JPH06154619A - Hydrogen peroxide decomposition catalyst and production thereof - Google Patents

Hydrogen peroxide decomposition catalyst and production thereof

Info

Publication number
JPH06154619A
JPH06154619A JP33113492A JP33113492A JPH06154619A JP H06154619 A JPH06154619 A JP H06154619A JP 33113492 A JP33113492 A JP 33113492A JP 33113492 A JP33113492 A JP 33113492A JP H06154619 A JPH06154619 A JP H06154619A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
solution
phthalocyanine
catalyst
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33113492A
Other languages
Japanese (ja)
Inventor
Fumio Shimizu
富美男 清水
Fusayoshi Miura
房美 三浦
Kenichi Suzuki
憲一 鈴木
Takashi Imai
隆 今井
Hideo Aihara
秀雄 相原
Kenji Shimoda
健二 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP33113492A priority Critical patent/JPH06154619A/en
Publication of JPH06154619A publication Critical patent/JPH06154619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To easily take out a hydrogen peroxide decomposition catalyst from a solution after treating hydrogen peroxide in the solution without contaminating the solution. CONSTITUTION:The catalyst for decomposing hydrogen peroxide in the solution containing hydrogen peroxide is composed of a carrier made of a material insoluble in the solution and an iron phthalocyanine complex supported on the carrier. The catalyst is easily taken out from the solution after decomposition treating hydrogen peroxide in the solution without contaminating the solution. The catalyst is produced by mixing the iron phthalocyanine complex with a solution made by dissolving the carrier in a solvent and allowing the mixture to stand at room temp. or heating the mixture to remove the solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属のエッチングある
いは化学溶解処理に使用される処理液等に含まれる過酸
化水素を分解するための触媒およびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for decomposing hydrogen peroxide contained in a treatment liquid used for metal etching or chemical dissolution treatment, and a method for producing the same.

【0002】[0002]

【従来の技術】金属のエッチングあるいは化学溶解処理
に使用される処理液として、フッ化水素酸等の無機酸お
よび過酸化水素を主成分とする水溶液が使用されてい
る。この系統の処理液では、無機酸が金属を溶解し、さ
らに過酸化水素が酸化剤として作用して金属の溶解を促
進する。
2. Description of the Related Art An aqueous solution containing an inorganic acid such as hydrofluoric acid and hydrogen peroxide as main components is used as a processing solution used for metal etching or chemical dissolution processing. In the treatment liquid of this system, the inorganic acid dissolves the metal, and the hydrogen peroxide acts as an oxidant to accelerate the dissolution of the metal.

【0003】しかし、処理に伴って処理液中に金属イオ
ンが蓄積して処理能力が低下する。そのため、処理液を
更新する必要があり、この更新における廃液処理とし
て、イオン交換膜を利用して無機酸を回収する方法が採
られている。しかし、処理液中の過酸化水素がイオン交
換膜を劣化させるため、イオン交換膜による処理の前に
過酸化水素を分解しておかねばならない。
However, as the treatment proceeds, metal ions accumulate in the treatment liquid and the treatment capacity decreases. Therefore, it is necessary to renew the treatment liquid, and as a waste liquid treatment in this renewal, a method of recovering an inorganic acid using an ion exchange membrane is adopted. However, since hydrogen peroxide in the treatment liquid deteriorates the ion exchange membrane, the hydrogen peroxide must be decomposed before the treatment with the ion exchange membrane.

【0004】従来の過酸化水素の分解方法としては、加
熱分解、酸化剤を使用した酸化還元反応による分解、あ
るいは触媒を使用した分解が採られている。
As a conventional method for decomposing hydrogen peroxide, heat decomposition, decomposition by a redox reaction using an oxidizing agent, or decomposition using a catalyst is adopted.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記加熱分解
では、処理液中の過酸化水素の濃度が高い場合、爆発反
応となることもあるため危険である。また、酸化還元反
応による分解では、酸化剤と当量の過酸化水素しか分解
できないため、過酸化水素の濃度が高いと多量の酸化剤
を必要とする。
However, in the above thermal decomposition, if the concentration of hydrogen peroxide in the treatment liquid is high, an explosion reaction may occur, which is dangerous. Further, in the decomposition by the redox reaction, only an equivalent amount of hydrogen peroxide to that of the oxidizing agent can be decomposed, so that a high concentration of hydrogen peroxide requires a large amount of the oxidizing agent.

【0006】一方、過酸化水素の分解用触媒は上記のよ
うな問題点がない。従来の過酸化水素分解用触媒として
は、活性炭、白金等が挙げられる。しかし、活性炭は溶
液中に含まれる有機物によって劣化し、分解能力が低下
する。また、白金も分解速度が遅く、しかも高価である
ため、工業的規模では適用が難しい。さらに、フタロシ
アニン系鉄錯体を該触媒として使用するという提案もな
されている(「化学」42巻5号(1987)p307
〜p313)。しかし、フタロシアニン系錯体の中で
も、カルボン酸型フタロシアニン鉄錯体は水溶液に溶解
するため、処理液に投入して処理した場合、処理液がカ
ルボン酸型フタロシアニン鉄錯体により汚染されてしま
い、またカルボン酸型フタロシアニン鉄錯体の回収も困
難である。一方、水溶液に不溶性のフタロシアニン系鉄
錯体であっても、処理液に投入した場合、処理液からの
取り出しが煩雑なため問題があった。
On the other hand, the catalyst for decomposing hydrogen peroxide does not have the above problems. Examples of conventional hydrogen peroxide decomposition catalysts include activated carbon and platinum. However, the activated carbon is deteriorated by the organic matter contained in the solution, and the decomposing ability is lowered. Further, platinum also has a slow decomposition rate and is expensive, so that it is difficult to apply it on an industrial scale. Further, it has been proposed to use a phthalocyanine-based iron complex as the catalyst ("Chemistry," Vol. 42, No. 5, (1987) p307.
~ P313). However, among the phthalocyanine-based complexes, the carboxylic acid-type phthalocyanine iron complex is dissolved in an aqueous solution, so that when the treatment liquid is put into the treatment liquid, the treatment liquid is contaminated by the carboxylic acid-type phthalocyanine iron complex, and Recovery of the phthalocyanine iron complex is also difficult. On the other hand, even a phthalocyanine-based iron complex that is insoluble in an aqueous solution has a problem when it is added to the treatment liquid because it is complicated to remove from the treatment liquid.

【0007】本発明は、上記従来技術の問題点に鑑みな
されたものであり、溶液中の過酸化水素を分解処理した
後、該溶液からの触媒の取り出しが容易であり、溶液の
汚染のない過酸化水素分解用触媒およびその製造方法を
提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art. It is easy to take out the catalyst from the solution after decomposing hydrogen peroxide in the solution, and there is no contamination of the solution. It is an object to provide a catalyst for decomposing hydrogen peroxide and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

(第1発明の構成)本第1発明は、過酸化水素を含有す
る溶液中の過酸化水素を分解するための触媒であって、
上記溶液に不溶な物質よりなる担体と、該担体に担持し
たフタロシアニン系鉄錯体とよりなることを特徴とする
過酸化水素分解用触媒である。
(Structure of First Invention) The first invention is a catalyst for decomposing hydrogen peroxide in a solution containing hydrogen peroxide,
A catalyst for decomposing hydrogen peroxide, comprising a carrier made of a substance insoluble in the solution and a phthalocyanine-based iron complex supported on the carrier.

【0009】(第2発明の構成)本第2発明は、過酸化
水素を含有する溶液に不溶な物質よりなる担体を溶剤に
溶解させた溶液とフタロシアニン系鉄錯体とを混合する
第1工程と、該混合物を室温放置または加熱することに
より溶剤を除去する第2工程とよりなることを特徴とす
る過酸化水素分解用触媒の製造方法である。
(Structure of the Second Invention) The second invention comprises a first step of mixing a solution prepared by dissolving a carrier made of a substance insoluble in a solution containing hydrogen peroxide in a solvent and a phthalocyanine iron complex. And a second step of removing the solvent by allowing the mixture to stand or heating at room temperature.

【0010】[0010]

【作用】[Action]

(第1発明の作用)本第1発明の過酸化水素分解用触媒
は、フタロシアニン系鉄錯体を、過酸化水素を含有する
溶液に不溶な物質よりなる担体に担持しているため、過
酸化水素を含む溶液に浸漬して使用してもフタロシアニ
ン系鉄錯体が該溶液中に溶解あるいは分散することがな
い。従って、過酸化水素分解の処理後溶液からの触媒の
取り出しが容易であり、溶液の汚染がなく環境保全上も
好ましい。
(Operation of the First Invention) Since the catalyst for decomposing hydrogen peroxide of the first invention carries the phthalocyanine-based iron complex on the carrier made of a substance insoluble in the solution containing hydrogen peroxide, The phthalocyanine-based iron complex does not dissolve or disperse in the solution even when it is immersed in a solution containing Therefore, the catalyst can be easily taken out of the solution after the hydrogen peroxide decomposition treatment, and the solution is not contaminated, which is preferable in terms of environmental protection.

【0011】(第2発明の作用)本第2発明の過酸化水
素分解用触媒の製造方法では、担体を溶剤に溶解させた
溶液とフタロシアニン系鉄錯体とを混合することにより
フタロシアニン系鉄錯体を担体に担持しているため、簡
便に触媒を製造することができる。
(Operation of the Second Invention) In the method for producing the catalyst for decomposing hydrogen peroxide of the second invention, the phthalocyanine-based iron complex is prepared by mixing the solution prepared by dissolving the carrier in the solvent and the phthalocyanine-based iron complex. Since it is supported on the carrier, the catalyst can be easily produced.

【0012】[0012]

【発明の効果】【The invention's effect】

(第1発明の効果)本第1発明の過酸化水素分解用触媒
は、溶液中の過酸化水素を分解処理した後該溶液からの
触媒の取り出しが容易であり、溶液の汚染がない。
(Effect of the first invention) With the catalyst for decomposing hydrogen peroxide of the first invention, it is easy to take out the catalyst from the solution after decomposing the hydrogen peroxide in the solution, and there is no contamination of the solution.

【0013】(第2発明の効果)本第2発明の過酸化水
素分解用触媒の製造方法は、本第1発明の過酸化水素分
解用触媒を簡便に製造することができる。
(Effect of the Second Invention) The method for producing a catalyst for decomposing hydrogen peroxide according to the second invention can easily produce the catalyst for decomposing hydrogen peroxide according to the first invention.

【0014】[0014]

【実施例】以下、本発明をより具体的にした具体例を説
明する。
EXAMPLES Specific examples of the present invention will be described below.

【0015】(第1発明の具体例)本第1発明の過酸化
水素分解用触媒は、過酸化水素を含む溶液に不溶な物質
よりなる担体にフタロシアニン系鉄錯体を担持したもの
である。
(Specific Example of First Invention) The catalyst for decomposing hydrogen peroxide according to the first invention is one in which a phthalocyanine-based iron complex is supported on a carrier made of a substance insoluble in a solution containing hydrogen peroxide.

【0016】フタロシアニン系鉄錯体は、触媒成分とし
て働くものである。該フタロシアニン系鉄錯体が顕著な
過酸化水素分解能を発揮する理由は明確ではないが、以
下のように推定される。
The phthalocyanine iron complex functions as a catalyst component. The reason why the phthalocyanine-based iron complex exhibits remarkable hydrogen peroxide decomposing ability is not clear, but it is presumed as follows.

【0017】溶液中の過酸化水素がフタロシアニンの中
心に位置する鉄に配位し、鉄の近傍に位置する窒素と過
酸化水素との間で電子授受を行うことにより過酸化水素
が分解すると考えられる。
It is considered that hydrogen peroxide in the solution is decomposed by coordinating with iron located at the center of phthalocyanine and exchanging electrons between hydrogen and hydrogen located near iron. To be

【0018】フタロシアニン系鉄錯体は、フタロシアニ
ンまたはフタロシアニン誘導体の鉄錯体である。このフ
タロシアニン系鉄錯体は、フッ化水素酸等の無機酸の共
存下でも過酸化水素を分解する活性を失わない。
The phthalocyanine-based iron complex is an iron complex of phthalocyanine or a phthalocyanine derivative. This phthalocyanine-based iron complex does not lose the activity of decomposing hydrogen peroxide even in the presence of an inorganic acid such as hydrofluoric acid.

【0019】フタロシアニンの鉄錯体は、過酸化水素を
含有する溶液に不溶なものである。また、フタロシアニ
ン誘導体の鉄錯体としては、過酸化水素を含有する溶液
に不溶なものが望ましい。フタロシアニンの鉄錯体は、
水および一般的な有機溶剤に不溶であるため上記溶液に
は不溶で溶解または分解することがない。また、上記溶
液に不溶なフタロシアニン誘導体の鉄錯体としては、化
1の分子構造に示すX位置の少なくとも1ヶ所に、水に
対して可溶解性を示さない置換基を有するものである。
該水に対して可溶解性を示さない置換基としては、メチ
ル基、エチル基等のアルキル基、フェニル基等のアリー
ル基、ビニル基等のアリル基、−COOCH3 等のエス
テル基、−COCH3 等のアセチル基、−OCH3 等の
アルコキシル基、ニトロ基等が挙げられる。なお、上記
フタロシアニン系鉄錯体を2種類以上組み合わせて使用
してもよい。
The iron complex of phthalocyanine is insoluble in a solution containing hydrogen peroxide. The iron complex of the phthalocyanine derivative is preferably insoluble in a solution containing hydrogen peroxide. The iron complex of phthalocyanine is
Since it is insoluble in water and general organic solvents, it is insoluble in the above solution and does not dissolve or decompose. Further, the iron complex of the phthalocyanine derivative insoluble in the above solution has a substituent that is not soluble in water at at least one position of the X position shown in the chemical structure of Chemical formula 1.
Examples of the substituent that is not soluble in water include an alkyl group such as a methyl group and an ethyl group, an aryl group such as a phenyl group, an allyl group such as a vinyl group, an ester group such as -COOCH 3 , and a -COCH. 3 such as an acetyl group, an alkoxyl group of -OCH 3, etc., and a nitro group. In addition, you may use it combining 2 or more types of said phthalocyanine type iron complex.

【0020】[0020]

【化1】 [Chemical 1]

【0021】フタロシアニン系鉄錯体を担持させるため
の担体としては、過酸化水素を含有する溶液に不溶な物
質からなるものを用いる。
As the carrier for supporting the phthalocyanine-based iron complex, one made of a substance insoluble in the solution containing hydrogen peroxide is used.

【0022】該過酸化水素を含有する溶液に不溶な物質
としては、水溶液に不溶な有機物が挙げられる。該有機
物としては、アクリル樹脂、塩化ビニル樹脂、エポキシ
樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリシ
ロキサン樹脂等の鎖状樹脂、天然ゴム、ポリブタジエン
等の合成ゴム、ロウ、松脂、天然樹脂、油脂等が挙げら
れる。
Examples of the substance insoluble in the solution containing hydrogen peroxide include organic substances insoluble in the aqueous solution. Examples of the organic substance include chain resins such as acrylic resin, vinyl chloride resin, epoxy resin, polyethylene resin, polypropylene resin and polysiloxane resin, natural rubber, synthetic rubber such as polybutadiene, wax, pine resin, natural resin and oil and fat. To be

【0023】フタロシアニン系鉄錯体を担体に担持する
方法としては、担体が可溶な溶剤に担体を溶解させた溶
液とフタロシアニン系鉄錯体と混合する方法、あるいは
フタロシアニン系鉄錯体と担体とをそのまま混合する方
法等がある。さらに、上記のように両者を混合した後、
該混合物を過酸化水素を含有する溶液に不溶なポリマ
ー、木材、セラミックス、金属等で構成される基体、例
えば板状体、粒子状体、容器壁面等に塗布または含浸さ
せて使用してもよい。なお、塗布する際に接着剤を使用
してもよい。この基体に塗布または含浸する形態では、
溶液との接触および離脱がより容易になる。
As a method for supporting the phthalocyanine-based iron complex on the carrier, a solution prepared by dissolving the carrier in a solvent in which the carrier is soluble is mixed with the phthalocyanine-based iron complex, or the phthalocyanine-based iron complex and the carrier are mixed as they are. There are ways to do it. Furthermore, after mixing both as described above,
The mixture may be used by coating or impregnating it on a substrate composed of a polymer insoluble in a solution containing hydrogen peroxide, wood, ceramics, metal, etc., such as a plate-like body, a particle-like body, or a wall surface of a container. . An adhesive may be used when applying. In the form of coating or impregnating this substrate,
It becomes easier to come in and out of contact with the solution.

【0024】また、他の担持方法として、担体が加熱に
より溶融できる場合には、溶融した担体とフタロシアニ
ン系鉄錯体とを混合し、該混合物を基体に塗布または含
浸した後、冷却し担持することができる。また、担体が
モノマーを加熱または紫外線照射することによって固化
または重合するものである場合には、該モノマーとフタ
ロシアニン系鉄錯体とを混合した後、該混合物を基体に
塗布または含浸し、その後加熱または紫外線照射によっ
てモノマーを固化または重合させて担持することができ
る。
As another supporting method, when the carrier can be melted by heating, the molten carrier and the phthalocyanine-based iron complex are mixed, and the mixture is applied or impregnated on the substrate and then cooled and supported. You can Further, when the carrier is one that solidifies or polymerizes by heating or irradiating the monomer with ultraviolet rays, after mixing the monomer and the phthalocyanine-based iron complex, the mixture is applied or impregnated on the substrate, and then heated or The monomer can be solidified or polymerized by ultraviolet irradiation to be supported.

【0025】また、担体へのフタロシアニン系鉄錯体の
担持量としては、溶液中の処理する過酸化水素の量にも
よるが、担体とフタロシアニン系鉄錯体との総量に対し
て50〜98重量%の範囲が望ましい。該担持量が50
重量%未満の場合、フタロシアニン系鉄錯体が担体の表
面に存在する割合が低くなり、過酸化水素と錯体との接
触割合が低下する。また、98重量%を越えると、担体
が堅牢に固定できなくなり、亀裂または破壊しやすくな
る。
The amount of the phthalocyanine-based iron complex supported on the carrier depends on the amount of hydrogen peroxide to be treated in the solution, but is 50 to 98% by weight based on the total amount of the carrier and the phthalocyanine-based iron complex. The range of is desirable. The carrying amount is 50
If it is less than wt%, the proportion of the phthalocyanine-based iron complex present on the surface of the carrier becomes low, and the contact ratio between hydrogen peroxide and the complex decreases. On the other hand, if it exceeds 98% by weight, the carrier cannot be firmly fixed, and cracks or breakage easily occurs.

【0026】本第1発明の触媒は、各種金属のエッチン
グあるいは化学研磨処理等に使用される、過酸化水素を
含有する溶液中の過酸化水素を分解に利用することがで
きる。
The catalyst of the first aspect of the present invention can be utilized for decomposition of hydrogen peroxide in a solution containing hydrogen peroxide, which is used for etching various metals or chemical polishing.

【0027】(第2発明の具体例)本第2発明の過酸化
水素分解用触媒の製造方法は、過酸化水素を含有する溶
液に不溶な物質よりなる担体を溶剤に溶解した溶液とフ
タロシアニン系鉄錯体とを混合し(第1工程)、その後
該混合物を室温放置または加熱して溶剤を除去する(第
2工程)ことにより担体にフタロシアニン系鉄錯体を担
持した過酸化水素分解用触媒を製造する。
(Specific Example of Second Invention) A method for producing a catalyst for decomposing hydrogen peroxide according to the second invention comprises a solution of a carrier made of a substance insoluble in a solution containing hydrogen peroxide in a solvent and a phthalocyanine-based solution. A catalyst for decomposing hydrogen peroxide in which a phthalocyanine-based iron complex is supported on a carrier is produced by mixing with an iron complex (first step) and then leaving the mixture at room temperature or heating to remove the solvent (second step). To do.

【0028】第1工程において、担体を溶解する溶剤と
しては、例えば担体が水溶液に不溶な有機物よりなる場
合、クロロホルム、アセトン、メチルエチルケトン、エ
チルアルコール、エチルエーテル、ベンゼン、トルエ
ン、酢酸エチル、ジメチルスルホキシド、グリセリン、
エチレンアミン、二硫化炭素、ブチルセロソルブ、ジエ
チレングリコールモノブチルエーテルアセテート、フル
フラール等が挙げられる。また、溶解しにくい担体の場
合、加熱を付加することにより溶剤に溶解させることが
できる。
In the first step, the solvent for dissolving the carrier is, for example, chloroform, acetone, methyl ethyl ketone, ethyl alcohol, ethyl ether, benzene, toluene, ethyl acetate, dimethyl sulfoxide, when the carrier is an organic substance insoluble in an aqueous solution. Glycerin,
Examples thereof include ethylene amine, carbon disulfide, butyl cellosolve, diethylene glycol monobutyl ether acetate and furfural. Further, in the case of a carrier which is difficult to dissolve, it can be dissolved in a solvent by adding heat.

【0029】担体を溶解させた溶液中にフタロシアニン
系鉄錯体を分散させる等により溶液とフタロシアニン系
鉄錯体とを混合して混合物を形成する。
The solution and the phthalocyanine-based iron complex are mixed by, for example, dispersing the phthalocyanine-based iron complex in the solution in which the carrier is dissolved to form a mixture.

【0030】また、第2工程において、溶液とフタロシ
アニン系鉄錯体との混合物を室温放置または加熱する温
度としては、室温〜200℃の範囲が望ましい。例え
ば、エーテル、アセトン、クロロホルム等の溶剤は室温
でも十分に除去が可能である。また、200℃を越える
と担体が変質し、亀裂または破壊する場合がある。
In the second step, the temperature at which the mixture of the solution and the phthalocyanine-type iron complex is left at room temperature or heated is preferably in the range of room temperature to 200 ° C. For example, solvents such as ether, acetone and chloroform can be sufficiently removed even at room temperature. Further, if the temperature exceeds 200 ° C., the carrier may be deteriorated and may be cracked or broken.

【0031】以上の工程により、担体にフタロシアニン
系鉄錯体を担持した過酸化水素分解用触媒が得られる。
なお、該触媒を基体に塗布または含浸する場合、第2工
程の前に溶液とフタロシアニン系鉄錯体との混合物を基
体に塗布(塗布の際に接着剤を使用してもよい)または
含浸し、その後第2工程の室温放置または加熱により溶
剤を除去するのがよい。
Through the above steps, a catalyst for decomposing hydrogen peroxide in which a phthalocyanine iron complex is supported on the carrier can be obtained.
When the catalyst is applied to or impregnated into the substrate, the mixture of the solution and the phthalocyanine-based iron complex is applied to the substrate (adhesive may be used during application) or impregnated before the second step, After that, it is preferable to remove the solvent by leaving at room temperature or heating in the second step.

【0032】以下、本発明の実施例を説明する。Examples of the present invention will be described below.

【0033】(実施例) 実施例 担体としてのアクリル樹脂をクロロホルムに溶解させた
溶液とフタロシアニン鉄とを乳鉢の中で混合して混合物
を調製した。次に、板状塩化ビニル樹脂に塩化ビニル系
接着剤を塗布し基体を形成した。この塩化ビニル系接着
剤が完全に乾燥する前に上記混合物を基体の塩化ビニル
系接着剤上に塗布し、その後25℃で1時間乾燥して板
状複合体を形成した。この板状複合体を室温の水に1週
間浸漬し重量変化がないことを確認した。
Example An example was prepared by mixing a solution prepared by dissolving an acrylic resin as a carrier in chloroform with iron phthalocyanine in a mortar to prepare a mixture. Next, a vinyl chloride resin was applied to the plate-shaped vinyl chloride resin to form a substrate. The above mixture was applied onto the vinyl chloride adhesive of the substrate before the vinyl chloride adhesive was completely dried, and then dried at 25 ° C. for 1 hour to form a plate-like composite. This plate-shaped composite was immersed in water at room temperature for 1 week, and it was confirmed that there was no weight change.

【0034】フッ化水素酸1モル/l、過酸化水素2モ
ル/l、およびカフェイン3g/lを含む水溶液からな
る化学溶解処理液を調製し、これを用いて処理液中の金
属イオン蓄積量が40g/lとなるまで金属鉄を溶解さ
せた。次に、フッ化水素酸および過酸化水素の濃度を上
記の値に調整し、板状複合体を2時間浸漬して過酸化水
素の分解処理を行った。処理後、板状複合体を処理液よ
り取り出し、処理液中の成分を分析したところ、過酸化
水素の濃度は0.1モル/l以下に減少しており、しか
もフタロシアニン鉄は検出されなかった。
A chemical dissolution treatment solution comprising an aqueous solution containing 1 mol / l of hydrofluoric acid, 2 mol / l of hydrogen peroxide, and 3 g / l of caffeine was prepared and used to accumulate metal ions in the treatment solution. Metallic iron was dissolved until the amount was 40 g / l. Next, the concentrations of hydrofluoric acid and hydrogen peroxide were adjusted to the above values, and the plate-like composite was immersed for 2 hours to decompose hydrogen peroxide. After the treatment, the plate-shaped composite was taken out from the treatment liquid, and the components in the treatment liquid were analyzed. As a result, the concentration of hydrogen peroxide was reduced to 0.1 mol / l or less, and iron phthalocyanine was not detected. .

【0035】比較例 担体としてのポリビニルアルコール樹脂(可水性樹脂)
を水に溶解させた溶液とフタロシアニン鉄とを乳鉢の中
で混合して混合物を調製した。次に、板状塩化ビニル樹
脂に塩化ビニル系接着剤を塗布し基体を形成した。この
塩化ビニル系接着剤が完全に乾燥する前に上記混合物を
基体の塩化ビニル系接着剤上に塗布し、その後80℃で
2時間乾燥して板状複合体を形成した。この板状複合体
を実施例と同様にして室温の水に1週間浸漬したとこ
ろ、ポリビニルアルコール樹脂が水に溶解し、さらにフ
タロシアニン鉄が水に浮遊して板状複合体は顕著な重量
変化があった。また、浮遊したフタロシアニン鉄を5B
ろ紙にてろ過を行ったが、フタロシアニン鉄粒子がろ紙
に詰まり、ろ過に長時間を要した。そのため、実施例と
同様な化学溶解処理液中の過酸化水素の分解はできなか
った。
Comparative Example Polyvinyl alcohol resin (water-soluble resin) as a carrier
A solution in which was dissolved in water and iron phthalocyanine were mixed in a mortar to prepare a mixture. Next, a vinyl chloride resin was applied to the plate-shaped vinyl chloride resin to form a substrate. The above mixture was applied onto the vinyl chloride adhesive of the substrate before the vinyl chloride adhesive was completely dried, and then dried at 80 ° C. for 2 hours to form a plate-like composite. When this plate-shaped composite was immersed in water at room temperature for 1 week in the same manner as in the example, the polyvinyl alcohol resin was dissolved in water, and the phthalocyanine iron was suspended in the water, so that the plate-shaped composite showed a significant weight change. there were. In addition, suspended phthalocyanine iron 5B
Filtration was performed with a filter paper, but the phthalocyanine iron particles were clogged in the filter paper, and it took a long time to perform the filtration. Therefore, it was not possible to decompose hydrogen peroxide in the chemical dissolution treatment solution as in the example.

【0036】また、上記板状複合体を水に浸漬せず、実
施例と同様にして化学溶解処理液中に浸漬して処理液中
の過酸化水素を分解処理を行った。処理中、上記と同様
にポリビニルアルコール樹脂が水に溶解し、フタロシア
ニン鉄が処理液に浮遊していた。
Further, the above plate-shaped composite body was not immersed in water, but was immersed in a chemical dissolution treatment solution in the same manner as in the example to decompose hydrogen peroxide in the treatment solution. During the treatment, the polyvinyl alcohol resin was dissolved in water similarly to the above, and the phthalocyanine iron was floating in the treatment liquid.

【0037】また、処理液中の過酸化水素の濃度は0.
1モル/l以下であったが、上記と同様にろ過に長時間
を要した。
Further, the concentration of hydrogen peroxide in the treatment liquid is 0.
Although it was 1 mol / l or less, it took a long time for filtration as in the above.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 憲一 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 今井 隆 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 相原 秀雄 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 下田 健二 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Suzuki, Nagakute-cho, Aichi-gun, Aichi Prefecture, 1 o'clock, Nagatake, Toyota Central Research Institute, Ltd., at 41, Yokomichi (72) Inventor, Takashi Imai Nagakute, Aichi-gun, Aichi-gun 1 at 41 Yokodoko, Toyota Central Research Institute Co., Ltd. (72) Hideo Aihara, 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Kenji Shimoda, 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 過酸化水素を含有する溶液中の過酸化水
素を分解するための触媒であって、 上記溶液に不溶な物質よりなる担体と、該担体に担持し
たフタロシアニン系鉄錯体とよりなることを特徴とする
過酸化水素分解用触媒。
1. A catalyst for decomposing hydrogen peroxide in a solution containing hydrogen peroxide, comprising a carrier made of a substance insoluble in the solution, and a phthalocyanine-based iron complex supported on the carrier. A catalyst for decomposing hydrogen peroxide, which is characterized in that
【請求項2】 過酸化水素を含有する溶液に不溶な物質
よりなる担体を溶剤に溶解させた溶液とフタロシアニン
系鉄錯体とを混合する第1工程と、 該混合物を室温放置または加熱することにより溶剤を除
去する第2工程とよりなることを特徴とする過酸化水素
分解用触媒の製造方法。
2. A first step of mixing a solution in which a carrier made of a substance insoluble in a solution containing hydrogen peroxide is dissolved in a solvent and a phthalocyanine-based iron complex, and the mixture is left at room temperature or heated. A method for producing a catalyst for decomposing hydrogen peroxide, comprising a second step of removing a solvent.
JP33113492A 1992-11-16 1992-11-16 Hydrogen peroxide decomposition catalyst and production thereof Pending JPH06154619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33113492A JPH06154619A (en) 1992-11-16 1992-11-16 Hydrogen peroxide decomposition catalyst and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33113492A JPH06154619A (en) 1992-11-16 1992-11-16 Hydrogen peroxide decomposition catalyst and production thereof

Publications (1)

Publication Number Publication Date
JPH06154619A true JPH06154619A (en) 1994-06-03

Family

ID=18240253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33113492A Pending JPH06154619A (en) 1992-11-16 1992-11-16 Hydrogen peroxide decomposition catalyst and production thereof

Country Status (1)

Country Link
JP (1) JPH06154619A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343972B1 (en) * 1999-11-25 2002-07-24 주식회사 유니테크 Treatment process and the device of waste watrer including hydrogen peroxide
WO2007000956A1 (en) 2005-06-28 2007-01-04 Sumitomo Chemical Company, Limited Peroxide-degrading catalyst
US7692046B2 (en) 2007-06-21 2010-04-06 Exxonmobil Chemical Patents Inc. Heterogeneous arylalkyl oxidation promoter
CN108586538A (en) * 2018-04-16 2018-09-28 济南大学 A kind of preparation and application for the bismuth iodine hybrid material for making rhodamine B selectively fade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343972B1 (en) * 1999-11-25 2002-07-24 주식회사 유니테크 Treatment process and the device of waste watrer including hydrogen peroxide
WO2007000956A1 (en) 2005-06-28 2007-01-04 Sumitomo Chemical Company, Limited Peroxide-degrading catalyst
US7988944B2 (en) 2005-06-28 2011-08-02 Sumitomo Chemical Company, Limited Peroxide decomposition catalyst
US7692046B2 (en) 2007-06-21 2010-04-06 Exxonmobil Chemical Patents Inc. Heterogeneous arylalkyl oxidation promoter
CN108586538A (en) * 2018-04-16 2018-09-28 济南大学 A kind of preparation and application for the bismuth iodine hybrid material for making rhodamine B selectively fade

Similar Documents

Publication Publication Date Title
JPH1176807A (en) Manufacture of cesium separation material
US4647679A (en) Platinum and/or palladium containing organopolysiloxane-ammonium compounds, method for their preparation and uses
CN103464102A (en) Porous composite adsorbing agent for removing stream substrate sludge contamination and preparation process of agent
JPH10508697A (en) Pollution removal method
JPH06154619A (en) Hydrogen peroxide decomposition catalyst and production thereof
US20050170402A1 (en) Method of separating substance from liquid
JP2810981B2 (en) Method for producing copper hexacyanoferrate (II) -supported porous resin
Chen et al. Extraction of Ga (III) by Di‐(2‐ethylhexyl) phosphoric acid (D2EHPA)‐modified XAD‐4 resins prepared by solvent‐nonsolvent modification
CN106732457A (en) A kind of hydrogel adsorbent for dye wastewater treatment and preparation method thereof
JP2910337B2 (en) Decomposition / removal agent for resin coating and method for decomposition / removal of resin coating
JPH01135842A (en) Photocatalyst-immobilized membrane
RU2210123C2 (en) Method of cleaning metallic surfaces from radioactive contaminants
US6790364B2 (en) Process for stripping amine borane complex from an electroless plating solution
Lance et al. Virus removal with land filtration
CN105879853B (en) A kind of targeting method for preparing catalyst handling the waste water containing aromatic compound
JPH02191543A (en) Method for removing fluoride ion
JP2008275423A (en) Method and apparatus for collecting substance to be collected and method and apparatus for analyzing substance to be detected using the same
CN106396011A (en) Modified graphite particle electrode with electrocatalytic carbazole removal function and preparation method
JPS59217734A (en) Regeneration of fluororubber
JPH0649459A (en) Regeneration of industrial waste oil
KR20240094551A (en) Pellet-type biochar adsorbent for heavy metal removal and manufacturing method thereof
SU1014870A1 (en) Method for cleaning metal structures from polyurethane coatings
JPH09304590A (en) Method for treating decontaminated liquid waste
JP3939085B2 (en) Method for treating exhaust gas containing dioxins
JPS583639A (en) Fluorine disposing agent