JPH03274127A - Apparatus and method for molding thermoplastic resin - Google Patents

Apparatus and method for molding thermoplastic resin

Info

Publication number
JPH03274127A
JPH03274127A JP7337990A JP7337990A JPH03274127A JP H03274127 A JPH03274127 A JP H03274127A JP 7337990 A JP7337990 A JP 7337990A JP 7337990 A JP7337990 A JP 7337990A JP H03274127 A JPH03274127 A JP H03274127A
Authority
JP
Japan
Prior art keywords
mold
resin
cavity
molten resin
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7337990A
Other languages
Japanese (ja)
Inventor
Toshiaki Okuzono
奥園 敏昭
Akimasa Kaneishi
彰雅 兼石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP7337990A priority Critical patent/JPH03274127A/en
Publication of JPH03274127A publication Critical patent/JPH03274127A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C2045/0098Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor shearing of the moulding material, e.g. for obtaining molecular orientation or reducing the viscosity

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To make integral mounting possible without providing a perfectly separate large-scale unit, in such a case that the molten resin in a mold is solidified while shearing force is applied to at least a part of the resin, by providing two or more hot runners communicating with a cavity to the mold and arranging pistons to the hot runners. CONSTITUTION:A molten resin is branched into hot runners 21, 21' through a sprue 20 to pass through the hot runners 22, 22' through pistons P, P' held to a heated state in the same manner and introduced into the cavity of a mold from gates 23, 23'. Compression force and reduced pressure force are cyclically applied to the pistons P, P' in usual during the period from the completion time of an injection process to pressure holding time and the molten resin in the cavity of the mold is moved or vibrated left and right as shown by an arrow. During the period when compression force and reduced pressure force in different directions are respectively applied once or more in usual, the molecular orientation of the molten resin in the cavity of the mold, the orientation of a filler and the elimination of weld are achieved and shearing force ts applied to the resin at the time of cooling and, therefore, the generation of 'sink' or 'void' is suppressed and the mold is cooled to form a solidified molded product.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱可塑性樹脂の成形装置及びその成形性に関し
、熱可塑性樹脂組成物の金型中に於ける分子配向、特に
充填材の配向も制御し、ウェルド強度やウェルド部の外
観を改良し、また、内部にボイドなどの無い肉厚成形品
を製造することが可能となるものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a thermoplastic resin molding device and its moldability, and relates to molecular orientation in a mold of a thermoplastic resin composition, particularly the orientation of a filler. This makes it possible to improve the weld strength and the appearance of the weld part, and to manufacture thick molded products with no internal voids.

〔従来の技術およびその課題〕[Conventional technology and its problems]

従来の射出成形法によって肉厚の熱可塑性樹脂成形品を
製造すると成形品の表面が凹んだり(ヒケ)、成形品の
内部にボイドが発生したりして、成形品の商品価値を著
しく損なうことが知られている。また、成形品の形状に
より、又はゲートを2個以上必要とする成形品の場合、
ウェルドが発生し、この部分は外観不良、強度の低下、
寸法精度の劣化などを引き起こす問題があった。特に板
状、繊維状などの強化材や充填材を配合した熱可塑性樹
脂組成物の場合にはウェルド部の劣化は著しいものであ
った。
When thick thermoplastic resin molded products are manufactured using conventional injection molding methods, the surface of the molded product becomes depressed (sink marks), and voids occur inside the molded product, which significantly impairs the commercial value of the molded product. It has been known. In addition, depending on the shape of the molded product or for molded products that require two or more gates,
Welding occurs and this part has poor appearance, reduced strength,
There were problems such as deterioration of dimensional accuracy. In particular, in the case of thermoplastic resin compositions containing reinforcing materials or fillers in the form of plates or fibers, the deterioration of the weld portion was significant.

これらの改良方法として金型温度、樹脂温度、成形サイ
クル、保持圧、時間、その他の条件を種々変更する方法
が試みられているが、その効果は小さいものであった。
Various attempts have been made to improve these conditions by changing mold temperature, resin temperature, molding cycle, holding pressure, time, and other conditions, but the effects have been small.

上記した従来の射出成形の課題を解決する方法として特
開昭61−179715号公報には、モールドキャビテ
ィーに供給した溶融材料の少なくとも一部に剪断力を加
えつつ該溶融材料を固化させることからなる成形方法、
並びに、剪断力を加えるユニットが開示さている。この
公報に開示の方法は上記した課題を解決する方法として
有力なものであるが、この公開公報に開示の剪断力を加
えるユニットは、従来の金型とは全く別の大掛かりなユ
ニットであるために、例えば型締力が350トン以下の
汎用の射出成形機には、取りつけ不可能であるという課
題があった。
As a method for solving the above-mentioned problems of conventional injection molding, Japanese Patent Application Laid-Open No. 179715/1986 discloses a method of solidifying the molten material while applying a shearing force to at least a portion of the molten material supplied to the mold cavity. A molding method,
Also disclosed is a unit for applying shear forces. Although the method disclosed in this publication is a promising method for solving the above-mentioned problems, the unit that applies the shearing force disclosed in this publication is a large-scale unit that is completely different from a conventional mold. Another problem was that it could not be installed in a general-purpose injection molding machine with a mold clamping force of 350 tons or less, for example.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、汎用射出成形機にも適用可能な剪断力負
荷の方法について鋭意検討した結果、金型の一部に該剪
断力負荷手段を設ける方法を見出し、本発明を完成させ
た。
As a result of intensive study on a shearing force loading method that can be applied to general-purpose injection molding machines, the present inventors discovered a method of providing the shearing force loading means in a part of the mold, and completed the present invention.

すなわち、本発明は、溶融した熱可塑性樹脂を金型に供
給し、金型内の溶融樹脂の少なくとも一部に剪断力を加
えながら樹脂を固化させる成形装置において、該剪断力
を加える装置が、該金型内にキャビティーと連通した2
本以上のホットランナ−と、このホットランナ−にピス
トンを設置した構成の金型であることを特徴とする熱可
塑性樹脂の成形装置であり、該ピストンが、圧縮力負荷
時にスプルー側ランナーへの流路を閉じる逆止ペンを兼
ねた構造である熱可塑性樹脂の成形装置、並びに 溶融した熱可塑性樹脂を金型に供給し、金型内の溶融樹
脂の少なくとも一部に剪断力を加えながら樹脂を固化さ
せる熱可塑性樹脂の成形方法において、該溶融樹脂への
固化時の剪断力を、該金型内に金型キャビティーに連通
したホットランナ−を2本以上設け、このホットランナ
−に設けたそれぞれのピストンの一方側に加圧力、他方
側に減圧力となるように交互に加えることにより行うこ
とを特徴とする熱可塑性樹脂の成形性である。
That is, the present invention provides a molding device that supplies a molten thermoplastic resin to a mold and solidifies the resin while applying a shearing force to at least a portion of the molten resin in the mold, in which the device that applies the shearing force comprises: 2 in communication with the cavity within the mold.
This is a thermoplastic resin molding device characterized by a mold having a hot runner of more than 1,000 yen and a piston installed on the hot runner, and the piston is configured to act as a compressor to the sprue side runner when compressive force is applied. A thermoplastic resin molding device has a structure that doubles as a non-return pen that closes the flow path, and a thermoplastic resin molding device that supplies molten thermoplastic resin to a mold and presses the resin while applying a shearing force to at least a portion of the molten resin in the mold. In a method for molding a thermoplastic resin in which the molten resin is solidified, the shearing force applied to the molten resin during solidification is controlled by providing two or more hot runners in the mold that communicate with the mold cavity; The moldability of thermoplastic resin is characterized by applying pressure alternately to one side of each piston and reducing pressure to the other side.

以下、本発明の構成について説明する。The configuration of the present invention will be explained below.

まず、本発明の成形性に用いる装置の具体例について、
添付の図面により説明する。
First, regarding a specific example of the device used for moldability of the present invention,
This will be explained with reference to the attached drawings.

第1図は、本発明の金型内に溶融樹脂へ剪断力を加える
ピストンを設けた一例であり、第2図は、第1図装置に
よる剪断力負荷時のピストンが移動した状態を示したも
のである。また、第3図は、剪断力を加えるピストンの
形式を変更した場合であり、第4図は剪断力を加えるピ
ストンを4本用い、配向方向を2方向から制御可能とし
た場合である。
Fig. 1 is an example of a mold according to the present invention in which a piston is provided to apply shearing force to the molten resin, and Fig. 2 shows the state in which the piston moves when shearing force is applied by the apparatus shown in Fig. 1. It is something. Moreover, FIG. 3 shows a case where the type of piston that applies shearing force is changed, and FIG. 4 shows a case where four pistons that apply shearing force are used and the orientation direction can be controlled from two directions.

第1図において、金型は、固定側[8,1,2+パーテ
イングライン〔25〕より上側〕と可動側〔3゜4.5
,9 :  [25)より下側〕により構成され、型板
[2,3)によりキャビティーが形成される。固定側〔
1〕の型板内には、スプルー〔2o〕から対称に分かれ
たホットランナ−〔21〜22.21’〜22′〕、そ
の中間に可動方向に対して垂直にピストンCP。
In Figure 1, the mold is located on the fixed side [8, 1, 2 + above the parting line [25]] and on the movable side [3°4.5
, 9: [lower than 25]], and a cavity is formed by the templates [2, 3). Fixed side [
1], hot runners [21-22.

P’〕が設けらている。ホットランナ−21〜22″の
先に金型キャビティー[23,24,23’ )が設け
られている。なお、本金型は、4:受は板、5ニスペー
サ−ブロック、6:エジェクタープレート上、7:エジ
ェクタープレート下、8:固定側取り付板、9:可動側
取り付板、11:ロケートリング、12ニスブルーブツ
シユ、13ニガイドピン、15ニガイドブツシュ16:
エジェクタービン、17:エジェクタービンプッシュ、
18:リターンビンなどの通常の金型装置が有する部品
を当然に有するものである。また、第3図は剪断力負荷
用のピストンを1本で圧縮、減圧力を加える如くしたも
のである。さらに第4図では2方向から圧縮、減圧力を
加えることが可能であることから、圧縮、減圧力を加え
るピストンを選択することにより、所望の方向に配向さ
せたり、配向を無くしたりすることが可能となるもので
ある。
P'] is provided. A mold cavity [23, 24, 23') is provided at the end of the hot runners 21 to 22''.This mold includes 4: a plate for the receiver, 5: a spacer block, and 6: an ejector plate. Top, 7: Lower ejector plate, 8: Fixed side mounting plate, 9: Movable side mounting plate, 11: Locate ring, 12 Varnish blue bushing, 13 Ni guide pin, 15 Ni guide bush 16:
Eject turbine, 17: Eject turbine push,
18: It naturally includes parts that are included in normal mold equipment, such as a return bin. Further, FIG. 3 shows a configuration in which a single piston for applying shear force is used to apply compression and reduced pressure. Furthermore, as shown in Fig. 4, it is possible to apply compression and vacuum pressure from two directions, so by selecting the piston that applies compression and vacuum pressure, it is possible to orient the piston in a desired direction or eliminate the orientation. It is possible.

次に、射出成形工程から上記した図を説明すると、第1
図において溶融樹脂はスプルー20を経てホットランナ
−21,21’に分岐し、同様に加熱保持されたピスト
ンP、P”を経て、ホットランナ−22,22′を通過
し、ゲー) 23.23’から金型キャビティー24に
導入される。射出過程終了時〜保圧時までの間にピスト
ンP、 P’に圧縮力と減圧力とが通常、周期的に負荷
され、金型キャビティー内の溶融樹脂を矢印の如く左右
に移動或いは振動させる。この状態の瞬間を示したのが
第2図であり、ピストンPが右方向に移動しホットラン
ナ−21を閉じてゲート23からキャビティー24に圧
縮力、乃至溶融樹脂の移動を起こさせ、これと共にピス
トンP”が同様に右方向に移動して減圧力の負荷乃至ピ
ストンPの圧縮力の伝達を容易とする。次の段階では上
記したピストンP、 P’が逆方向(左方向)に移動し
、キャビティー24の溶融樹脂に左方向に力を負荷する
。この方向の異なる圧縮、減圧が通常、それぞれ1回以
上負荷される間に、金型キャビティー内の溶融樹脂の分
子配向、充填材の配向、さらにウェルドの解消を起こさ
せると共に、冷却時に剪断力が付加されることから「ひ
け」や「ボイド」の発生が抑えられ金型で冷却されて、
固化した成形品とされる。ついで、金型をパーティング
ライン25で開く、このとき通常、成形品にランナーの
一部がランナーの22.22’付近で切断された状態で
付着して金型が開かれ、ついで冷却した成形品がエジェ
クタービン16により金型から分離される。
Next, to explain the above diagram from the injection molding process, the first
In the figure, the molten resin branches through the sprue 20 to the hot runners 21 and 21', passes through the pistons P and P'' which are similarly heated, and passes through the hot runners 22 and 22'. ' is introduced into the mold cavity 24. Compression force and reduced pressure are normally applied periodically to the pistons P and P' between the end of the injection process and the time of pressure retention, and the pressure inside the mold cavity is The molten resin is moved or vibrated left and right as shown by the arrow.The instant in this state is shown in Figure 2, where the piston P moves to the right, closes the hot runner 21, and moves from the gate 23 to the cavity 24. This causes a compressive force or a movement of the molten resin, and together with this, the piston P'' similarly moves to the right, making it easier to transmit the load of reduced pressure or the compressive force of the piston P. In the next step, the pistons P and P' move in the opposite direction (to the left) and apply a force to the molten resin in the cavity 24 in the left direction. While compression and depressurization in different directions are usually applied one or more times each, molecular orientation of the molten resin in the mold cavity, orientation of the filler, and elimination of welds are caused, and shear force is generated during cooling. Because it is added, the occurrence of "sink" and "void" is suppressed, and the mold is cooled.
It is considered to be a solidified molded product. Next, the mold is opened at the parting line 25. At this time, a part of the runner is attached to the molded product in a cut state near 22.22' of the runner, and the mold is opened. The article is separated from the mold by an ejector turbine 16.

以上の工程を繰り返すことにより、本発明の成形品が製
造される。
By repeating the above steps, the molded article of the present invention is manufactured.

以上、図面を用いて本発明の成形装置並びに成形方法を
説明したが、本発明は上記に限定されるものではなく、
上記の如く、金型内に剪断力を加える手段を設けること
を除き種々の対応が取れるものである。例えば、本発明
に於けるピストンによる圧縮、減圧力を好適に付加する
ためには、成形品の大きさ、形状や好適な配向の方向な
どを考慮して通常、50〜1,000 kg/CJ1が
好適であり、種々の成形品に適用するためには、そのス
トローク制御及び/又は圧力制御を可能とし、例えば、
添付の第1図の場合、26〜26の下の部分、すなわち
、金型キャビティ一部分のみを変更してなる金型によっ
て対処することが好ましい。
Although the molding apparatus and molding method of the present invention have been explained above using the drawings, the present invention is not limited to the above.
As mentioned above, various measures can be taken except for providing a means for applying a shearing force within the mold. For example, in order to suitably apply compression and reduced pressure by the piston in the present invention, it is usually 50 to 1,000 kg/CJ1, taking into account the size, shape, and preferred orientation of the molded product. is suitable, and in order to apply it to various molded products, it enables stroke control and/or pressure control, for example,
In the case of the attached FIG. 1, it is preferable to use a mold formed by changing only the portions 26 to 26 below, that is, only a portion of the mold cavity.

ここに、本発明の成形装置を用いる効果の大きい成形品
としては、溶融樹脂の金型内での固化までに必要な剪断
力を負荷する時間が取れるものであり、通常、成形品の
肉厚は1.5肛以上であり、また、適宜、金型内に成形
品の瞬間的加熱手段を付加して樹脂の固化時間をある程
度長くしたものが好ましい。また、本発明が好適に適用
される樹脂としては、ポリ塩化ビニル; PMMAなど
のアクリル樹脂;PS 、旧PSなどのポリスチレン樹
脂;ABS、AAS 、 MAS 、 MEBSなどの
ポリスチレンとアクリル酸エステルやアクリロニトリル
などとの共重合樹脂; PP、 PRXTPX 、その
他のポリオレフィン類;ホモ乃至コーポリアセタール樹
脂;ナイロン6゜66.610.12、MXDA、その
他の結晶性乃至非結晶性ポリアミド樹脂; PBT 、
 PET 、 PCTG、 PCTAl、ベクトラ、そ
の他の結晶性、非結晶性乃至液晶性のポリエステル樹脂
;芳香族ポリカーボネート(PC)、ポリフェニレンエ
ーテル(PPE) 、ポリフェニレンサルファイド(P
PS) 、ポリスルホン、ポリエーテルエーテルケトン
(PEEK)などのエンジニアリングプラスチックなど
が挙げられ、これらは単独2種以上を混合してなる樹脂
組成物、さらに耐衝撃性改良材として種々の熱可塑性乃
至粒子状のエラストマーを配合したもの、種々の繊維、
粉末、球、鱗片、板、テトラポット、髭などの種々の形
状の充填材または強化材を配合した組成物としても好適
に使用できるものである。
Here, molded products that are highly effective using the molding apparatus of the present invention are ones that allow time to apply the necessary shear force until the molten resin solidifies in the mold, and usually the wall thickness of the molded product is is 1.5 or more, and it is preferable that the solidification time of the resin is extended to some extent by adding an instantaneous heating means for the molded article in the mold. In addition, resins to which the present invention is preferably applied include polyvinyl chloride; acrylic resins such as PMMA; polystyrene resins such as PS and old PS; polystyrene and acrylic esters such as ABS, AAS, MAS, and MEBS, acrylonitrile, etc. Copolymer resins with; PP, PRXTPX, and other polyolefins; Homo- to co-polyacetal resins; Nylon 6゜66.610.12, MXDA, and other crystalline to non-crystalline polyamide resins; PBT,
PET, PCTG, PCTAL, Vectra, and other crystalline, non-crystalline or liquid crystalline polyester resins; aromatic polycarbonate (PC), polyphenylene ether (PPE), polyphenylene sulfide (P)
PS), polysulfone, polyether ether ketone (PEEK), and other engineering plastics, resin compositions made by mixing two or more of these, and various thermoplastic or particulate materials as impact resistance modifiers. elastomers, various fibers,
It can also be suitably used as a composition containing fillers or reinforcing materials in various shapes such as powder, spheres, scales, plates, tetrapods, whiskers, etc.

〔実施例〕〔Example〕

以下、実施例および比較例によって具体的に説明する。 Hereinafter, a detailed explanation will be given using Examples and Comparative Examples.

実施例 1 第1図と同様の剪断力負荷手段を有し、パーティングラ
イン25がライン26と平行であり、ゲート22が、パ
ーティングライン25と平行に設けられ、かつ、8 x
 12x 130 mmのキャビティーをもった金型を
用い、成形方法として (A)、剪断力を負荷せずに成形。
Example 1 The shear force applying means is similar to that in FIG. 1, the parting line 25 is parallel to the line 26, the gate 22 is provided parallel to the parting line 25, and
Using a mold with a cavity of 12 x 130 mm, the molding method was (A) without applying shear force.

(B)、ピストンPのみ移動させ、ピストンP側のラン
ナーのみ閉鎖して、シングルゲートとして成形。
(B) Only the piston P is moved and only the runner on the piston P side is closed to form a single gate.

(C)、溶融樹脂をキャビティーに供給し、周期的に4
00kg/cJIの剪断力を加えつつ固化させる本発明
の成形。
(C), molten resin is fed into the cavity and periodically 4
The molding of the present invention is solidified while applying a shearing force of 00 kg/cJI.

を用い、ガラス繊維 25重量%のポリアセタール樹脂
(三菱瓦斯化学■製、商品名;ユピタールFG25)を
用いて成形品を製造した。なお、射出成形機は東芝製1
5200B4、シリンダー温度220℃、金型キャビテ
ィー表面温度110℃、成形サイクル250秒とした。
A molded article was manufactured using a polyacetal resin (manufactured by Mitsubishi Gas Chemical Company, trade name: Iupital FG25) containing 25% by weight of glass fiber. The injection molding machine is Toshiba 1.
5200B4, cylinder temperature 220°C, mold cavity surface temperature 110°C, and molding cycle 250 seconds.

上記で得た成形品の曲げ強度を島津製作所製DC320
00型オートグラフにて、支点間距離100[n[11
11曲げ速度5mm/min、温度23℃で測定した結
果を下記第1表に示した。
The bending strength of the molded product obtained above was measured using DC320 manufactured by Shimadzu Corporation.
With the 00 type autograph, the distance between the fulcrums is 100[n[11
11 The results were measured at a bending speed of 5 mm/min and a temperature of 23° C., and the results are shown in Table 1 below.

実施例 2 第4図に示したように4本のピストンからなる剪断力負
荷手段を有し、パーティングライン25がライン26と
平行であり、扇型ゲートが、パーティングライン25と
平行に設けられ、厚さ15mmで100肛角のキャビテ
ィーをもった金型を用い、成形方法として (A)、溶融樹脂を対向したピストンA、B側のゲート
の2点から注入し、剪断力を加えずに成形。
Embodiment 2 As shown in FIG. 4, the shearing force loading means includes four pistons, the parting line 25 is parallel to the line 26, and the fan-shaped gate is provided parallel to the parting line 25. Using a mold with a thickness of 15 mm and a cavity of 100 mm angle, the molding method was (A), in which molten resin was injected from two points, the gates on the opposing piston A and B sides, and shearing force was applied. Molded without any problem.

(B)、溶融樹脂を対向したピストンA、B側のゲート
の2点から注入し、ピストンA、Bにて周期的に500
kg/calの剪断力を加えつつ固化させる本発明の成
形。
(B), molten resin is injected from two points, the gates on the opposing piston A and B sides, and the pistons A and B are injected periodically for 500 min.
The molding of the present invention is solidified while applying a shearing force of kg/cal.

(C)、溶融樹脂を対向したピストンA、B側のゲート
の2点から注入し、先ずA、Bのピストンにて剪断力を
加え、ついでCSDのピストンにて剪断力を加えること
を順次繰り返しつつ固化させる本発明の成形。
(C), molten resin is injected from two points, the gates on the opposing piston A and B sides, and the shearing force is first applied with the A and B pistons, and then the shearing force is applied with the CSD piston, which is repeated sequentially. The molding of the present invention is performed while solidifying.

を用い、ガラス繊維 30重量%の変性PPE樹脂(三
菱瓦斯化学■製、商品名;ユピエースGl(30)を用
いて成形品を製造した。なお、射出成形機は東芝製15
200B4、シリンダー温度310℃、金型キャビティ
ー表面温度120℃、成形サイクル 300秒とした。
A molded product was manufactured using a modified PPE resin (manufactured by Mitsubishi Gas Chemical, trade name: Iupiace Gl (30)) containing 30% by weight of glass fiber.The injection molding machine was Toshiba 15.
200B4, cylinder temperature 310°C, mold cavity surface temperature 120°C, and molding cycle 300 seconds.

上記で得た成形品から、ピストンCD方向、並びにピス
トンCD方向の巾12M1厚さ15mm、長さ100m
mの試験片を切出し、曲げ強度を島津製作所製DC32
000型オートグラフにて、支点間距離80mm、曲げ
速度5mm/mid、温度23℃で測定した結果を下記
第2表に示した。
From the molded product obtained above, the width in the piston CD direction, the width in the piston CD direction is 12M1, the thickness is 15mm, and the length is 100m.
A test piece of m was cut out and the bending strength was measured using DC32 manufactured by Shimadzu Corporation.
The results were measured using a 000 type autograph at a distance between fulcrums of 80 mm, a bending speed of 5 mm/mid, and a temperature of 23° C., and are shown in Table 2 below.

〔発明の作用および効果〕[Operation and effects of the invention]

以上、発明の詳細な説明および実施例、比較例から明瞭
なように、本発明の装置及びその成形方法によれば、ウ
ェルドが発生する金型キャビティー形状であってもウェ
ルドの強度劣化が極めて少ないものであるので、強度に
優れた成形品をうろことが可能であり、また、成形品が
厚い場合にもボイドの発生等がない。さらに、ピストン
をコンパクトに金型に取りつけることが可能であること
から、−軸方向のみでなく、二軸方向の方向の異方性の
制御が可能となるものであり、その工業的意義は極めて
高いものである。
As is clear from the detailed description of the invention, examples, and comparative examples, according to the apparatus and molding method of the present invention, the strength of the weld is extremely deteriorated even in the shape of the mold cavity where the weld occurs. Since the amount is small, it is possible to form a molded product with excellent strength, and even if the molded product is thick, voids will not occur. Furthermore, since the piston can be compactly attached to the mold, it is possible to control the anisotropy not only in the -axial direction but also in the biaxial direction, which has extremely industrial significance. It's expensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の金型内に溶融樹脂へ剪断力を加える
ピストンを設けた例、第2図は、第1図装置による剪断
力負荷時のピストンが移動した状態を示したものである
。また、第3図は、剪断力を加えるピストンの形式を変
更した場合、第4図は剪断力を加えるピストンを4本用
い、配向方向を2方向から制御可能とした場合である。
Fig. 1 shows an example in which a piston that applies shear force to the molten resin is provided in the mold of the present invention, and Fig. 2 shows the state in which the piston moves when shear force is applied by the device shown in Fig. 1. be. Further, FIG. 3 shows a case where the type of piston that applies shearing force is changed, and FIG. 4 shows a case where four pistons that apply shearing force are used and the orientation direction can be controlled from two directions.

Claims (1)

【特許請求の範囲】 1 溶融した熱可塑性樹脂を金型に供給し、金型内の溶
融樹脂の少なくとも一部に剪断力を加えながら樹脂を固
化させる成形装置において、該剪断力を加える装置が、
該金型内にキャビティーと連通した2本以上のホットラ
ンナーと、このホットランナーにピストンを設置した構
成の金型であることを特徴とする熱可塑性樹脂の成形装
置。 2 該ピストンが、圧縮力負荷時にスプルー側ランナー
への流路を閉じる逆止ペンを兼ねた構造である請求項1
記載の熱可塑性樹脂の成形装置。 3 溶融した熱可塑性樹脂を金型に供給し、金型内の溶
融樹脂の少なくとも一部に剪断力を加えながら樹脂を固
化させる熱可塑性樹脂の成形方法において、該溶融樹脂
への固化時の剪断力を、該金型内に金型キャビティーに
連通したホットランナーを2本以上設け、このホットラ
ンナーに設けたそれぞれのピストンの一方側に加圧力、
他方側に減圧力となるように交互に加えることにより行
うことを特徴とする熱可塑性樹脂の成形法。
[Claims] 1. A molding device that supplies a molten thermoplastic resin to a mold and solidifies the resin while applying a shearing force to at least a portion of the molten resin in the mold, wherein the device that applies the shearing force is ,
1. A thermoplastic resin molding apparatus, characterized in that the mold includes two or more hot runners communicating with a cavity, and a piston installed in the hot runners. 2. Claim 1, wherein the piston has a structure that doubles as a check pen that closes the flow path to the sprue side runner when compressive force is applied.
The thermoplastic resin molding apparatus described above. 3 In a thermoplastic resin molding method in which a molten thermoplastic resin is supplied to a mold and the resin is solidified while applying a shearing force to at least a portion of the molten resin in the mold, the molten resin is sheared during solidification. Two or more hot runners communicating with the mold cavity are provided in the mold, and a pressing force is applied to one side of each piston provided in the hot runners.
A thermoplastic resin molding method characterized by applying a reduced pressure to the other side alternately.
JP7337990A 1990-03-26 1990-03-26 Apparatus and method for molding thermoplastic resin Pending JPH03274127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7337990A JPH03274127A (en) 1990-03-26 1990-03-26 Apparatus and method for molding thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7337990A JPH03274127A (en) 1990-03-26 1990-03-26 Apparatus and method for molding thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH03274127A true JPH03274127A (en) 1991-12-05

Family

ID=13516496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7337990A Pending JPH03274127A (en) 1990-03-26 1990-03-26 Apparatus and method for molding thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH03274127A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155535A (en) * 1992-11-20 1994-06-03 Mitsubishi Gas Chem Co Inc Molding method of thermoplastic resin
JPH06270218A (en) * 1993-03-17 1994-09-27 Mitsubishi Gas Chem Co Inc Molding method
JPH0747570A (en) * 1993-08-06 1995-02-21 Meisei Kinzoku Kogyosho:Kk Pressure escapement mechanism at injection molding in synthetic resin injection molding device
US20130147077A1 (en) * 2011-12-09 2013-06-13 National Taiwan University Of Science And Technology In-mold vibratile injection compression molding method and molding apparatus thereof
JP2018160673A (en) * 2018-05-09 2018-10-11 日亜化学工業株式会社 Method for manufacturing package, method for manufacturing package intermediate, and method for manufacturing light-emitting device
US10580947B2 (en) 2015-11-30 2020-03-03 Nichia Corporation Package and package intermediate body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155535A (en) * 1992-11-20 1994-06-03 Mitsubishi Gas Chem Co Inc Molding method of thermoplastic resin
JPH06270218A (en) * 1993-03-17 1994-09-27 Mitsubishi Gas Chem Co Inc Molding method
JPH0747570A (en) * 1993-08-06 1995-02-21 Meisei Kinzoku Kogyosho:Kk Pressure escapement mechanism at injection molding in synthetic resin injection molding device
US20130147077A1 (en) * 2011-12-09 2013-06-13 National Taiwan University Of Science And Technology In-mold vibratile injection compression molding method and molding apparatus thereof
US10580947B2 (en) 2015-11-30 2020-03-03 Nichia Corporation Package and package intermediate body
JP2018160673A (en) * 2018-05-09 2018-10-11 日亜化学工業株式会社 Method for manufacturing package, method for manufacturing package intermediate, and method for manufacturing light-emitting device

Similar Documents

Publication Publication Date Title
Dzulkipli et al. Study of the effects of injection molding parameter on weld line formation
Cantor et al. Plastics processing
JPH03207625A (en) Injection mold
CN1215931C (en) Method and moulding tool for mfg. fibre-reinforced products
JPH03274127A (en) Apparatus and method for molding thermoplastic resin
CN107756738A (en) Experiment mould suitable for preparing high polymer material injection molding standard specimen
AU777843B2 (en) Moulding of mouldable materials
JP3798436B2 (en) Thermoplastic resin injection molding method
CN206426392U (en) A kind of Audi's passenger car accumulator plate lid 429A injection molds
Minh et al. Effect of Vibrations on the Weld-Line Strength of Injection Molded Products
Stockham Rapid Tooling Carbon Nanotube-Filled Epoxy for Injection Molding Using Additive Manufacturing and Casting Methods
Berg Process development for the reactive injection moulding of caprolactam intermediates
CN213733221U (en) Side core-pulling injection mold for automobile airbag decorative cover
JP2002187177A (en) Method for manufacturing injection compression molded article
CN206426370U (en) A kind of Audi's passenger car antenna holder injection mold
Kato et al. Multi-station molding machine for attaining high productivity in small-lot productions
CN207359531U (en) Leather belt head combinatorial injection molding mould
GB2299779A (en) Injection moulding of thermoplastic resin
Kamal Trouble shooting in plastic injection molding machines
JP3468980B2 (en) Method for forming wood-based substrate having deep drawn part
JP2003071877A (en) Method for manufacturing resin molding
Cai Effect of Processing Parameters on Mechanical Properties During Injection Molding
Mubarak MULTI-COMPONENT LAMINATE MOULDING (MLM)
Cansever Effects of injection molding conditions on the mechanical properties of polyamide/glass fiber composites
JP3995276B2 (en) Molding method of thermoplastic resin