JPH06155535A - Molding method of thermoplastic resin - Google Patents

Molding method of thermoplastic resin

Info

Publication number
JPH06155535A
JPH06155535A JP4312270A JP31227092A JPH06155535A JP H06155535 A JPH06155535 A JP H06155535A JP 4312270 A JP4312270 A JP 4312270A JP 31227092 A JP31227092 A JP 31227092A JP H06155535 A JPH06155535 A JP H06155535A
Authority
JP
Japan
Prior art keywords
resin
thermoplastic resin
molten resin
molding
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4312270A
Other languages
Japanese (ja)
Inventor
Kenichi Narita
賢一 成田
Takeshi Fujishiro
武志 藤代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP4312270A priority Critical patent/JPH06155535A/en
Publication of JPH06155535A publication Critical patent/JPH06155535A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0082Reciprocating the moulding material inside the mould cavity, e.g. push-pull injection moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To mold thermoplastic resin having few void and anisotropy and high strength, by a method wherein a flow or a vibration is allowed to generate at fixed frequency on the resin within a mold cavity during a cooling process of the molten resin after injection and casting of the same. CONSTITUTION:Shearing force is allowed to generate in molten resin within a mold cavity by applying pressurizing force and decompressing force alternately to the molten resin by two pistons 5, 6 which are arranged between a cylinder 1 and mold 9 of an injection molding machine and as devices streaming and vibrating the molten resin. At this time, it is preferable that capacity of the resin is made at least 10% of inside capacity of the cavity. Then the molten resin infected through a nozzle 3 is passed through flow paths 7, 8 and filled within the mold cavity 10. The resin within the cavity is moved during solidification by awing the piston 5, 6 alternately after completion of filling. During this cooling process, the shearing force by a flow or an oscillation is allowed to generate in a part or the whole of the resin within the cavity at frequency of 1-5 times per 1-60sec. through which a resinous reinforcing material is oriented in a flowing direction of the resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱可塑性樹脂の成形方法
に関する。より具体的には本発明は、ボイドの少ない高
強度の熱可塑性樹脂の成形方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for molding a thermoplastic resin. More specifically, the present invention relates to a method for molding a high-strength thermoplastic resin with few voids.

【0002】[0002]

【従来の技術】熱可塑性樹脂成形品は、金属製成形品と
異なり錆びず、軽量であり、必ずしも塗装の必要がな
く、トータルコストが安価であるという利点があり、ブ
レーキレバーおよびボルト等に広く利用できる可能があ
る。熱可塑性樹脂製ブレーキレバーおよびボルト等の製
造は、通常、ガラス繊維あるいはカーボン繊維等の繊維
強化材料を配合したエンジニアリングプラスチック材料
を使用し、射出成形法により成形されるが、通常の射出
成形方法により成形することが出来る。しかしながら、
上記成形品等を通常の射出成形方法より成形すると、成
形品の中心部にボイドが発生し易く、又、樹脂組成物中
に配合される強化繊維の配向が中心部で不十分になり、
強度に異方性が生じ、期待する強度の成形品を得ること
ができないという問題点がある。特に、ボルト、ブレー
キレバー等は通常高強度が要求され、特にオートバイ用
ブレーキレバーは転倒時の衝撃に耐えうる必要があり、
高い機械的強度が要求される。自転車用途にも金属イン
サート成形品が用いられてはいるが、軽量化、工程の煩
雑さの面から必ずしも満足されるものは得られていな
い。
2. Description of the Related Art Thermoplastic resin molded products, unlike metallic molded products, have the advantages that they do not rust, are lightweight, do not necessarily require painting, and have a low total cost, and are widely used for brake levers and bolts. May be available. Brake levers and bolts made of thermoplastic resin are usually manufactured by injection molding using an engineering plastic material containing a fiber-reinforced material such as glass fiber or carbon fiber. It can be molded. However,
When the above-mentioned molded product or the like is molded by an ordinary injection molding method, voids are likely to occur in the center of the molded product, and the orientation of the reinforcing fibers blended in the resin composition becomes insufficient in the center.
There is a problem that anisotropy occurs in the strength, and a molded product having the expected strength cannot be obtained. In particular, bolts, brake levers, etc. are usually required to have high strength, and especially motorcycle brake levers must be able to withstand the impact of a fall,
High mechanical strength is required. Although metal insert moldings are also used for bicycles, they are not always satisfactory in terms of weight reduction and process complexity.

【0003】上記、ポイド、異方性等による問題を克服
するため、特開昭61−179715号公報には溶融し
た熱可塑性樹脂を金型に供給し、金型内の溶融樹脂に剪
断力を加えながら樹脂を固化させる方法が開示されてい
る。この開示の方法は上記課題を解決するのに有力なも
のであるが、剪断力を発生させる周期の選択によって成
形サイクルの長期化、あるいは剪断力発生が不十分であ
る等の問題があった。
In order to overcome the above-mentioned problems due to voids, anisotropy, etc., Japanese Patent Laid-Open No. 61-179715 discloses that a molten thermoplastic resin is supplied to a mold and a shearing force is applied to the molten resin in the mold. A method of solidifying the resin while adding is disclosed. Although the method of this disclosure is effective in solving the above problems, there are problems that the molding cycle is lengthened or the shearing force is insufficiently generated by selecting the cycle in which the shearing force is generated.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記課題を
解決し、ボイド、異方性の少ない高強度の熱可塑性樹脂
の成形方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide a method for molding a high strength thermoplastic resin having few voids and anisotropy.

【0005】[0005]

【課題を解決するための手段】本発明者らは高強度の熱
可塑性樹脂を得る成形方法を鋭意検討した結果、金型キ
ャビテイ内に充填された溶融樹脂が冷却する過程で溶融
樹脂をある特定の周期の下で流動あるいは振動により剪
断力を加え、ボイドを少なくし、且つ成形品内部の繊維
強化材を好ましい方向に配向させると上記課題を解決で
きることを見いだし、本発明を完成させた。
Means for Solving the Problems The inventors of the present invention have made extensive studies as to a molding method for obtaining a high-strength thermoplastic resin, and as a result, have determined that the molten resin filled in the mold cavity has a certain content of the molten resin. It was found that the above problems can be solved by applying a shearing force by flow or vibration under the cycle of (1) to reduce voids and orient the fiber reinforcing material inside the molded product in a preferred direction, and completed the present invention.

【0006】すなわち、本発明は、熱可塑性樹脂の成形
方法であって、溶融樹脂を金型キャビティ内に射出注入
後、冷却する過程で該金型キャビティ内の樹脂の一部も
しくは全部に1〜60秒に1度以上の頻度で流動あるい
は振動による剪断力を発生させることを特徴とする熱可
塑性樹脂の成形方法に関する発明である。
That is, the present invention relates to a method for molding a thermoplastic resin, in which a molten resin is injected into a mold cavity and then cooled in a process of cooling, in which 1 to 1 part or all of the resin in the mold cavity is cooled. The present invention relates to a method for molding a thermoplastic resin, wherein a shearing force is generated by flow or vibration at a frequency of 1 degree or more every 60 seconds.

【0007】本発明に使用できる熱可塑性樹脂は、一般
に市販されている熱可塑性樹脂が使用できるが、成形品
に強度が要求される場合には、ガラス繊維あるいはカ−
ボン繊維などを配合したエンジニアリングプラスチッ
ク、およびこれらのポリマーアロイが好適に使用され
る。該エンジニアリングプラスチックの中でも成形性、
強度の点からポリ(メタキシリレンアジパミド)等のポ
リアミド樹脂、ポリフェニレンエーテル、及びこれらの
混合物が特に望ましい。熱可塑性樹脂中に配合される強
化繊維としてガラス繊維、カ−ボン繊維あるいはチタン
酸カリウムウィスカー、またはこれらの強化繊維の組み
合わせが例示できるが、特に限定されるものではない。
更に、繊維長および繊維径も特に限定されるものではな
いが、繊維長5mm以上の強化繊維を含有する成形材料
ペレットを使用した場合、その効果は特に大きい。
The thermoplastic resin which can be used in the present invention may be a commercially available thermoplastic resin, but when strength is required for the molded product, glass fiber or a card is used.
Engineering plastics containing bon fibers and the like, and polymer alloys thereof are preferably used. Moldability among the engineering plastics,
From the viewpoint of strength, polyamide resins such as poly (meta-xylylene adipamide), polyphenylene ether, and mixtures thereof are particularly desirable. Examples of reinforcing fibers to be blended in the thermoplastic resin include glass fibers, carbon fibers, potassium titanate whiskers, and combinations of these reinforcing fibers, but the reinforcing fibers are not particularly limited.
Further, although the fiber length and the fiber diameter are not particularly limited, the effect is particularly large when a molding material pellet containing reinforcing fibers having a fiber length of 5 mm or more is used.

【0008】上記剪断力を発生させる装置により、溶融
樹脂を射出後、冷却・固化する過程で金型キャビティ内
の溶融樹脂の一部もしくは全部を流動あるいは振動させ
ることにより剪断力を発生させる。剪断力を発生させる
装置は、特に限定されるものではないが例えば図1又は
2に示すような射出成形機シリンダーと金型の間に配置
され、溶融樹脂を流動あるいは振動させる手段が少なく
とも1本のシリンダー及びピストンを有する装置であっ
てもよい。図1および図2の場合、剪断力は少なくとも
2本のピストンを交互に加圧力及び減圧力を加えて発生
することができる。上記剪断力の発生周期は、1〜60
秒に1度以上、好ましくは1〜5度の頻度である。剪断
力の発生周期が上記範囲以外では成形サイクルの長期化
や剪断力の発生が不十分になるという不都合を生ずる。
With the device for generating the shearing force, a shearing force is generated by flowing or vibrating a part or all of the molten resin in the mold cavity in the process of cooling and solidifying the molten resin after the molten resin is injected. The device for generating the shearing force is not particularly limited, but for example, it is arranged between the injection molding machine cylinder and the mold as shown in FIG. 1 or 2, and at least one means for flowing or vibrating the molten resin is provided. It may be a device having a cylinder and a piston. In the case of FIGS. 1 and 2, the shearing force can be generated by alternately applying a pressing force and a depressurizing force to at least two pistons. The generation cycle of the shearing force is 1 to 60
The frequency is 1 or more times per second, preferably 1 to 5 times. If the cycle of the shearing force is out of the above range, there are disadvantages that the molding cycle is prolonged and the shearing force is insufficiently generated.

【0009】冷却工程で金型キャビティ内の溶融樹脂に
剪断力を発生させることにより流動あるいは振動する樹
脂容積は、該金型キャビティ内容積の10%以上である
ことが望ましい。流動あるいは振動する樹脂容積が、上
記10%未満では剪断力の発生が不十分になるおそれが
ある。
It is desirable that the volume of the resin that flows or vibrates by generating a shearing force in the molten resin in the mold cavity in the cooling step is 10% or more of the volume of the mold cavity. If the resin volume that flows or vibrates is less than 10%, the shearing force may be insufficiently generated.

【0010】又、本発明の成形方法により成形される成
形品の形状は、特に制限はないが、長手方向に垂直の断
面積が1cm2 以上で、長手方向の長さが該断面部の最
短の長さの3倍以上である部分を少なくとも1箇所以上
有する形状の場合、特に本発明の著しい効果が得られ
る。
The shape of the molded product molded by the molding method of the present invention is not particularly limited, but the cross-sectional area perpendicular to the longitudinal direction is 1 cm 2 or more, and the longitudinal length is the shortest of the cross-sectional portion. In the case of a shape having at least one portion having a length three times or more, the remarkable effect of the present invention can be obtained.

【0011】本発明の成形方法の例を図1及び図2に示
す。図中の記号は、1:射出成形機のシリンダー、2:
スクリュー、3:ノズル、4:スプルー、5:ピスト
ン、6:ピストン、7:ホットランナー、8:ホットラ
ンナー、9:金型、10:ボルト用金型キャビティ、1
1:ブレーキレバー用金型キャビティ、12:ブレーキ
レバー、13:ゲート位置、14:取付け用穴をそれぞ
れ示す。尚、上記5及び6は射出成形機に取り付けられ
た金型内の溶融樹脂を流動あるいは振動させることによ
り剪断力を加える装置である。射出成形機のノズルから
射出された溶融樹脂は、流路7、8を通過してランナ−
および金型キャビティ−内に充填される。充填終了後ピ
ストン5及び6を交互に動かす事によりキャビティ内の
樹脂が固化途中で動かされる。溶融樹脂を流動あるいは
振動させることで樹脂の流動方向に繊維状強化材料が配
向する。
An example of the molding method of the present invention is shown in FIGS. Symbols in the figure are 1: cylinder of injection molding machine, 2:
Screw, 3: Nozzle, 4: Sprue, 5: Piston, 6: Piston, 7: Hot runner, 8: Hot runner, 9: Mold, 10: Mold cavity for bolt, 1
1: mold cavity for brake lever, 12: brake lever, 13: gate position, 14: mounting hole, respectively. Incidentally, the above 5 and 6 are devices for applying shearing force by flowing or vibrating the molten resin in the mold attached to the injection molding machine. The molten resin injected from the nozzle of the injection molding machine passes through the flow paths 7 and 8 and the runner.
And into the mold cavity. After the filling is completed, the pistons 5 and 6 are alternately moved to move the resin in the cavity during the solidification. By flowing or vibrating the molten resin, the fibrous reinforcing material is oriented in the flowing direction of the resin.

【0012】従って本発明の方法で成形する場合、成形
品形状に適したゲ−ト構造を選択する必要がある。ボル
トの成形の場合、そのゲ−ト構造はボルトの頭とネジ先
端部の二カ所にゲ−トを設けることにより、この部分で
溶融樹脂を固化途中で流動させることによりボルトの長
手方向に繊維を配向させることができ、中心部分のボイ
ドも消失させることが可能となる。
Therefore, when molding by the method of the present invention, it is necessary to select a gate structure suitable for the shape of the molded product. In the case of forming a bolt, the gate structure is such that by providing a gate at two points, the head of the bolt and the tip of the screw, the molten resin is made to flow in the longitudinal direction of the bolt by allowing the molten resin to flow during solidification. Can be oriented, and the void in the central portion can be eliminated.

【0013】本発明の成形方法によりブレーキレバーを
成形する場合も成形形状に適したゲート構造を選択する
必要があり、図2に示すようにブレーキレバーの両端に
ゲートを設けることにより、この部分で溶融樹脂を固化
途中で流動させることによりブレーキレバーの長手方向
に強化繊維を配向させることができ、ウェルド部の強度
を向上させ、ボイドも消失させることができる。
Even when the brake lever is molded by the molding method of the present invention, it is necessary to select a gate structure suitable for the molding shape. By providing gates at both ends of the brake lever as shown in FIG. By flowing the molten resin during solidification, the reinforcing fibers can be oriented in the longitudinal direction of the brake lever, the strength of the weld portion can be improved, and voids can be eliminated.

【0014】[0014]

【実施例】以下、実施例、比較例により本発明を具体的
に説明する。 実施例1 80℃で12時間乾燥したポリアミド樹脂(三菱ガス化
学(株)製、商品名:レニ−1022F)を使用し、図
1に示す成形装置を使用して、サイズがM3、M6及び
M8の3種類の六角ボルトを射出成形した。射出条件
は、シリンダ−温度255℃、射出圧力1000 kg/cm
2 、金型温度130℃とし、M3(長さ:20mm)、
M6(長さ:40cm)及びM8(長さ:50cm)の
六角ボルト用のそれぞれの金型キャビティを使用した。
溶融樹脂を充填後、ただちに圧力800 kg/cm2 でピス
トン5、6を交互に圧縮、減圧動作を行い溶融樹脂を流
動させた。ピストンを動かす周期は、10秒に1度の割
合で40秒間動かした。その後ピストンを同時に圧縮
し、20秒間保持し、冷却・固化後金型を開き製品を取
りだした。得られた製品の内部にボイドは無く、ガラス
繊維は、ボルトの長手方向に配向していた。得られた六
角ボルト成形品の引張強度はM3が120kgf 、M6が
470kgf、M8が790kgf であった。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. Example 1 A polyamide resin (manufactured by Mitsubishi Gas Chemical Co., Inc., trade name: Reny-1022F) dried at 80 ° C. for 12 hours was used, and the size was M3, M6 and M8 using the molding apparatus shown in FIG. 3 types of hexagon bolts were injection molded. Injection conditions are cylinder temperature of 255 ° C and injection pressure of 1000 kg / cm.
2 , mold temperature 130 ℃, M3 (length: 20mm),
Respective mold cavities for M6 (length: 40 cm) and M8 (length: 50 cm) hexagon bolts were used.
Immediately after the molten resin was filled, the pistons 5 and 6 were alternately compressed and decompressed at a pressure of 800 kg / cm 2 to flow the molten resin. The period of moving the piston was 40 seconds at a rate of once every 10 seconds. After that, the pistons were simultaneously compressed and held for 20 seconds. After cooling and solidifying, the mold was opened and the product was taken out. There were no voids inside the resulting product, and the glass fibers were oriented in the longitudinal direction of the bolt. The tensile strength of the obtained hexagon bolt molded product was 120 kgf for M3, 470 kgf for M6, and 790 kgf for M8.

【0015】実施例2 80℃で12時間乾燥したポリアミド樹脂(三菱ガス化
学(株)製、商品名:レニ−1022F)を使用し、実
施例1と同様の射出条件でサイズが実施例1と同様のM
3、M6及びM8の3種類の六角ボルトを射出成形し
た。溶融樹脂を充填後、ただちに圧力800 kg/cm2
ピストン5、6を交互に圧縮、減圧動作を行い溶融樹脂
を流動させた。ピストンを動かす周期は、1秒間に1度
の割合で40秒間動かした。その後ピストンを同時に圧
縮し、20秒間保持し、冷却・固化後金型を開き製品を
取りだした。得られた製品の内部にボイドは無く、ガラ
ス繊維は、ボルトの長手方向に配向していた。得られた
六角ボルト成形品の引張強度は、M3が100kgf 、
M6が400kgf 、M8が670kgf であった。
Example 2 A polyamide resin (manufactured by Mitsubishi Gas Chemical Co., Inc., trade name: Reny-1022F) dried at 80 ° C. for 12 hours was used, and the size was the same as that of Example 1 under the same injection conditions as in Example 1. Similar M
Three types of hexagon bolts of 3, M6 and M8 were injection molded. Immediately after the molten resin was filled, the pistons 5 and 6 were alternately compressed and decompressed at a pressure of 800 kg / cm 2 to flow the molten resin. The piston was moved for 40 seconds at a rate of once per second. After that, the pistons were simultaneously compressed and held for 20 seconds. After cooling and solidifying, the mold was opened and the product was taken out. There were no voids inside the resulting product, and the glass fibers were oriented in the longitudinal direction of the bolt. The tensile strength of the obtained hexagon bolt molded product is 100 kgf for M3,
M6 was 400 kgf and M8 was 670 kgf.

【0016】比較例1 実施例1で使用したと同様の条件で乾燥したポリアミド
樹脂(三菱ガス化学(株)製、商品名レニ−1022
F)を使用して、実施例1と同様のM3、M6及びM8
の3種類の六角ボルトを射出成形した。図1に示す装置
を使用し、成形は、ピストンを動かさず、溶融樹脂充填
後、成形機スクリューにて圧力800 kg/cm2 で20秒
間保持して冷却・固化させる条件下におこなった。得ら
れた成形品の内部にはボイドが発生していた。得られた
六角ボルト成形品の引張強度は、M3が90kgf 、M6
が360kgf、M8が610kgf であった。
Comparative Example 1 Polyamide resin (manufactured by Mitsubishi Gas Chemical Co., Inc., trade name Reny-1022) dried under the same conditions as used in Example 1.
M), M6 and M8 as in Example 1 using F)
3 types of hexagon bolts were injection molded. Using the apparatus shown in FIG. 1, the molding was carried out under the condition that the piston was not moved, the molten resin was filled, and then the pressure was kept at 800 kg / cm 2 for 20 seconds by a molding machine screw to cool and solidify. Voids were generated inside the obtained molded product. The tensile strength of the obtained hexagon bolt molded product is 90 kgf for M3 and M6.
Was 360 kgf and M8 was 610 kgf.

【0017】実施例3 ガラス繊維強化ポリアミド樹脂(三菱ガス化学(株)
製、商品名:レニー1022F)を使用し、図2の概念
図に示すような射出成形機を使用し、該樹脂組成物を8
0℃で12時間乾燥後、シリンダー温度255℃、射出
圧力1000kg/cm2 、金型温度130℃で図3の
ようなブレーキレバー(長さ:120cm、中央部の長
手方向に垂直面の外径:15mmφ)の両先端側のゲー
トより溶融樹脂を充填した。充填後ただちに圧力800
kg/cm2 でピストン5、6を交互に圧縮、減圧動作
を行い溶融樹脂を流動させた。ピストンを動かす周期
は、10秒に1度の頻度で40秒間動かした。その後ピ
ストンを同時に圧縮し、20秒間保持し、金型を開き製
品を取りだした。得られた製品の内部にはボイドは見あ
たらず、ガラス繊維はブレーキレバーの長手方向に配向
していた。ASTM D256に準じた樹脂衝撃試験機
を用いて、得られた製品の取付け用穴(図3の14)を
固定治具で固定し、上記取付け用穴のある位置に相対す
る先端から30cmの位置のレバーの面方向の衝撃強度
(I1 )、及びレバー面に垂直方向の衝撃強度(I2
を各10回測定したところ、I1 は180kgf・cm
(標準偏差4.0kgf・cm)、I2 は170kgf
・cm(標準偏差3.5kgf・cm)であった。
Example 3 Glass fiber reinforced polyamide resin (Mitsubishi Gas Chemical Co., Inc.)
Manufactured by Reny 1022F), and using an injection molding machine as shown in the conceptual diagram of FIG.
After drying at 0 ° C for 12 hours, a cylinder temperature of 255 ° C, an injection pressure of 1000 kg / cm 2 , and a mold temperature of 130 ° C, a brake lever as shown in Fig. 3 (length: 120 cm, outer diameter of the central surface vertical to the longitudinal direction). : 15 mmφ) was filled with the molten resin from the gates on both tip sides. 800 pressure immediately after filling
The pistons 5 and 6 were alternately compressed at a pressure of kg / cm 2 and a depressurizing operation was performed to flow the molten resin. The piston was moved for 40 seconds at a frequency of once every 10 seconds. Thereafter, the pistons were simultaneously compressed and held for 20 seconds, the mold was opened and the product was taken out. No void was found inside the obtained product, and the glass fibers were oriented in the longitudinal direction of the brake lever. Using a resin impact tester conforming to ASTM D256, fix the mounting hole (14 in FIG. 3) of the obtained product with a fixing jig, and position 30 cm from the tip opposite to the position with the mounting hole. Impact strength (I 1 ) of the lever surface and the impact strength (I 2 ) perpendicular to the lever surface
Was measured 10 times, I 1 was 180 kgf · cm
(Standard deviation 4.0 kgf · cm), I 2 is 170 kgf
-Cm (standard deviation 3.5 kgf-cm).

【0018】実施例4 実施例3に記載したと同様の装置を使用し、ガラス繊維
強化ポリアミド樹脂(三菱ガス化学(株)製、商品名:
レニー1022F)を80℃で12時間乾燥後、シリン
ダー温度255℃、射出圧力1000kg/cm2 、金
型温度130℃で図3のようなブレーキレバーの両先端
側のゲートより溶融樹脂を充填した。充填後ただちに圧
力800kg/cm2 でピストン5、6を同時に圧縮、
減圧動作を行い溶融樹脂を流動させた。ピストンを動か
す周期は、20秒に1度の頻度で20秒間動かした。そ
の後ピストンを同時に圧縮し、20秒間保持し、金型を
開き製品を取りだした。得られた製品の内部にはボイド
は見あたらず、ガラス繊維はブレーキレバーの長手方向
に配向していた。得られた製品を実施例3に記載したと
同様の評価方法より、衝撃強度を各10回測定したとこ
ろ、I1 は155kgf・cm(標準偏差4.0kgf
・cm)、I2 は130kgf・cm(標準偏差5.5
kgf・cm)であった。
Example 4 Using a device similar to that described in Example 3, a glass fiber reinforced polyamide resin (manufactured by Mitsubishi Gas Chemical Co., Inc., trade name:
Rennie 1022F) was dried at 80 ° C. for 12 hours, and then filled with molten resin from the gates on both ends of the brake lever as shown in FIG. 3 at a cylinder temperature of 255 ° C., an injection pressure of 1000 kg / cm 2 , and a mold temperature of 130 ° C. Immediately after filling, the pistons 5 and 6 are simultaneously compressed with a pressure of 800 kg / cm 2 ,
A depressurization operation was performed to cause the molten resin to flow. The piston was moved for 20 seconds at a frequency of once every 20 seconds. Thereafter, the pistons were simultaneously compressed and held for 20 seconds, the mold was opened and the product was taken out. No void was found inside the obtained product, and the glass fibers were oriented in the longitudinal direction of the brake lever. The impact strength of the obtained product was measured 10 times by the same evaluation method as described in Example 3. As a result, I 1 was 155 kgf · cm (standard deviation 4.0 kgf).
· Cm), I 2 is 130kgf · cm (standard deviation 5.5
It was kgf · cm).

【0019】比較例2 実施例3に記載したと同様の装置を使用し、ガラス繊維
強化ポリアミド樹脂(三菱ガス化学(株)製、商品名:
レニー1022F)を80℃で12時間乾燥後、シリン
ダー温度255℃、射出圧力1000kg/cm2 、金
型温度130℃で図2のようなブレーキレバーの両先端
側のゲートより溶融樹脂を充填した。充填後ただちに圧
力800kg/cm2 で20秒間保持し、金型を開き製
品を取りだした。得られた製品の中心部にはボイドが発
生しており、ガラス繊維も中心部ではブレーキレバーの
長手方向に配向していなかった。得られた製品を実施例
3に記載したと同様の評価方法で、衝撃強度を各10回
測定したところ、I1 は95kgf・cm(標準偏差2
0kgf・cm)、I2は30kgf・cm(標準偏差
2.5kgf・cm)であった。
Comparative Example 2 A glass fiber reinforced polyamide resin (trade name: manufactured by Mitsubishi Gas Chemical Co., Inc.) was used, using the same apparatus as described in Example 3.
Rennie 1022F) was dried at 80 ° C. for 12 hours, and then filled with molten resin from the gates on both tip sides of the brake lever as shown in FIG. 2 at a cylinder temperature of 255 ° C., an injection pressure of 1000 kg / cm 2 , and a mold temperature of 130 ° C. Immediately after the filling, the pressure was kept at 800 kg / cm 2 for 20 seconds, the mold was opened, and the product was taken out. Voids were generated in the center of the obtained product, and glass fibers were not oriented in the longitudinal direction of the brake lever at the center. The impact strength of the obtained product was measured 10 times by the same evaluation method as described in Example 3, and I 1 was 95 kgf · cm (standard deviation 2).
0 kgf · cm) and I 2 were 30 kgf · cm (standard deviation 2.5 kgf · cm).

【0020】[0020]

【発明の効果】本発明の成形方法を採用することによ
り、成形品の内部にボイドの発生しない高強度の熱可塑
性樹脂製成形品を得ることができる。
By employing the molding method of the present invention, it is possible to obtain a high-strength thermoplastic resin molded product in which voids are not generated inside the molded product.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の剪断力発生装置を配したボルト用成
形装置の概念図である。
FIG. 1 is a conceptual diagram of a bolt forming device provided with a shearing force generator of the present invention.

【図2】 本発明の剪断力発生装置を配したブレーキレ
バー用成形装置の概念図である。
FIG. 2 is a conceptual diagram of a brake lever molding device provided with the shearing force generator of the present invention.

【図3】 実施例3で得られたブレーキレバーの平面図
である。
FIG. 3 is a plan view of a brake lever obtained in a third embodiment.

【符号の説明】[Explanation of symbols]

1:射出成形機のシリンダー 2:スクリュ
ー 3:ノズル 4:スプルー 5:ピストン 6:ピストン 7:ホットランナー 8:ホットラ
ンナー 9:金型 10:ボルト用
金型キャビティ 11:ブレーキレバー用金型キャビティ 12:ブレー
キレバー 13:ゲート位置 14:取付け
用穴
1: Cylinder of injection molding machine 2: Screw 3: Nozzle 4: Sprue 5: Piston 6: Piston 7: Hot runner 8: Hot runner 9: Mold 10: Mold cavity for bolt 11: Mold cavity for brake lever 12 : Brake lever 13: Gate position 14: Mounting hole

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂の成形方法であって、溶融
樹脂を金型キャビティ内に射出注入後、冷却する過程で
該金型キャビティ内の樹脂の一部もしくは全部に1〜6
0秒に1度以上の頻度で流動あるいは振動による剪断力
を発生させることを特徴とする熱可塑性樹脂の成形方
法。
1. A method of molding a thermoplastic resin, wherein 1 to 6 is applied to a part or all of the resin in the mold cavity in the process of cooling after injection and injection of a molten resin into the mold cavity.
A method for molding a thermoplastic resin, wherein shearing force is generated by flow or vibration at a frequency of once or more per 0 seconds.
【請求項2】 該金型キャビティ内の樹脂の一部もしく
は全部に剪断力を発生させる頻度が1〜60秒に1〜5
度であることを特徴とする請求項1に記載の熱可塑性樹
脂の成形方法。
2. The frequency of generating shearing force on a part or all of the resin in the mold cavity is 1 to 5 per 1 to 60 seconds.
The method for molding a thermoplastic resin according to claim 1, wherein the thermoplastic resin is a resin.
【請求項3】 剪断力を発生させる装置が射出成形機シ
リンダーと金型の間に配置され、溶融樹脂を流動あるい
は振動させる手段が少なくとも1本のシリンダー及びピ
ストンを有する装置である請求項1に記載の熱可塑性樹
脂の成形方法。
3. The device for generating shearing force is arranged between an injection molding machine cylinder and a mold, and the means for flowing or vibrating the molten resin is a device having at least one cylinder and piston. A method for molding the thermoplastic resin described.
【請求項4】 金型キャビティ内の溶融樹脂に剪断力を
発生させることにより流動あるいは振動する樹脂容積
が、該金型キャビティ内容積の10%以上であることを
特徴とする請求項1及び2に記載の熱可塑性樹脂の成形
方法。
4. The volume of the resin that flows or vibrates by generating shearing force in the molten resin in the mold cavity is 10% or more of the volume of the mold cavity. The method for molding a thermoplastic resin according to 1.
【請求項5】 請求項1〜4に記載の熱可塑性樹脂の成
形方法により成形される成形品が、長手方向に垂直の断
面積が1cm2 以上で、かつ長手方向の長さが該断面部
の最短の長さの3倍以上である部分を少なくとも1箇所
以上有する形状であることを特徴とする成形品。
5. A molded article molded by the method for molding a thermoplastic resin according to claim 1 has a cross-sectional area perpendicular to the longitudinal direction of 1 cm 2 or more and a longitudinal length of the cross-sectional portion. A molded article having a shape having at least one portion having a length three times or more of the shortest length.
【請求項6】 請求項1〜4に記載の熱可塑性樹脂の射
出成形方法により成形された熱可塑性樹脂製ボルト。
6. A thermoplastic resin bolt molded by the thermoplastic resin injection molding method according to any one of claims 1 to 4.
【請求項7】 請求項1〜4に記載の熱可塑性樹脂の射
出成形方法により成形された熱可塑性樹脂製ブレーキレ
バー。
7. A thermoplastic resin brake lever molded by the thermoplastic resin injection molding method according to any one of claims 1 to 4.
JP4312270A 1992-11-20 1992-11-20 Molding method of thermoplastic resin Pending JPH06155535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4312270A JPH06155535A (en) 1992-11-20 1992-11-20 Molding method of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4312270A JPH06155535A (en) 1992-11-20 1992-11-20 Molding method of thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH06155535A true JPH06155535A (en) 1994-06-03

Family

ID=18027224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4312270A Pending JPH06155535A (en) 1992-11-20 1992-11-20 Molding method of thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH06155535A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008482A (en) * 2016-07-15 2018-01-18 日本ケミカルスクリュー株式会社 Bolt molding method, bolt and bolt molding die
JP2020157741A (en) * 2019-03-28 2020-10-01 株式会社Subaru Injection molding method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179715A (en) * 1984-12-21 1986-08-12 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Molding method
JPS6457026U (en) * 1987-10-02 1989-04-10
JPH03274127A (en) * 1990-03-26 1991-12-05 Mitsubishi Gas Chem Co Inc Apparatus and method for molding thermoplastic resin
JPH0416320A (en) * 1990-05-10 1992-01-21 Osamu Hamada Molding die assembly
JPH04310715A (en) * 1991-04-09 1992-11-02 Polyplastics Co Injection molding method, injection molding die and injection molded product
JPH0557741A (en) * 1991-09-03 1993-03-09 Mitsubishi Gas Chem Co Inc Injection molding of thermoplastic resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179715A (en) * 1984-12-21 1986-08-12 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Molding method
JPS6457026U (en) * 1987-10-02 1989-04-10
JPH03274127A (en) * 1990-03-26 1991-12-05 Mitsubishi Gas Chem Co Inc Apparatus and method for molding thermoplastic resin
JPH0416320A (en) * 1990-05-10 1992-01-21 Osamu Hamada Molding die assembly
JPH04310715A (en) * 1991-04-09 1992-11-02 Polyplastics Co Injection molding method, injection molding die and injection molded product
JPH0557741A (en) * 1991-09-03 1993-03-09 Mitsubishi Gas Chem Co Inc Injection molding of thermoplastic resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008482A (en) * 2016-07-15 2018-01-18 日本ケミカルスクリュー株式会社 Bolt molding method, bolt and bolt molding die
JP2020157741A (en) * 2019-03-28 2020-10-01 株式会社Subaru Injection molding method

Similar Documents

Publication Publication Date Title
US5160466A (en) Method for molding a material
CA2060461C (en) Method for manufacturing a plastic hollow product using water soluble resin
JPH0788025B2 (en) Manufacturing method of synthetic resin molded product having uneven wall reinforcement structure
US7883659B2 (en) Method for equalizing the orientation of fillers and/or distribution of fillers in injection moulded parts
US5851474A (en) Injection molding with periodic forces to the material in the mold
JPH06155535A (en) Molding method of thermoplastic resin
KR20220053572A (en) Hollow Profile Composite Technology
JPH06328451A (en) Resin molding method
US5156858A (en) Apparatus for controlling the molding of a solid product in a mold cavity from molten material which is repeatedly moved within the mold cavity
Allan et al. Shear controlled orientation technology for the management of reinforcing fibres in moulded and extruded composite materials
JPH05329886A (en) Sandwich injection molding method
JPH0257401A (en) Resin wheel
JPH03274127A (en) Apparatus and method for molding thermoplastic resin
JPH06270218A (en) Molding method
JPS60264237A (en) Manufacture of blank for fiber reinforced plastic bolt material
JP3995276B2 (en) Molding method of thermoplastic resin
JPH11309739A (en) Method for molding lightweight resin molded product and lightweight resin molded product
JPH10500365A (en) Process for manufacturing oval injection molded articles made from thermoplastic material reinforced with long fibers, especially screws and threaded rods
JP2835974B2 (en) Hollow molded body with thick reinforcing part and method of manufacturing the same
GB2299779A (en) Injection moulding of thermoplastic resin
JPS58215263A (en) Production of composite material
JPH05337990A (en) Resin molding apparatus and method, and molded product
JPH0422611A (en) Manufacture of polymer composite molded object
Mohan SRIM composites for automotive structural applications
JPH043893B2 (en)