cを円周上に
おく仮想的な真円Dの半径をRc とし、さらに各放射線
ビーム3A,3B,3Cが測定点A,B,Cを通過する
ときの各ビームに沿う斜めの肉厚をξ1 ,ξ2 ,ξ3
し、測定点A,B,Cを頂点とする三角形△ABCは正
三角形であるとすれば、各検出器により測定される値は
下記式におけるd12,d23,d31の3つの量である。
By the way, although the above-mentioned coefficient k (= S / t) can be known in advance, it is very difficult to consider it strictly, so in the above Japanese Patent Publication No. 60-44602,
The thickness in the oblique direction is measured using the following procedure. That is, as shown in FIG. 6, the radius dimension of the average outer diameter centering on the point O of the measurement points A, B, C of the tubular material P is R o, and similarly, the radius dimension of the average inner diameter is R i, the intersection a of the radiation beam, B, the radius of the virtual true circle D that put C on the circumference and R c, and each radiation beam 3A, 3B, 3C the measuring points a, B, and C If the diagonal thicknesses along each beam when passing are ξ 1 , ξ 2 , and ξ 3 , and the triangle ΔABC with the measurement points A, B, and C as vertices is an equilateral triangle, The measured values are three quantities d 12 , d 23 and d 31 in the following formula.

【0009】 ξ1 +ξ2 =d12 ……………(8) ξ2 +ξ3 =d23 ……………(9) ξ3 +ξ1 =d31 ……………(10) これらの式からξ1 ,ξ2 ,ξ3 は次のように理論的に
正確かつ容易に解くことができる。
Ξ 1 + ξ 2 = d 12 (8) ξ 2 + ξ 3 = d 23 (9) ξ 3 + ξ 1 = d 31 (10) From the equation, ξ 1 , ξ 2 , and ξ 3 can be theoretically accurately and easily solved as follows.

【0010】 ξ1 =(d12−d23+d31)/2 ……………(11) ξ2 =(d23−d31+d12)/2 ……………(12) ξ3 =(d31−d12+d23)/2 ……………(13) そこで、各測定点A,B,Cの箇所における管状材Pの
肉厚寸法t1 ,t2 ,t3 は下記式によって求めること
ができることになる。
Ξ 1 = (d 12 −d 23 + d 31 ) / 2 (11) ξ 2 = (d 23 −d 31 + d 12 ) / 2 (12) ξ 3 = (D 31 −d 12 + d 23 ) / 2 (13) Then, the wall thickness dimensions t 1 , t 2 , t 3 of the tubular material P at the measurement points A, B, C are calculated by the following equations. You can ask for it.

【0011】 t1 =Ro −√{Ro 2 −(A−ξ1 )ξ1 } ……………(14) t2 =Ro −√{Ro 2 −(A−ξ2 )ξ2 } ……………(15) t3 =Ro −√{Ro 2 −(A−ξ3 )ξ3 } ……………(16) ただし、A=2√{Ro 2 −(Rc sin θ)2} ……………(17) なお、この場合、角度θはπ/6として与えられる。T 1 = R o −√ {R o 2 − (A−ξ 1 ) ξ 1 } ... (14) t 2 = R o −√ {R o 2 − (A−ξ 2 ). ξ 2 } ……………… (15) t 3 = R o −√ {R o 2 − (A−ξ 3 ) ξ 3 } ………… (16) However, A = 2√ {R o 2 − (R c sin θ) 2 } (17) In this case, the angle θ is given as π / 6.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記の
ような測定方法においては、管状材Pの偏心や芯振れ、
あるいは外径変動などがあると大きな測定誤差を生じる
という欠点がある。すなわち、図7に示すように、管状
材Pの外半径中心位置Oが芯振れによって測定中心位置
O′と距離fだけずれているとか、偏心によって外半径
中心位置Oと内半径中心位置O″とが距離gだけずれて
いるような場合を想定する。
However, in the above-described measuring method, the eccentricity and the runout of the tubular member P,
Alternatively, there is a drawback that a large measurement error occurs when there is a variation in the outer diameter. That is, as shown in FIG. 7, the outer radius center position O of the tubular member P is displaced from the measurement center position O ′ by a distance f due to center runout, or the outer radius center position O and the inner radius center position O ″ are decentered. Assume that and are displaced by a distance g.

【0013】そこで、本来の中心点Oから各放射線ビー
ム3A,3B,3Cに幾何学的な垂線を描き、その長さ
をh1 ,h2 ,h3 とし、それぞれの放射線ビームが管
壁を通過する位置における肉厚寸法をt12, t13,
21, t23, t31, t32とすると、前出(7) 式は(18)式
のようにして表すことができる。
Therefore, a geometrical perpendicular line is drawn from the original center point O to each of the radiation beams 3A, 3B, 3C, and their lengths are set to h 1 , h 2 , and h 3 , respectively, and the respective radiation beams form a tube wall. The wall thickness at the passing position is t 12 , t 13 ,
Assuming t 21 , t 23 , t 31 , and t 32 , the above equation (7) can be expressed as equation (18).

【0014】[0014]

【数3】 [Equation 3]

【0015】これらの式において、未知数がt12〜t32
の6個に対し、式は3個であるからそのまま解くことが
できず、そのため前記した(14)〜(16)式から明らかなよ
うに、
In these equations, the unknowns are t 12 to t 32.
Since there are 3 equations for 6 of the above, it cannot be solved as it is. Therefore, as is clear from the above equations (14) to (16),

【0016】[0016]

【数4】 [Equation 4]

【0017】として、求めることにしている。つまり、
偏心gによって生じる偏肉を無視していることになる。
また、公称外径D0 、公称肉厚t0 を用いることによ
り、 h1 =h2 =h3 =(D0 −t0 )/4 ……………(20) としていることから、芯振れfによる誤差を無視してい
ることになる。
As a result, it is decided to seek. That is,
This means that the uneven thickness caused by the eccentricity g is ignored.
Further, by using the nominal outer diameter D 0 and the nominal wall thickness t 0 , it follows that h 1 = h 2 = h 3 = (D 0 −t 0 ) / 4 (20) This means that the error due to the shake f is ignored.

【0018】さらに、外径の半径寸法Ro を Ro =D0 /2 ……………(21) として用いているから、外径変動による誤差要因を無視
していることになる。本発明者がシミュレーションした
結果によれば、偏心による偏肉率の測定誤差は数%にも
なり、また芯振れの影響についてはたとえば±10mmの芯
振れで肉厚誤差が数mm、偏肉率誤差が数10%にもなり、
さらに、外径変動についてはたとえば±20mmの変動の場
合で肉厚誤差が数mm、偏肉率誤差が数10%にも及ぶこと
が確かめられている。ここで、偏肉率とは(最大肉厚−
最小肉厚)×100 /平均肉厚(%)で表される指標であ
る。
Furthermore, since the radius R o of the outer diameter is used as R o = D 0/2 ............... (21), so that ignoring the error factors due to the outer diameter fluctuation. According to the result of simulation by the inventor, the measurement error of the eccentricity ratio due to the eccentricity is several%, and the influence of the center runout is, for example, ± 10 mm, and the thickness error is several mm, and the eccentricity ratio is The error is several 10%,
Further, regarding the outer diameter variation, it has been confirmed that, for example, in the case of a variation of ± 20 mm, the thickness error is several mm and the uneven thickness ratio error is several tens%. Here, the uneven thickness ratio is (maximum wall thickness-
It is an index expressed by (minimum wall thickness) x 100 / average wall thickness (%).

【0019】本発明は、上記のような従来技術の有する
課題を解決した管状材の放射線透過式肉厚測定方法を提
供することを目的とする。
It is an object of the present invention to provide a radiation transmission type wall thickness measuring method for a tubular material, which solves the above problems of the prior art.

【0020】[0020]

【課題を解決するための手段】本発明は、少なくとも3
本の放射線ビームが相互に交叉し、それら交点を頂点と
して正奇数多角形が形成されるように前記ビームを投射
し、前記多角形の頂点がすべて管状材の肉厚部に含まれ
るように該管状材を位置決めし、該管状材の肉厚部を透
過した前記放射線ビームの透過後の強度を測定し、その
測定値から前記多角形の頂点の位置する個所の管状材の
肉厚寸法を管壁厚みとして演算により求める管状材の放
射線透過式肉厚測定方法において、前記管状材の芯振れ
および外径を実測して外半径中心位置と外半径の値を求
める工程と、求められた外半径中心位置と外半径値を用
いて内半径値および内半径中心位置を求める工程と、得
られた外半径中心位置と外半径値および内半径中心位置
と内半径値を用いて各管壁部の肉厚を求める工程とを付
加したことを特徴とする管状材の放射線透過式肉厚測定
方法である。
The present invention comprises at least 3
The radiation beams of the book intersect with each other, and the beams are projected so that regular polygons are formed with the intersections as vertices, and the vertices of the polygons are all included in the thick portion of the tubular material. The tubular material is positioned, the intensity of the radiation beam after passing through the thick portion of the tubular material is measured, and the thickness of the tubular material at the position of the apex of the polygon is measured from the measured value. In a radiation transmission type wall thickness measuring method for a tubular material, which is obtained by calculation as a wall thickness, a step of actually measuring the core runout and the outer diameter of the tubular material to obtain the outer radius center position and the value of the outer radius, and the obtained outer radius. Using the center position and the outer radius value to determine the inner radius value and the inner radius center position, and using the obtained outer radius center position and the outer radius value and the inner radius center position and the inner radius value of each pipe wall Characterized by the addition of a process to determine the wall thickness A radiation transmissive wall thickness measurement method of the tubular member to be.

【0021】[0021]

【作 用】本発明によれば、従来の放射線透過式肉厚測
定方法に管状材の偏心および芯振れ補正の機能を付加す
るようにしたので、管状材の偏心および芯振れや外径変
動による測定誤差を抑制することが可能である。
[Operation] According to the present invention, since the function of correcting the eccentricity and the center runout of the tubular material is added to the conventional radiation transmission type wall thickness measuring method, It is possible to suppress the measurement error.

【0022】[0022]

【実施例】以下に、本発明の実施例について、図面を参
照して詳しく説明する。図1は、本発明の実施例を示す
平面図である。図において、5は管状材Pを矢示Fの方
向に搬送する搬送ローラ、6は回転軸7を介して搬送ロ
ーラ5を駆動する駆動モータ、8は駆動モータ6の軸9
に結合されるパルス発信器である。このパルス発信器8
は、外径測定値を肉厚測定点までトラッキングする機能
を有する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a plan view showing an embodiment of the present invention. In the figure, 5 is a conveyance roller that conveys the tubular material P in the direction of the arrow F, 6 is a drive motor that drives the conveyance roller 5 via a rotary shaft 7, and 8 is a shaft 9 of the drive motor 6.
Is a pulse oscillator coupled to. This pulse transmitter 8
Has a function of tracking the measured value of the outer diameter up to the wall thickness measurement point.

【0023】また、10はたとえば図2に示す4台の投光
器11, 12, 13, 14とこれらの投光器11, 12, 13, 14に対
向してそれぞれ設けられる4台の受光器15, 16, 17, 18
から構成されるレーザ透過式の芯振れ・外径測定装置、
20は前出図4で示した3組の放射線透過型厚さ計からな
る肉厚測定装置、30はパルス発信器8、芯振れ・外径測
定装置10、肉厚測定装置20からの測定信号を入力して管
状材Pの肉厚を演算する演算装置である。
Further, 10 is, for example, four light projectors 11, 12, 13 and 14 shown in FIG. 2 and four light receivers 15, 16 provided respectively facing these light projectors 11, 12, 13 and 14. 17, 18
Laser transmission type core runout / outer diameter measuring device consisting of
20 is a wall thickness measuring device consisting of three sets of radiation transmission type thickness gauges shown in FIG. 4, 30 is a pulse transmitter 8, core runout / outer diameter measuring device 10, and measurement signals from the wall thickness measuring device 20. Is a calculation device for calculating the wall thickness of the tubular material P by inputting.

【0024】ここで、芯振れ・外径測定装置10と肉厚測
定装置20との間隔Lは可能な限り接近させるものとす
る。これによって、管状材Pの芯振れは両装置間で同一
とみなすことができる。この演算装置30によって公称外
径D0 、公称肉厚t0 なる管状材Pの肉厚の演算手順を
図3および図4を用いて説明する。 まず、図3において、芯振れ・外径測定装置10によ
って管状材Pの芯振れおよび外径を実測することによ
り、外半径中心点Oo の座標(xo ,yo )と外半径R
o を求める。 求められた外半径中心点Oo の座標(xo ,yo
と外半径Ro を用いて、管壁を透過する各放射線ビーム
3A,3B,3Cの透過長さl1 , l2 , l3 を下記(2
2)式によって幾何学的に求める。
Here, it is assumed that the distance L between the runout / outer diameter measuring device 10 and the wall thickness measuring device 20 is as close as possible. As a result, the runout of the tubular material P can be regarded as the same between both devices. The calculation procedure of the wall thickness of the tubular material P having the nominal outer diameter D 0 and the nominal wall thickness t 0 by the calculation device 30 will be described with reference to FIGS. 3 and 4. First, in FIG. 3, by measuring the core runout and the outer diameter of the tubular material P by the core runout / outer diameter measuring device 10, the coordinates (x o , y o ) of the outer radius center point O o and the outer radius R are measured.
ask for o . Coordinates (x o , y o ) of the obtained outer radius center point O o
And the outer radius R o , the transmission lengths l 1 , l 2 and l 3 of the radiation beams 3A, 3B and 3C which are transmitted through the tube wall are given by (2
Geometrically determined by the formula (2).

【0025】[0025]

【数5】 [Equation 5]

【0026】 さらに、各放射線ビーム3A,3B,
3Cの透過量I1 ,I2 , I3 を測定することによっ
て、各放射線ビーム3A,3B,3Cの管壁部以外の透
過長さm 1 , m2 , m3 を下記式(23)で求める。
Further, each of the radiation beams 3A, 3B,
Transmission amount of 3C I1, I2, I3By measuring
The radiation beams 3A, 3B, 3C other than the tube wall.
Excessive length m 1, m2, m3Is calculated by the following formula (23).

【0027】[0027]

【数6】 [Equation 6]

【0028】 一方、内半径中心点Oi の座標
(xi ,yi )は幾何学的に下記式(24), (25), (26)が
成立する。ここで、Ri は内半径である。
On the other hand, the coordinates (x i , y i ) of the center point O i of the inner radius geometrically satisfy the following equations (24), (25), (26). Here, R i is the inner radius.

【0029】[0029]

【数7】 [Equation 7]

【0030】しかし、このままでは難解であるので、近
似解として、式(26)においてxi →xo ,yi →yo
してRi を求めて、式(24), (25)よりyi およびxi
求める。 得られたxo ,yo ,Ro とxi ,yi ,Ri およ
び各放射線ビーム3A,3B,3Cの配置により、幾何
学的に各管壁部6点の肉厚t12,t13,t21,t 23,t
31,t32を求める。
However, since it is difficult to understand as it is,
As a similar solution, x in equation (26)i→ xo, Yi→ yoWhen
Then RiThen, from equations (24) and (25), yiAnd xiTo
Ask. X obtainedo, Yo, RoAnd xi, Yi, RiAnd
And the arrangement of each radiation beam 3A, 3B, 3C
From the viewpoint of wall thickness t of 6 points on each tube wall12, T13, Ttwenty one, T twenty three, T
31, T32Ask for.

【0031】すなわち、図4において、x軸とy軸が測
定中心点Oの座標(0,0)で交叉するものとし、放射
線ビーム3A,3B,3Cが管状材Pを透過するときの
内壁面との各交点P12,P13,P21,P23,P31,P32
の座標をそれぞれ(x12,y 12),(x13,y13),
(x21,y21),(x23,y23),(x31,y31),
(x32,y32)とすると、それぞれの座標は下記のよう
にして求めることができる。
That is, in FIG. 4, the x-axis and the y-axis are measured.
Radiation is assumed to cross at the coordinates (0,0) of the constant center point O
When the line beams 3A, 3B and 3C pass through the tubular material P,
Each intersection P with the inner wall12, P13, Ptwenty one, Ptwenty three, P31, P32
The coordinates of (x12, Y 12), (X13, Y13),
(Xtwenty one, Ytwenty one), (Xtwenty three, Ytwenty three), (X31, Y31),
(X32, Y32), The respective coordinates are as follows.
You can ask.

【0032】まず、放射線ビーム3A,3B,3Cの直
線の式はその幾何学的位置から計算される下記式で表す
ことができる。 y=√3x+(Do −to )/2 ……………(27) y=−√3x+(Do −to )/2 ……………(28) y=−(Do −to )/2 ……………(29) また、内半径Ri とxi ,yi との関係は、下記(30)式
で表される。
First, the equation of the straight line of the radiation beams 3A, 3B and 3C can be expressed by the following equation calculated from its geometrical position. y = √3x + (D o -t o) / 2 ............... (27) y = -√3x + (D o -t o) / 2 ............... (28) y = - (D o - t o ) / 2 (29) Further, the relationship between the inner radius R i and x i , y i is expressed by the following formula (30).

【0033】 (x−xi 2 +(y−yi 2 =Ri 2 ……………(30) したがって、放射線ビーム3Aの交点P12,P13におけ
る座標(x12,y12),(x13,y13)については上記
(27), (30)の2式から、放射線ビーム3Bの交点P21
23での座標(x21,y21),(x23,y23)について
は上記(28) ,(30) 式から、放射線ビーム3Cの交点
31,P32での座標(x31,y31),(x32,y32)に
ついては上記(29) ,(30) 式とからそれぞれ求める。
(X−x i ) 2 + (y−y i ) 2 = R i 2 (30) Therefore, the coordinates (x 12 , y 12 ) at the intersection points P 12 , P 13 of the radiation beam 3A. ), (X 13 , y 13 )
From the two expressions (27) and (30), the intersection point P 21 of the radiation beam 3B,
Coordinates of P 23 (x 21, y 21 ), (x 23, y 23) above (28) for, (30) from the intersection P 31 of the radiation beam 3C, the coordinates in the P 32 (x 31, y 31 ) and (x 32 , y 32 ) are obtained from the above equations (29) and (30), respectively.

【0034】つぎに、管壁部の肉厚については、たとえ
ば交点P12における肉厚t12については下記(31)式で求
めることができる。 t12=Ro −√{(x12−xo 2 +(y12−yo 2 }……………(31) 以下同様にして、その他の交点P13,P21,P23
31,P32における肉厚t 13,t21,t23,t31,t32
を求めることができる。
Next, regarding the wall thickness of the pipe wall,
Intersection P12Thickness t at12Is calculated using the following equation (31).
Can be turned on. t12= Ro−√ {(x12-Xo)2+ (Y12-Yo)2} …………… (31) Do the same for other intersections P13, Ptwenty one, Ptwenty three
P31, P32Thickness t at 13, Ttwenty one, Ttwenty three, T31, T32
Can be asked.

【0035】本発明法を外径177.8 〜406.4mm φで肉厚
5.5 〜55.0mmtの継目無鋼管の肉厚測定に適用したとこ
ろ、±10%の偏心偏肉に対して偏肉率の誤差は0.1 %程
度で、従来法に比し数10分の1とかなりの高精度で測定
することが確認できた。しかも、芯振れや外径変動によ
る偏肉率の誤差は0.01%未満であった。
The method of the present invention is applied to an outer diameter of 177.8-406.4 mmφ
When applied to the thickness measurement of a seamless steel pipe of 5.5 to 55.0 mmt, the error of the eccentricity ratio is about 0.1% for an eccentricity eccentricity of ± 10%, which is several tenth of that of the conventional method. It was confirmed that the measurement can be performed with high accuracy. Moreover, the error of the uneven thickness rate due to the runout and the variation of the outer diameter was less than 0.01%.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
管状材の偏心および芯振れや外径変動による測定誤差を
無くすることができるから、製品の品質向上に大いに寄
与する。
As described above, according to the present invention,
Measurement errors due to eccentricity and runout of the tubular material and fluctuations in the outer diameter can be eliminated, which greatly contributes to the improvement of product quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す平面図である。FIG. 1 is a plan view showing an embodiment of the present invention.

【図2】本発明に用いられる芯振れ・外径測定装置の構
成を示す正面図である。
FIG. 2 is a front view showing the configuration of a core runout / outer diameter measuring device used in the present invention.

【図3】本発明による肉厚の演算手順の第1ステップを
説明する模式図である。
FIG. 3 is a schematic diagram illustrating the first step of the procedure for calculating the wall thickness according to the present invention.

【図4】本発明による肉厚の演算手順の第2ステップを
説明する模式図である。
FIG. 4 is a schematic diagram illustrating a second step of the procedure for calculating the wall thickness according to the present invention.

【図5】従来の管状材の肉厚測定方法の原理を示す模式
図である。
FIG. 5 is a schematic diagram showing the principle of a conventional method for measuring the wall thickness of a tubular material.

【図6】従来法の測定系の概念図である。FIG. 6 is a conceptual diagram of a measurement system of a conventional method.

【図7】従来法における偏心と芯振れの影響を説明する
模式図である。
FIG. 7 is a schematic diagram for explaining the influence of eccentricity and runout in the conventional method.

【符号の説明】[Explanation of symbols]

1 線源 2 線源容器 3 放射線ビーム 4 検出器 5 搬送ローラ 6 駆動モータ 8 パルス発信器 10 芯振れ・外径測定装置 11, 12, 13, 14 投光器 15, 16, 17, 18 受光器 20 肉厚測定装置 30 演算装置 P 管状材 1 Source 2 Source container 3 Radiation beam 4 Detector 5 Conveyor roller 6 Drive motor 8 Pulse transmitter 10 Core runout / outer diameter measuring device 11, 12, 13, 14 Emitter 15, 16, 17, 18 Light receiver 20 Meat Thickness measuring device 30 Computing device P Tubular material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも3本の放射線ビームが相互
に交叉し、それら交点を頂点として正奇数多角形が形成
されるように前記ビームを投射し、前記多角形の頂点が
すべて管状材の肉厚部に含まれるように該管状材を位置
決めし、該管状材の肉厚部を透過した前記放射線ビーム
の透過後の強度を測定し、その測定値から前記多角形の
頂点の位置する個所の管状材の肉厚寸法を管壁厚みとし
て演算により求める管状材の放射線透過式肉厚測定方法
において、前記管状材の芯振れおよび外径を実測して外
半径中心位置と外半径の値を求める工程と、求められた
外半径中心位置と外半径値を用いて内半径値および内半
径中心位置を求める工程と、得られた外半径中心位置と
外半径値および内半径中心位置と内半径値を用いて各管
壁部の肉厚を求める工程とを付加したことを特徴とする
管状材の放射線透過式肉厚測定方法。
1. At least three radiation beams intersect each other, and the beams are projected so that a regular odd-numbered polygon is formed with these intersections as vertices, and all the vertices of the polygons are made of a tubular material. The tubular member is positioned so as to be included in the portion, the intensity of the radiation beam after passing through the thick portion of the tubular member is measured, and the tubular portion at the position of the apex of the polygon is determined from the measured value. In a radiation transmission type wall thickness measuring method for a tubular material, which is obtained by calculating a wall thickness dimension of the material as a tube wall thickness, a step of actually measuring a core runout and an outer diameter of the tubular material and obtaining a value of an outer radius center position and an outer radius. And a step of obtaining the inner radius value and the inner radius center position by using the obtained outer radius center position and the outer radius value, and the obtained outer radius center position and the outer radius value and the inner radius center position and the inner radius value. Use to calculate the wall thickness of each pipe wall A radiation transmission type wall thickness measuring method for a tubular material, characterized in that:
JP31522092A 1992-11-25 1992-11-25 Radiation transmission type measuring method for thickness of pipe-like material Pending JPH06160068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31522092A JPH06160068A (en) 1992-11-25 1992-11-25 Radiation transmission type measuring method for thickness of pipe-like material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31522092A JPH06160068A (en) 1992-11-25 1992-11-25 Radiation transmission type measuring method for thickness of pipe-like material

Publications (1)

Publication Number Publication Date
JPH06160068A true JPH06160068A (en) 1994-06-07

Family

ID=18062846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31522092A Pending JPH06160068A (en) 1992-11-25 1992-11-25 Radiation transmission type measuring method for thickness of pipe-like material

Country Status (1)

Country Link
JP (1) JPH06160068A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478251B1 (en) * 2002-06-28 2005-03-22 한국기계연구원 Apparatus for measuring corrosion thickness of insulated pipeline
CN103968785A (en) * 2014-03-13 2014-08-06 马鞍山恒瑞测量设备有限公司 Thickness gauge and using and overhauling methods thereof
JP2017113790A (en) * 2015-12-24 2017-06-29 新日鐵住金株式会社 Thickness measurement device, and thickness measurement method of tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478251B1 (en) * 2002-06-28 2005-03-22 한국기계연구원 Apparatus for measuring corrosion thickness of insulated pipeline
CN103968785A (en) * 2014-03-13 2014-08-06 马鞍山恒瑞测量设备有限公司 Thickness gauge and using and overhauling methods thereof
JP2017113790A (en) * 2015-12-24 2017-06-29 新日鐵住金株式会社 Thickness measurement device, and thickness measurement method of tube

Similar Documents

Publication Publication Date Title
JPH02291908A (en) Inspection of tandem-layout shaft
US4099418A (en) System for determining tube eccentricity
CN107727007A (en) The method for measuring alignment deviation amount between two axles
JPH04295710A (en) Method and apparatus for optical angle measurement
JPH06160068A (en) Radiation transmission type measuring method for thickness of pipe-like material
JP2004045206A (en) Measuring instrument for measuring dimension of cylindrical object
JPH0465610A (en) Shape measuring instrument for tube body
JP2501237B2 (en) Device for measuring outer diameter and wall thickness of steel pipe ends
JPS63121705A (en) Instrument for measuring outer diameter and center position of pipe
JPH07270436A (en) Length measuring apparatus for moving object
JPH0271107A (en) Apparatus for measuring profile and wall thickness of end part of steel pipe
JP3366528B2 (en) How to measure the profile of long objects
JP2000065535A (en) Thickness measurement equipment and method therefor
JP2868382B2 (en) Outer diameter measuring device
JPS6044602B2 (en) Method for measuring tube wall thickness of tubular materials
JP3705863B2 (en) Height measuring device and height measuring method
JPS632325B2 (en)
JP2525264B2 (en) Measuring method for bending amount of long material such as pipe or round bar
JPS628007A (en) Method for automatically measure cross-sectional shape by non-contact sensor
JPS6116004B2 (en)
JPH02107909A (en) Three-dimensional measuring apparatus for rim for wheel
JPH06273103A (en) Method for measuring outside diameter of cylindrical object
JPH02272310A (en) Rotation angle measuring instrument
JPH08226815A (en) Surface condition distortion measuring device
JP2003269942A (en) Radiation type tube wall thickness meter