JP2810981B2 - Method for producing copper hexacyanoferrate (II) -supported porous resin - Google Patents
Method for producing copper hexacyanoferrate (II) -supported porous resinInfo
- Publication number
- JP2810981B2 JP2810981B2 JP35263295A JP35263295A JP2810981B2 JP 2810981 B2 JP2810981 B2 JP 2810981B2 JP 35263295 A JP35263295 A JP 35263295A JP 35263295 A JP35263295 A JP 35263295A JP 2810981 B2 JP2810981 B2 JP 2810981B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- hexacyanoferrate
- cesium
- resin
- porous resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ヘキサシアノ鉄
(II)酸銅担持多孔性樹脂の製造方法の改良に関する
ものである。さらに詳しくいえば、本発明は、セシウム
分離用イオン交換体として有用な、セシウムの吸着能が
高く、かつセシウムの吸脱着処理において、有効成分の
減失がほとんどない上、銅イオンの脱着も極めて少ない
ヘキサシアノ鉄(II)酸銅担持多孔性樹脂を効率よく
製造する方法に関するものである。The present invention relates to an improvement in a method for producing a porous resin carrying copper hexacyanoferrate (II). More specifically, the present invention is useful as an ion exchanger for cesium separation, has a high cesium adsorption capacity, and in the cesium adsorption / desorption treatment, there is almost no loss of active components, and copper ions are extremely desorbed. The present invention relates to a method for efficiently producing a small amount of copper hexacyanoferrate (II) -supported porous resin.
【0002】[0002]
【従来の技術】セシウム分離、回収技術は、例えば使用
済み燃料の再処理施設のような原子力利用に関連した施
設から発生する硝酸や硝酸ナトリウムを主成分として含
む廃液中の放射性セシウム分離、回収、放射性セシウム
に汚染された牛乳などの飲料からの放射性セシウムの除
去、廃地熱水中に含まれるセシウムの回収などに適用で
き、極めて重要な技術である。2. Description of the Related Art Cesium separation and recovery technologies include radioactive cesium separation and recovery in waste liquid containing nitric acid and sodium nitrate as a main component generated from facilities related to the use of nuclear power such as a spent fuel reprocessing facility. It is an extremely important technology that can be applied to the removal of radioactive cesium from beverages such as milk contaminated with radioactive cesium and the recovery of cesium contained in waste geothermal water.
【0003】セシウム分離材としては、従来、ヘキサシ
アノ鉄(II)酸銅と多孔性型陰イオン交換樹脂との複
合体が知られていた[「ジャーナル・オブ・ニュウクリ
ア・サイエンス・アンド・テクノロジー(J.Nuc
l.Sci.Technol.)」第2巻,第8号,第
321〜322ページ(1965年)]。しかしなが
ら、この複合体は、使用後再生することができず、その
都度新らしいものを用いなければならないという欠点を
有していた。As a cesium separating material, a complex of copper hexacyanoferrate (II) and a porous anion exchange resin has been known [Journal of Nuclear Science and Technology (hereinafter referred to as "Journal of Nuclear Technology"). J. Nuc
l. Sci. Technol. 2), No. 8, pages 321-322 (1965)]. However, this composite had the disadvantage that it could not be regenerated after use and that a new one had to be used each time.
【0004】そこで、本発明者は研究を重ね、先に、繰
り返し使用が可能なヘキサシアノ鉄(II)酸銅と多孔
性型陰イオン交換樹脂との複合体の製造方法を見出した
が(特願平6−129648号)、この方法で得られた
複合体においては、セシウムの吸脱着処理の際に、有効
成分であるヘキサシアノ鉄(II)酸銅の減失を防止す
るために、再生処理時に銅塩を添加する必要があり、こ
れには新たな薬品の添加を必要とする上に、有害重金属
である銅を含む再生廃液を生じるなど工業的に実施する
には好ましくない欠点があった。さらに、再生時に銅塩
を添加するために、初回のセシウム吸着時だけでなく、
再生後の吸着時にも、吸着処理液中に銅イオンが脱着溶
離するので、例えば、放射性セシウムで汚染された牛乳
などから、該放射性セシウムを除去するのに使用する際
などに[「分析機器」第6巻,第8号,第497〜50
3ページ(1968年)]、不溶性ヘキサシアノ鉄(I
I)酸の重金属塩から、セシウムと置換された交換性重
金属が牛乳中に移行したり、また、廃地熱水からのセシ
ウムの回収の際も廃地熱水に重金属が混入するという欠
点があった。Accordingly, the present inventors have conducted various studies and have previously found a method for producing a composite of copper hexacyanoferrate (II) and a porous anion exchange resin which can be used repeatedly (Japanese Patent Application In the composite obtained by this method, in order to prevent the loss of copper hexacyanoferrate (II) as an active ingredient during the adsorption and desorption treatment of cesium, the composite is subjected to regeneration treatment. It is necessary to add a copper salt, which requires addition of a new chemical, and has drawbacks that are not preferable for industrial practice, such as generation of a waste solution containing copper, which is a harmful heavy metal. Furthermore, in order to add a copper salt during regeneration, not only during the first cesium adsorption,
At the time of adsorption after regeneration, copper ions are desorbed and eluted in the adsorption treatment solution. For example, when used to remove radioactive cesium from milk contaminated with radioactive cesium, etc. Vol. 6, No. 8, 497-50
3 (1968)], insoluble hexacyanoiron (I
I) The exchangeable heavy metal substituted for cesium from the heavy metal salt of acid migrates into milk, and the heavy metal is mixed into waste geothermal water when recovering cesium from waste geothermal water. there were.
【0005】ところで、官能基をもたない多孔性樹脂細
孔内にヘキサシアノ鉄(II)酸銅を担持できれば、こ
れまでの問題点の多くは解決できるが、従来、イオン交
換基など官能基を有しない多孔性物質細孔内への化学物
質の一般的な導入法として知られている含浸法により、
ヘキサシアノ鉄(II)酸銅のような不溶性物質を導入
するには、二段階行う必要があり、後段の含浸操作の際
に前段で含浸した塩が再溶出し、樹脂外部の溶液中にも
多量に沈殿するためこの副生ヘキサシアノ鉄(II)酸
銅を原料の可溶性ヘキサシアノ鉄(II)酸塩と銅塩に
転換し、再使用するのは極めて困難である。By the way, if copper hexacyanoferrate (II) can be supported in the pores of a porous resin having no functional group, many of the problems so far can be solved. By the impregnation method known as a general method of introducing a chemical substance into the pores of a porous material having no
To introduce an insoluble substance such as copper hexacyanoferrate (II), it is necessary to carry out two steps. In the latter impregnation operation, the salt impregnated in the former step is re-eluted, and a large amount is contained in the solution outside the resin. It is extremely difficult to convert this by-produced copper hexacyanoferrate (II) into soluble hexacyanoferrate (II) and copper salt as raw materials and to reuse it.
【0006】[0006]
【発明が解決しようとする課題】本発明は、このような
事情のもとで、官能基をもたない多孔性樹脂細孔内に、
含浸法を用いないでヘキサシアノ鉄(II)酸銅を効率
よく担持させ、セシウムの吸着能が高く、かつセシウム
の吸脱着処理において、有効成分の減失がほとんどない
上、銅イオン脱着も極めて少なく、セシウム分離用イオ
ン交換体として繰り返し使用が可能なヘキサシアノ鉄
(II)酸銅担持多孔性樹脂を製造する方法を提供する
ことを目的としてなされものである。SUMMARY OF THE INVENTION Under such circumstances, the present invention provides a method for forming a porous resin pore having no functional group,
Copper hexacyanoferrate (II) is efficiently supported without using the impregnation method, and the cesium adsorption capacity is high, and in the cesium adsorption / desorption treatment, there is almost no loss of the active ingredient and the copper ion desorption is extremely small. An object of the present invention is to provide a method for producing a porous resin carrying copper hexacyanoferrate (II) which can be repeatedly used as an ion exchanger for separating cesium.
【0007】[0007]
【課題を解決するための手段】本発明者は、前記目的を
達成するために鋭意研究を重ねた結果、第四級アンモニ
ウム塩を担持した多孔性樹脂は水中で安定な1種の多孔
性型陰イオン交換樹脂として挙動することに着目し、こ
の第四級アンモニウム塩を担持した多孔性樹脂を用いる
ことにより、公知の方法でヘキサシアノ鉄(II)酸銅
を樹脂細孔内に容易に沈積させることができ、しかも該
第四級アンモニウム塩は樹脂から容易に分離回収できる
ことを見出し、この知見に基づいて本発明を完成するに
至った。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, a porous resin carrying a quaternary ammonium salt has been found to be one type of porous resin that is stable in water. Paying attention to the fact that it behaves as an anion exchange resin, by using this porous resin carrying a quaternary ammonium salt, copper hexacyanoferrate (II) can be easily deposited in the resin pores by a known method. Have been found that the quaternary ammonium salt can be easily separated and recovered from the resin, and based on this finding, the present invention has been completed.
【0008】すなわち、本発明は、多孔性樹脂に、低沸
点有機溶剤に可溶で、かつ水に難溶の第四級アンモニウ
ム塩を担持させ、さらにヘキサシアノ鉄(II)酸塩含
有水溶液で処理したのち、この処理物を銅塩含有水溶液
と接触させて該樹脂の細孔内にヘキサシアノ鉄(II)
酸銅を沈積させ、次いで樹脂内の第四級アンモニウム塩
を低沸点有機溶剤で抽出することを特徴とするヘキサシ
アノ鉄(II)酸銅担持多孔性樹脂の製造方法を提供す
るものである。That is, the present invention provides a porous resin in which a quaternary ammonium salt that is soluble in a low-boiling organic solvent and hardly soluble in water is supported, and further treated with an aqueous solution containing hexacyanoferrate (II). After that, the treated product is brought into contact with an aqueous solution containing a copper salt to form hexacyanoiron (II) in the pores of the resin.
An object of the present invention is to provide a method for producing a copper hexacyanoferrate (II) -supported porous resin, comprising depositing copper acid and then extracting a quaternary ammonium salt in the resin with a low-boiling organic solvent.
【0009】[0009]
【発明の実施の形態】本発明方法においては、多孔性樹
脂として、官能基をもたないものが好ましく用いられ
る。この官能基をもたない多孔性樹脂としては、スチレ
ン‐ジビニルベンゼン共重合体のように、非極性で撥水
性の強いものよりも、水になじみやすく、水溶液中での
取扱いが容易なアクリル酸エステル系又はメタクリル酸
エステル系重合体のような構造中に酸素原子を含む微極
性の多孔性樹脂が特に好適である。DETAILED DESCRIPTION OF THE INVENTION In the method of the present invention, a porous resin having no functional group is preferably used. As a porous resin without this functional group, acrylic acid, which is more compatible with water and easier to handle in an aqueous solution, than non-polar and highly water-repellent resins such as styrene-divinylbenzene copolymer A micropolar porous resin containing an oxygen atom in a structure such as an ester or methacrylate polymer is particularly preferable.
【0010】また、第四級アンモニウム塩としては、低
沸点有機溶剤に可溶で、かつ水に難溶のものが用いられ
る。このような第四級アンモニウム塩としては、十分に
長いアルキル鎖を有し、かつ入手しやすい点から、塩化
トリオクチルアンモニウム、塩化トリオクチルエチルア
ンモニウム、塩化トリオクチルプロピルアンモニウムな
どが好ましい。As the quaternary ammonium salt, a quaternary ammonium salt that is soluble in a low-boiling organic solvent and hardly soluble in water is used. As such a quaternary ammonium salt, trioctylammonium chloride, trioctylethylammonium chloride, trioctylpropylammonium chloride and the like are preferable because they have a sufficiently long alkyl chain and are easily available.
【0011】本発明においては、まず、これらの第四級
アンモニウム塩を前記多孔性樹脂に担持させることが必
要である。この担持方法としては、例えば適当な有機溶
剤に第四級アンモニウム塩を溶解した溶液中に多孔性樹
脂を添加し、多孔性樹脂の細孔中に該溶液を十分に浸透
させたのち、溶媒を留去し、次いで樹脂の外表面に付着
した過剰の第四級アンモニウム塩を、樹脂内部に担持さ
れた第四級アンモニウム塩を溶出させない低沸点有機溶
剤で洗浄、除去するといった方法が用いられる。この洗
浄用有機溶剤としては、石油エーテルが好適である。In the present invention, first, it is necessary to support these quaternary ammonium salts on the porous resin. As this loading method, for example, a porous resin is added to a solution obtained by dissolving a quaternary ammonium salt in an appropriate organic solvent, and after the solution is sufficiently penetrated into the pores of the porous resin, the solvent is removed. A method is used in which the quaternary ammonium salt adhering to the outer surface of the resin is distilled off, and then the excess quaternary ammonium salt is washed and removed with a low-boiling organic solvent that does not elute the quaternary ammonium salt carried inside the resin. As the organic solvent for washing, petroleum ether is preferable.
【0012】次いで、このようにして第四級アンモニウ
ム塩が担持された樹脂を、ヘキサシアノ鉄(II)酸塩
含有水溶液で処理してヘキサシアノ鉄(II)酸イオン
を吸着させる。このヘキサシアノ鉄(II)酸イオンの
吸着は比較的速やかに進行するが、第四級アンモニウム
塩の溶出を防止するために、ヘキサシアノ鉄(II)酸
塩含有水溶液は十分に高い濃度のものが好ましく用いら
れる。なお、ヘキサシアノ鉄(II)酸イオンは第四級
アンモニウム基に選択的に捕捉されるので、固液分離後
の処理液は、消費量に相当するヘキサシアノ鉄(II)
酸イオンを追加するだけで再使用可能である。過剰の付
着ヘキサシアノ鉄(II)酸塩は水洗により除去する。
この水洗時に第四級アンモニウム塩が溶出すると好まし
くないので、該第四級アンモニウム塩は、樹脂内表面の
疎水基との結合が強く、水洗時に溶出しないものを選ぶ
のが有利である。また、ヘキサシアノ鉄(II)酸塩と
しては、例えばヘキサシアノ鉄(II)酸カリウム(フ
ェロシアン化カリウム)、ヘキサシアノ鉄(II)酸ナ
トリウム(フェロシアン化ナトリウム)などが好まし
い。Next, the resin carrying the quaternary ammonium salt is treated with an aqueous solution containing hexacyanoferrate (II) to adsorb hexacyanoferrate (II) ions. The adsorption of hexacyanoferrate (II) ions proceeds relatively quickly, but in order to prevent the quaternary ammonium salt from being eluted, the aqueous solution containing hexacyanoferrate (II) preferably has a sufficiently high concentration. Used. Since the hexacyanoferrate (II) ion is selectively captured by the quaternary ammonium group, the treatment liquid after the solid-liquid separation is treated with hexacyanoferrate (II) equivalent to the consumption amount.
It can be reused simply by adding an acid ion. Excess adhering hexacyanoferrate (II) is removed by washing with water.
It is not preferable that the quaternary ammonium salt be eluted during the washing with water. Therefore, it is advantageous to select a quaternary ammonium salt that has a strong bond with the hydrophobic group on the inner surface of the resin and does not elute during the washing with water. As the hexacyanoferrate (II), for example, potassium hexacyanoferrate (II) (potassium ferrocyanide), sodium hexacyanoferrate (II) (sodium ferrocyanide) and the like are preferable.
【0013】次に、このようにしてヘキサシアノ鉄(I
I)酸塩含有水溶液で処理された樹脂を銅塩含有水溶液
と接触させる。この処理に際しては、銅塩のドナン浸透
を高め、ヘキサシアノ鉄(II)酸イオンの外部溶液へ
の溶出を防止し、反応式Next, the hexacyanoiron (I)
I) Contacting the resin treated with the aqueous solution containing a salt with an aqueous solution containing a copper salt. In this treatment, the permeation of the copper salt with donan is enhanced to prevent hexacyanoferrate (II) ions from being eluted into the external solution, and the reaction formula
【化1】 (式中のR1、R2及びR3は、それぞれ長鎖アルキル
基、R4は低級アルキル基、Xはハロゲン原子などの陰
性の原子又は原子団、nはXの価数である)により、効
率よくヘキサシアノ鉄(II)酸銅を樹脂細孔内に沈積
させるために、できるだけ高濃度の銅塩含有水溶液を用
いるのが好ましい。Embedded image (Wherein R 1 , R 2 and R 3 are a long-chain alkyl group, R 4 is a lower alkyl group, X is a negative atom or atomic group such as a halogen atom, and n is a valence of X) In order to efficiently deposit copper hexacyanoferrate (II) in the resin pores, it is preferable to use a copper salt-containing aqueous solution having a concentration as high as possible.
【0014】前記反応式(I)から分かるように、遊離
する第四級アンモニウム塩は、使用する銅塩の酸根(X
n-)をもつ塩となるが、その性質を考慮して用いる銅塩
を選択するのが好ましい。通常は使用する第四級アンモ
ニウム塩の酸根と同じ酸根をもつ銅塩を用いるのが有利
であり、特に塩化第二銅が好適である。As can be seen from the above reaction formula (I), the liberated quaternary ammonium salt is an acid radical (X
Although a salt having n- ) is obtained, it is preferable to select a copper salt to be used in consideration of its properties. Usually, it is advantageous to use a copper salt having the same acid group as that of the quaternary ammonium salt used, and cupric chloride is particularly preferable.
【0015】このようにしてヘキサシアノ鉄(II)酸
銅が細孔内に沈積した樹脂は、公知の方法により固液分
離したのち、Cu2+がほとんど検出されなくなるまで水
洗する。しかし、過度に水洗するのは第四級アンモニウ
ム塩が溶出されやすくなるとともに、液が起泡するので
好ましくない。なお、固液分離後の銅塩水溶液は、消費
された銅塩を補給して繰り返し使用することができる。The resin in which the copper hexacyanoferrate (II) is deposited in the pores is subjected to solid-liquid separation by a known method, and then washed with water until Cu 2+ is hardly detected. However, excessive washing is not preferable because the quaternary ammonium salt is easily eluted and the liquid foams. In addition, the copper salt aqueous solution after the solid-liquid separation can be used repeatedly by replenishing the consumed copper salt.
【0016】次に、水洗後の樹脂を、第四級アンモニウ
ム塩に対して溶解性の高い低沸点有機溶剤で処理し、樹
脂内の第四級アンモニウム塩を抽出したのち、抽出液中
の溶剤を留去させて第四級アンモニウム塩を回収する。
この有機溶剤としては、アセトンなどの低沸点のケトン
類が優れた抽出性能を有するので好ましい。Next, the resin washed with water is treated with a low-boiling organic solvent having high solubility in quaternary ammonium salts to extract the quaternary ammonium salts in the resin. Is distilled off to recover a quaternary ammonium salt.
As the organic solvent, ketones having a low boiling point such as acetone are preferable because they have excellent extraction performance.
【0017】このようにして、ヘキサシアノ鉄(II)
酸銅担持多孔性樹脂が効率よく得られる。このものは、
セシウム分離用イオン交換体としてそのまま使用するこ
とができるが、以下に示すような前処理を施すことによ
り、セシウムの吸着能が著しく改善されるとともに、セ
シウムの吸脱着処理時に有効成分の減失がほとんどなく
なる。すなわち、まず、多孔性樹脂内のヘキサシアノ鉄
(II)酸銅を、酸化剤、例えば亜硝酸含有硝酸水溶液
により、ヘキサシアノ鉄(III)酸銅に酸化したの
ち、還元剤、例えば硝酸ヒドラジン含有硝酸水溶液によ
り、銅塩を添加することなく、還元処理を行う。銅塩無
添加であるため、ヘキサシアノ鉄(III)酸銅の還元
による生成物はほとんどすべてA2Cu3[Fe(CN)
6]2 (A+:一価の陽イオン)の複塩型となり、セシウ
ム吸着能が著しく向上するとともに、吸着処理、脱着処
理において、銅イオン、ヘキサシアノ鉄(II)酸イオ
ン、ヘキサシアノ鉄(III)酸イオンの溶出が極めて
低く抑えられ、有効成分の減失をほとんど伴わない。Thus, hexacyanoiron (II)
The copper oxide-carrying porous resin can be obtained efficiently. This one is
Although it can be used as it is as an ion exchanger for cesium separation, the pretreatment as shown below significantly improves the cesium adsorption capacity and reduces the loss of active ingredients during the cesium adsorption / desorption treatment. Almost gone. That is, first, copper hexacyanoferrate (II) in a porous resin is oxidized to copper hexacyanoferrate (III) with an oxidizing agent, for example, an aqueous nitric acid solution containing nitric acid, and then a reducing agent, for example, an aqueous nitric acid solution containing hydrazine nitrate is used. Thus, the reduction treatment is performed without adding a copper salt. Since no copper salt is added, almost all products resulting from the reduction of copper hexacyanoferrate (III) are A 2 Cu 3 [Fe (CN)
6 ] 2 (A + : monovalent cation) is a double salt type, and the cesium adsorption ability is remarkably improved. In addition, copper ion, hexacyanoferrate (II) ion, hexacyanoferrate (III) ) The elution of acid ions is extremely low, and there is almost no loss of the active ingredient.
【0018】次に、本発明方法で得られたヘキサシアノ
鉄(II)酸銅担持多孔性樹脂又はその前処理物(以
下、セシウム分離材と称す)によるセシウムの吸脱着処
理及び脱着後の再生処理について説明すると、まず、セ
シウム含有水溶液と上記セシウム分離材とを十分に接触
させることにより、分離材にセシウムを吸着させる。次
いで、セシウムを吸着した分離材を、酸化剤、例えば亜
硝酸含有硝酸水溶液により酸化処理してセシウムを脱着
させる。次に、セシウムが脱着された分離材を、還元
剤、例えば硝酸ヒドラジン含有硝酸水溶液により、銅塩
を添加することなく還元処理することによって再生する
ことができる。このようにして再生された分離材は、上
記セシウム分離材の前処理における還元処理で説明した
ように、高い吸着能を有し、かつ続いて行われる吸脱着
処理において、銅イオン、ヘキサシアノ鉄(II)酸イ
オン、ヘキサシアノ鉄(III)酸イオンの溶出が極め
て低く抑えられ、有効成分の減失をほとんど伴わない。Next, adsorption and desorption of cesium by the porous resin carrying copper hexacyanoferrate (II) obtained by the method of the present invention or a pretreated product thereof (hereinafter referred to as a cesium separating material) and a regeneration treatment after desorption. First, the cesium-containing aqueous solution is brought into sufficient contact with the cesium separating material to cause cesium to be adsorbed on the separating material. Next, the cesium-adsorbed separating material is oxidized with an oxidizing agent, for example, an aqueous nitric acid solution containing nitric acid to desorb cesium. Next, the separation material to which cesium has been desorbed can be regenerated by reducing treatment with a reducing agent, for example, an aqueous nitric acid solution containing hydrazine nitrate without adding a copper salt. As described in the reduction treatment in the pretreatment of the cesium separation material, the separation material thus regenerated has a high adsorption ability, and in the subsequent adsorption / desorption treatment, copper ions and hexacyanoiron ( II) Elution of acid ions and hexacyanoferrate (III) ions is suppressed to a very low level, and there is almost no loss of active ingredients.
【0019】[0019]
【発明の効果】本発明によると、官能基をもたない多孔
性樹脂細孔内に、ヘキサシアノ鉄(II)酸銅を効率よ
く担持させることにより、セシウムの吸着能が高く、か
つセシウムの吸脱着処理において、有効成分の減失がほ
とんどない上、銅イオン脱着も極めて少なく、セシウム
分離用イオン交換体として繰り返し使用可能なヘキサシ
アノ鉄(II)酸銅担持多孔性樹脂を容易に製造するこ
とができる。According to the present invention, copper hexacyanoferrate (II) is efficiently carried in the pores of a porous resin having no functional group, so that the cesium adsorption capacity is high and the cesium absorption capacity is high. In the desorption treatment, it is possible to easily produce a copper hexacyanoferrate (II) -supported porous resin which hardly loses the active ingredient, has very little copper ion desorption, and can be repeatedly used as an ion exchanger for cesium separation. it can.
【0020】本発明方法により得られたヘキサシアノ鉄
(II)酸銅担持多孔性樹脂は、例えば各種放射性廃液
からのセシウムの分離、放射性セシウムに汚染された牛
乳などの飲料からの放射性セシウムの除去、廃地熱水中
のセシウムの回収などに有用である。The copper hexacyanoferrate (II) -supported porous resin obtained by the method of the present invention can be used, for example, to separate cesium from various radioactive waste liquids, remove radioactive cesium from beverages such as milk contaminated with radioactive cesium, It is useful for recovery of cesium from waste geothermal water.
【0021】[0021]
【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
【0022】実施例1 市販の塩化トリオクチルメチルアンモニウム1.016
g〔[R3(CH3)N]Cl(R:C8〜C10),ナカ
ライテスク社製,含量:87.3重量%〕を石油エーテ
ル20mlに溶解したのち、アンバーライトXAD−7
(ローム・アンド・ハース社製)2g(乾燥重量基準)
を添加し、水流ポンプ減圧下で脱気しながら、石油エー
テルを留去した。その後、石油エーテルによる洗浄を3
回繰り返したのち、50℃で真空乾燥し、石油エーテル
を完全に除去した。洗浄後の塩化トリオクチルメチルア
ンモニウムの担持量は0.852gであった。Example 1 Commercially available trioctylmethylammonium chloride 1.016
g [[R 3 (CH 3) N ] Cl (R: C 8 ~C 10), Nacalai Tesque, content: 87.3 wt%] after was dissolved in petroleum ether 20 ml, Amberlite XAD-7
(Rohm and Haas) 2 g (dry weight basis)
Was added and petroleum ether was distilled off while degassing under reduced pressure of a water jet pump. Then, wash with petroleum ether 3
After repeating this process, the product was vacuum-dried at 50 ° C. to completely remove petroleum ether. The supported amount of trioctylmethylammonium chloride after washing was 0.852 g.
【0023】次いで、これに0.5モル/リットル濃度
のヘキサシアノ鉄(II)酸カリウム水溶液20mlを
添加し、水流ポンプ減圧下でほとんど起泡しなくなるま
で脱気したのち、25℃で24時間振り混ぜた。次い
で、固液分離後、固形物を十分水洗したのち、25℃の
1モル/リットル濃度の塩化第二銅水溶液60ml中に
て24時間振り混ぜ処理した。樹脂は濃い赤紫色に変化
し、溶液中への沈殿生成は認められなかった。Next, 20 ml of an aqueous solution of potassium hexacyanoferrate (II) having a concentration of 0.5 mol / liter was added thereto, and the mixture was degassed under a reduced pressure of a water pump until almost no bubbles were generated. mixed. Next, after the solid-liquid separation, the solid was sufficiently washed with water and shaken for 24 hours in 60 ml of a 1 mol / liter cupric chloride aqueous solution at 25 ° C. The resin turned deep red-purple and no precipitate was found in the solution.
【0024】次に、メンブランホルダーに装着したポリ
四フッ化エチレン製メンブランフィルターを用いてろ別
したのち、銅イオンをほとんど検出しなくなるまで水洗
した。その後、アセトン約15mlを添加し、ホルダー
内でかきまぜて塩化トリオクチルメチルアンモニウムを
抽出し、次いでろ過する操作をほとんど抽出されなくな
るまで繰り返した。抽出液からアセトンを留去させて回
収した塩化トリオクチルメチルアンモニウム量は0.7
53gであった(回収率88.4%)。メンブランホル
ダー内のXAD−7は、水とともに容器に移したとこ
ろ、浮上しやすかったので、減圧脱気することにより沈
降させた。溶液中にヘキサシアノ鉄(II)酸銅の沈殿
はほとんど認められなかった。上澄み液を除いて風乾し
たのち、60℃で真空乾燥し、ヘキサシアノ鉄(II)
酸銅担持XAD−7 2.178gを得た。Next, the resultant was filtered using a polytetrafluoroethylene membrane filter attached to a membrane holder, and washed with water until copper ions were hardly detected. Thereafter, about 15 ml of acetone was added, and the mixture was stirred in a holder to extract trioctylmethylammonium chloride, and then the operation of filtering was repeated until almost no extraction was obtained. The amount of trioctylmethyl ammonium chloride recovered by distilling off acetone from the extract was 0.7
53 g (88.4% recovery). When XAD-7 in the membrane holder was transferred to a container together with water, the XAD-7 was easily floated. Almost no precipitation of copper hexacyanoferrate (II) was found in the solution. After removing the supernatant and air-drying, vacuum-dry at 60 ° C to obtain hexacyanoiron (II).
2.178 g of copper acid-supported XAD-7 was obtained.
【0025】実施例2 市販の塩化トリオクチルプロピルアンモニウム0.97
7g(コダック社製、含量:97.1重量%)をアセト
ン20mlに溶解したのち、アンバーライトXAD−7
2g(乾燥重量基準)を添加し、水流ポンプ減圧下で
脱気しながら、アセトンを留去した。その後、石油エー
テルによる洗浄を3回繰り返したのち、50℃で真空乾
燥し、石油エーテルを完全に除去した。洗浄後の塩化ト
リオクチルプロピルアンモニウムの担持量は0.904
gであった。Example 2 Commercially available trioctylpropyl ammonium chloride 0.97
After dissolving 7 g (manufactured by Kodak, content: 97.1% by weight) in 20 ml of acetone, Amberlite XAD-7 was dissolved.
2 g (dry weight basis) was added, and acetone was distilled off while degassing under reduced pressure of a water jet pump. Thereafter, washing with petroleum ether was repeated three times, followed by vacuum drying at 50 ° C. to completely remove petroleum ether. The supported amount of trioctylpropyl ammonium chloride after washing is 0.904.
g.
【0026】次いで、これに0.5モル/リットル濃度
のヘキサシアノ鉄(II)酸カリウム水溶液20mlを
添加し、水流ポンプ減圧下でほとんど起泡しなくなるま
で脱気したのち、25℃で24時間振り混ぜた。次い
で、固液分離後、固形物を十分水洗したのち、25℃の
1モル/リットル濃度の塩化第二銅水溶液60ml中に
て24時間振り混ぜ処理した。樹脂は濃い赤紫色に変化
し、溶液中への沈殿生成は認められなかった。Next, 20 ml of a 0.5 mol / liter aqueous solution of potassium hexacyanoferrate (II) was added thereto, and the mixture was degassed under a reduced pressure of a water-jet pump until almost no bubbles were generated, followed by shaking at 25 ° C. for 24 hours. mixed. Next, after the solid-liquid separation, the solid was sufficiently washed with water and shaken for 24 hours in 60 ml of a 1 mol / liter cupric chloride aqueous solution at 25 ° C. The resin turned deep red-purple and no precipitate was found in the solution.
【0027】次に、メンブランホルダーに装着したポリ
四フッ化エチレン製メンブランフィルターを用いてろ別
したのち、銅イオンをほとんど検出しなくなるまで水洗
した。その後、アセトン約15mlを添加し、ホルダー
内でかきまぜて塩化トリオクチルプロピルアンモニウム
を抽出し、次いでろ過する操作をほとんど抽出されなく
なるまで繰り返した。抽出液からアセトンを留去させて
回収した塩化トリオクチルプロピルアンモニウム量は
0.823gであった(回収率91.0%)。メンブラ
ンホルダー内のXAD−7は、水とともに容器に移した
ところ、浮上しやすかったので、減圧脱気することによ
り沈降させた。溶液中にヘキサシアノ鉄(II)酸銅の
沈殿はほとんど認められなかった。上澄み液を除いて風
乾したのち、60℃で真空乾燥し、ヘキサシアノ鉄(I
I)酸銅担持XAD−7 2.151gを得た。Next, the resultant was filtered using a polytetrafluoroethylene membrane filter attached to a membrane holder, and washed with water until copper ions were hardly detected. Thereafter, about 15 ml of acetone was added thereto, and the mixture was stirred in a holder to extract trioctylpropylammonium chloride, and then the operation of filtering was repeated until almost no extraction was performed. The amount of trioctylpropylammonium chloride collected by distilling off acetone from the extract was 0.823 g (recovery rate 91.0%). When XAD-7 in the membrane holder was transferred to a container together with water, the XAD-7 was easily floated. Almost no precipitation of copper hexacyanoferrate (II) was found in the solution. After removing the supernatant and air-drying, vacuum drying at 60 ° C.
I) 2.151 g of copper-acid-supported XAD-7 was obtained.
【0028】応用例1 実施例1で調製したヘキサシアノ鉄(II)酸銅担持X
AD−7 0.1078gを三角フラスコにとり、水1
0mlを添加し、水流ポンプで起泡が生じなくなるまで
減圧下で脱気したのち、一昼夜放置して水になじませ
た。次いで、直径25mmのメンブランホルダー(容量
15ml)に装着したポリ四フッ化エチレン製メンブラ
ンフィルターを用いて減圧ろ過(以下、単にろ過と略記
する)して固液分離した。続いて1リットル中に10-3
モルのCsNO3と3モルのNaNO3とを含む水溶液1
0mlでメンブランホルダーを洗いながら、すべて三角
フラスコに移し、1時間振りまぜてセシウムを吸着させ
たのち、ろ過した。十分洗浄後、1リットル中10-3モ
ルのNaNO2と5モルのHNO3を含む水溶液10ml
でメンブランホルダーを洗いながら樹脂粒子をすべて三
角フラスコに移して、24時間振りまぜてセシウムを脱
着した。Application Example 1 X supported on copper hexacyanoferrate (II) prepared in Example 1
0.1078 g of AD-7 is placed in an Erlenmeyer flask, and water 1
0 ml was added, and the mixture was degassed under reduced pressure by a water pump until foaming was not generated. Next, filtration was performed under reduced pressure (hereinafter simply referred to as filtration) using a polytetrafluoroethylene membrane filter attached to a 25 mm diameter membrane holder (capacity: 15 ml) to perform solid-liquid separation. Then 10 -3 in 1 liter
Aqueous solution 1 containing mol CsNO 3 and 3 mol NaNO 3
While washing the membrane holder with 0 ml, all were transferred to an Erlenmeyer flask, shaken for 1 hour to adsorb cesium, and then filtered. After thorough washing, 10 ml of an aqueous solution containing 10 −3 mol of NaNO 2 and 5 mol of HNO 3 in 1 liter
All the resin particles were transferred to an Erlenmeyer flask while washing the membrane holder with and shaken for 24 hours to desorb cesium.
【0029】ろ液と洗液を分析した結果、セシウム吸着
率は31.8%(水洗で除かれる分は含まない。以下同
様)、セシウム脱着率は85.3%(水洗水に移行する
分も含む。以下同様)であった。また、吸着後の処理液
中の鉄分と銅の量は、それぞれ0.16ppm及び4.
1ppmであり、脱着後の処理液中の鉄分と銅の濃度
は、それぞれ7.63ppm及び30.4ppmであっ
た。As a result of analyzing the filtrate and the washing solution, the cesium adsorption rate was 31.8% (excluding the portion removed by water washing; the same applies hereinafter), and the cesium desorption rate was 85.3% (the portion that migrated to the washing water). The same applies hereinafter.) The amounts of iron and copper in the treatment solution after adsorption were 0.16 ppm and 4.
The concentration of iron and copper in the treatment liquid after desorption was 7.63 ppm and 30.4 ppm, respectively.
【0030】次に、1リットル中に0.015モルの硝
酸ヒドラジンと0.1モルのHNO3を含む水溶液10
mlをメンブランホルダーに添加して再生処理を行った
(液を落下させないためにロートの先端に栓をした)。
気泡がほとんど発生しなくなるまで約1時間ときどきか
き混ぜ、さらに30分間放置したのち、ろ別し水洗し
た。なお、再生後の処理液中の鉄分と銅の濃度は、それ
ぞれ1.24ppm及び0.0ppmであった。Next, an aqueous solution 10 containing 0.015 mol of hydrazine nitrate and 0.1 mol of HNO 3 in 1 liter
ml was added to the membrane holder to perform a regeneration treatment (the tip of the funnel was plugged in order to prevent the liquid from dropping).
The mixture was stirred occasionally for about 1 hour until almost no air bubbles were generated, left for 30 minutes, filtered and washed with water. The concentrations of iron and copper in the treated solution after the regeneration were 1.24 ppm and 0.0 ppm, respectively.
【0031】このようにして再生処理した試料を用い
て、第2回目の吸脱着操作を上記と同様にして行った結
果、セシウム吸着率は84.2%、セシウム脱着率は8
9.4%であった。また、吸着後の処理液中の鉄分と銅
の濃度は、それぞれ0.19ppm及び0.0ppmで
あり、脱着後の処理液中の鉄分と銅の濃度は、それぞれ
0.66ppm及び3.7ppmであった。Using the sample thus regenerated, the second adsorption / desorption operation was performed in the same manner as described above. As a result, the cesium adsorption rate was 84.2%, and the cesium desorption rate was 8%.
It was 9.4%. The concentrations of iron and copper in the treatment liquid after adsorption were 0.19 ppm and 0.0 ppm, respectively, and the concentrations of iron and copper in the treatment liquid after desorption were 0.66 ppm and 3.7 ppm, respectively. there were.
【0032】このように、塩化トリオクチルメチルアン
モニウムを媒介させて調製したヘキサシアノ鉄(II)
酸銅担持XAD−7については、第1回目はセシウム吸
着率が低く、処理液中の銅濃度が高いが、再生後は高い
吸着率を示し、かつ銅濃度もかなり低下する。また、再
生処理を銅イオン無添加で行っても、続いて行われる吸
脱着処理において鉄分の溶出は十分に低いことが確認さ
れた。As described above, hexacyanoiron (II) prepared through trioctylmethylammonium chloride
Regarding the copper-acid-supported XAD-7, the first time the cesium adsorption rate is low and the copper concentration in the treatment solution is high, but after regeneration, the adsorption rate is high and the copper concentration is considerably reduced. In addition, even when the regeneration treatment was performed without addition of copper ions, it was confirmed that the elution of iron in the subsequent adsorption / desorption treatment was sufficiently low.
【0033】応用例2 実施例2で調製したヘキサシアノ鉄(II)酸銅担持X
AD−7 0.1078gについて、応用例1と同じ条
件で第1回目の吸脱着操作を行った。その結果、セシウ
ム吸着率は31.2%、セシウム脱着率は79.1%で
あった。また、吸着後の処理液中の鉄分と銅の濃度は、
それぞれ0.36ppm及び2.9ppmであり、脱着
後の処理液中の鉄分と銅の濃度は、それぞれ3.65p
pm及び18.4ppmであった。次いで、応用例1と
同じ条件で再生処理を行った結果、再生後の処理液中の
鉄分と銅の濃度は、それぞれ0.28ppm及び0.3
ppmであった。Application Example 2 X supported on copper hexacyanoferrate (II) prepared in Example 2
About 0.1078 g of AD-7, the first adsorption / desorption operation was performed under the same conditions as in Application Example 1. As a result, the cesium adsorption rate was 31.2%, and the cesium desorption rate was 79.1%. In addition, the concentration of iron and copper in the treatment solution after adsorption is
It is 0.36 ppm and 2.9 ppm, respectively, and the concentration of iron and copper in the treatment liquid after desorption is 3.65 p
pm and 18.4 ppm. Next, as a result of performing a regeneration treatment under the same conditions as in Application Example 1, the concentrations of iron and copper in the treated solution after regeneration were 0.28 ppm and 0.3, respectively.
ppm.
【0034】次に、再生した試料を用いて、第2回目の
吸脱着操作を上記と同様にして行った結果、セシウム吸
着率は68.7%、セシウム脱着率は92.0%であっ
た。また、吸着後の処理液中の鉄分と銅の濃度は、それ
ぞれ0.36ppm及び0.0ppm、脱着後の処理液
中の鉄分と銅の濃度は、それぞれ0.90ppm及び
2.8ppmであった。Next, a second adsorption / desorption operation was performed using the regenerated sample in the same manner as described above. As a result, the cesium adsorption rate was 68.7% and the cesium desorption rate was 92.0%. . The concentrations of iron and copper in the treatment solution after adsorption were 0.36 ppm and 0.0 ppm, respectively, and the concentrations of iron and copper in the treatment solution after desorption were 0.90 ppm and 2.8 ppm, respectively. .
【0035】このように、塩化トリオクチルプロピルア
ンモニウムを媒介させて調製したヘキサシアノ鉄(I
I)酸銅担持XAD−7についても、第1回目はセシウ
ム吸着率が低く、処理液中の銅濃度が高いが、再生後は
高い吸着率を示し、かつ銅濃度もかなり低下する。ま
た、再生処理を銅イオン無添加で行っても、続いて行わ
れる吸脱着処理において鉄分の溶出は十分に低いことが
確認された。As described above, hexacyanoiron (I) prepared through the mediation of trioctylpropylammonium chloride
I) Regarding the copper-acid-supporting XAD-7, the first time, the cesium adsorption rate is low and the copper concentration in the treatment liquid is high, but after regeneration, the adsorption rate is high and the copper concentration is considerably reduced. In addition, even when the regeneration treatment was performed without addition of copper ions, it was confirmed that the elution of iron in the subsequent adsorption / desorption treatment was sufficiently low.
【0036】応用例3 実施例1で調製したヘキサシアノ鉄(II)酸銅担持X
AD−7 0.1075gを三角フラスコにとり、水1
0mlを添加し、水流ポンプで起泡が生じなくなるまで
減圧下で脱気したのち、一昼夜放置して水になじませ
た。次いで、直径25mmのメンブランホルダー(容量
15ml)に装着したポリ四フッ化エチレン製メンブラ
ンフィルターを用いて減圧ろ過して固液分離した。Application Example 3 Copper hexacyanoferrate (II) supported on X prepared in Example 1
0.1075 g of AD-7 is placed in an Erlenmeyer flask, and water 1 is added.
0 ml was added, and the mixture was degassed under reduced pressure by a water pump until foaming was not generated. Next, solid-liquid separation was performed by filtration under reduced pressure using a polytetrafluoroethylene membrane filter attached to a membrane holder having a diameter of 25 mm (capacity: 15 ml).
【0037】次に、1リットル中に10-3モルのNaN
O2と5モルのHNO3を含む水溶液10mlでメンブラ
ンホルダーを洗いながら、樹脂粒子をすべて三角フラス
コに移して、24時間振り混ぜて酸化処理したのち、ろ
過し、十分洗浄後、1リットル中に0.015モルの硝
酸ヒドラジンと0.1モルのHNO3を含む水溶液10
mlをメンブランホルダーに添加して還元処理を行った
(液を落下させないためにロートの先端に栓をした)。
気泡がほとんど発生しなくなるまで約1時間ときどきか
きまぜ、さらに30分間放置したのち、ろ別して水洗し
た。Next, 10 -3 mol of NaN per liter was used.
While washing the membrane holder with 10 ml of an aqueous solution containing O 2 and 5 mol of HNO 3 , all the resin particles were transferred to an Erlenmeyer flask, shaken for 24 hours, oxidized, filtered, sufficiently washed, and then washed in 1 liter. An aqueous solution 10 containing 0.015 mol of hydrazine nitrate and 0.1 mol of HNO 3
ml was added to the membrane holder to perform a reduction treatment (a stopper was plugged at the tip of the funnel to prevent the liquid from dropping).
The mixture was stirred occasionally for about 1 hour until almost no air bubbles were generated, left for 30 minutes, filtered and washed with water.
【0038】このようにして前処理した試料について、
応用例1と同じ条件で第1回目の吸脱着操作を行った。
すなわち、1リットル中に10-3モルのCsNO3と3
モルのNaNO3とを含む水溶液10mlでメンブラン
ホルダーを洗いながら、すべて三角フラスコに移し、1
時間振りまぜてセシウムを吸着させたのち、ろ過した。
十分洗浄後、1リットル中10-3モルのNaNO2と5
モルのHNO3を含む水溶液10mlでメンブランホル
ダーを洗いながら樹脂粒子をすべて三角フラスコに移し
て、24時間振りまぜてセシウムを脱着した。With respect to the sample thus pretreated,
The first adsorption / desorption operation was performed under the same conditions as in Application Example 1.
That is, 10 -3 moles of CsNO 3 and 3
While washing the membrane holder with 10 ml of an aqueous solution containing molar NaNO 3 ,
After shaking for a time to adsorb cesium, the mixture was filtered.
After thorough washing, 10 -3 mol of NaNO 2 and 5
All resin particles were transferred to an Erlenmeyer flask while washing the membrane holder with 10 ml of an aqueous solution containing molar HNO 3, and shaken for 24 hours to desorb cesium.
【0039】ろ液と洗液を分析した結果、セシウム吸着
率は78.7%、セシウム脱着率は96.6%であっ
た。また、吸着後の処理液中の鉄分と銅の量は、それぞ
れ0.27ppm及び0.0ppmであり、脱着後の処
理液中の鉄分と銅の濃度は、それぞれ0.76ppm及
び4.6ppmであった。As a result of analyzing the filtrate and the washing solution, the cesium adsorption rate was 78.7% and the cesium desorption rate was 96.6%. The amounts of iron and copper in the treatment solution after adsorption were 0.27 ppm and 0.0 ppm, respectively, and the concentrations of iron and copper in the treatment solution after desorption were 0.76 ppm and 4.6 ppm, respectively. there were.
【0040】次に、応用例1と同じ条件で再生処理を行
った。すなわち、1リットル中に0.015モルの硝酸
ヒドラジンと0.1モルのHNO3を含む水溶液10m
lをメンブランホルダーに添加して再生処理を行った
(液を落下させないためにロートの先端に栓をした)。
気泡がほとんど発生しなくなるまで約1時間ときどきか
き混ぜ、さらに30分間放置したのち、ろ別し水洗し
た。なお、再生後の処理液中の鉄分と銅の濃度は、それ
ぞれ0.86ppm及び0.0ppmであった。Next, a reproduction process was performed under the same conditions as in the first application example. That is, an aqueous solution containing 0.015 mol of hydrazine nitrate and 0.1 mol of HNO 3 in 1 liter
1 was added to the membrane holder to perform a regeneration treatment (the tip of the funnel was plugged in order to prevent the liquid from dropping).
The mixture was stirred occasionally for about 1 hour until almost no air bubbles were generated, left for 30 minutes, filtered and washed with water. The concentrations of iron and copper in the treated solution after regeneration were 0.86 ppm and 0.0 ppm, respectively.
【0041】このようにして再生処理した試料を用い
て、第2回目の吸脱着操作を上記と同様にして行った結
果、セシウム吸着率は83.1%、セシウム脱着率は9
4.8%であった。また、吸着後の処理液中の鉄分と銅
の濃度は、それぞれ0.20ppm及び0.0ppmで
あり、脱着後の処理液中の鉄分と銅の濃度は、それぞれ
0.84ppm及び3.1ppmであった。Using the sample thus regenerated, the second adsorption / desorption operation was performed in the same manner as described above. As a result, the cesium adsorption rate was 83.1%, and the cesium desorption rate was 9%.
It was 4.8%. The concentrations of iron and copper in the treatment solution after adsorption were 0.20 ppm and 0.0 ppm, respectively, and the concentrations of iron and copper in the treatment solution after desorption were 0.84 ppm and 3.1 ppm, respectively. there were.
【0042】このように、塩化トリオクチルメチルアン
モニウムを媒介させて調製したヘキサシアノ鉄(II)
酸銅担持XAD−7については、前処理として酸化処理
に続く還元処理をしておくことにより、初回からセシウ
ム吸着率の高い処理ができるとともに、各処理液中の鉄
分と銅の濃度を低く抑えることができる。Thus, hexacyanoiron (II) prepared through the mediation of trioctylmethylammonium chloride
For the copper-acid-carrying XAD-7, by performing a reduction treatment following the oxidation treatment as a pretreatment, a treatment with a high cesium adsorption rate can be performed from the first time, and the concentration of iron and copper in each treatment liquid is suppressed to a low level. be able to.
【0043】応用例4 実施例2で調製したヘキサシアノ鉄(II)酸銅担持X
AD−7 0.1078gを三角フラスコにとり、水1
0mlを添加し、水流ポンプで起泡が生じなくなるまで
減圧下で脱気したのち、一昼夜放置して水になじませ
た。次いで、直径25mmのメンブランホルダー(容量
15ml)に装着したポリ四フッ化エチレン製メンブラ
ンフィルターを用いて減圧ろ過した。次いで、応用例3
と同じ条件で酸化処理とそれに続く還元処理を行ったの
ち、第1回目の吸脱着操作を行った。その結果、セシウ
ム吸着率は69.0%、セシウム脱着率は90.9%で
あった。また、吸着後の処理液中の鉄分と銅の濃度は、
それぞれ0.36ppm及び0.0ppmであり、脱着
後の処理液中の鉄分と銅の濃度は、それぞれ0.88p
pm及び3.6ppmであった。次に、応用例3と同じ
条件で再生処理を行った結果、再生後の処理液中の鉄分
と銅の濃度は、それぞれ0.25ppm及び0.0pp
mであった。Application Example 4 Copper hexacyanoferrate (II) supported on X prepared in Example 2
0.1078 g of AD-7 is placed in an Erlenmeyer flask, and water 1
0 ml was added, and the mixture was degassed under reduced pressure by a water pump until foaming was not generated. Next, filtration was performed under reduced pressure using a polytetrafluoroethylene membrane filter attached to a membrane holder having a diameter of 25 mm (capacity: 15 ml). Next, application example 3
After performing the oxidation treatment and the subsequent reduction treatment under the same conditions as those described above, the first adsorption / desorption operation was performed. As a result, the cesium adsorption rate was 69.0%, and the cesium desorption rate was 90.9%. In addition, the concentration of iron and copper in the treatment solution after adsorption is
0.36 ppm and 0.0 ppm, respectively, and the concentration of iron and copper in the treatment liquid after desorption was 0.88 p
pm and 3.6 ppm. Next, as a result of performing a regeneration process under the same conditions as in Application Example 3, the concentrations of iron and copper in the treated solution after regeneration were 0.25 ppm and 0.0 pp, respectively.
m.
【0044】このようにして再生処理した試料を用い
て、第2回目の吸脱着操作を上記と同様にして行った結
果、セシウム吸着率は71.6%、セシウム脱着率は9
3.8%であった。また、吸着後の処理液中の鉄分と銅
の濃度は、それぞれ0.43ppm及び0.0ppmで
あり、脱着後の処理液中の鉄分と銅の濃度は、それぞれ
0.64ppm及び2.5ppmであった。Using the sample thus regenerated, the second adsorption / desorption operation was performed in the same manner as described above. As a result, the cesium adsorption rate was 71.6%, and the cesium desorption rate was 9%.
3.8%. The concentrations of iron and copper in the treatment solution after adsorption were 0.43 ppm and 0.0 ppm, respectively, and the concentrations of iron and copper in the treatment solution after desorption were 0.64 ppm and 2.5 ppm, respectively. there were.
【0045】このように、塩化トリオクチルプロピルア
ンモニウムを媒介させて調製したヘキサシアノ鉄(I
I)酸銅担持XAD−7についても、前処理として酸化
処理に続く還元処理をしておくことにより、初回からセ
シウム吸着率の高い処理ができるとともに、各処理液中
の鉄分と銅の濃度を低く抑えることができる。Thus, the hexacyanoiron (I) prepared through the mediation of trioctylpropylammonium chloride
I) Regarding copper-acid-supporting XAD-7, by performing a reduction treatment following an oxidation treatment as a pretreatment, a treatment with a high cesium adsorption rate can be performed from the first time, and the iron and copper concentrations in each treatment solution can be reduced. It can be kept low.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B01J 20/00 - 20/34 B01J 41/04 C01C 3/12 C08J 5/20 C08J 9/36 G21F 9/12──────────────────────────────────────────────────続 き Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) B01J 20/00-20/34 B01J 41/04 C01C 3/12 C08J 5/20 C08J 9/36 G21F 9 / 12
Claims (4)
で、かつ水に難溶の第四級アンモニウム塩を担持させ、
さらにヘキサシアノ鉄(II)酸塩含有水溶液で処理し
たのち、この処理物を銅塩含有水溶液と接触させて該樹
脂の細孔内にヘキサシアノ鉄(II)酸銅を沈積させ、
次いで樹脂内の第四級アンモニウム塩を低沸点有機溶剤
で抽出することを特徴とするヘキサシアノ鉄(II)酸
銅担持多孔性樹脂の製造方法。1. A quaternary ammonium salt which is soluble in a low boiling point organic solvent and hardly soluble in water is supported on a porous resin,
After further treatment with an aqueous solution containing hexacyanoferrate (II), the treated product is brought into contact with an aqueous solution containing copper salt to deposit copper hexacyanoferrate (II) in pores of the resin,
Next, a method for producing a porous resin carrying copper hexacyanoferrate (II), comprising extracting a quaternary ammonium salt in the resin with an organic solvent having a low boiling point.
脂である請求項1記載の製造方法。2. The method according to claim 1, wherein the porous resin is a slightly polar resin having no functional group.
ルメチルアンモニウム、塩化トリオクチルエチルアンモ
ニウム又は塩化トリオクチルプロピルアンモニウムであ
る請求項1又は2記載の製造方法。3. The method according to claim 1, wherein the quaternary ammonium salt is trioctylmethylammonium chloride, trioctylethylammonium chloride or trioctylpropylammonium chloride.
樹脂がセシウム分離材として用いられる請求項1、2又
は3記載の製造方法。4. The method according to claim 1, wherein the hexacyanoferrate (II) copper-supported porous resin is used as a cesium separating material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35263295A JP2810981B2 (en) | 1995-12-28 | 1995-12-28 | Method for producing copper hexacyanoferrate (II) -supported porous resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35263295A JP2810981B2 (en) | 1995-12-28 | 1995-12-28 | Method for producing copper hexacyanoferrate (II) -supported porous resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09173832A JPH09173832A (en) | 1997-07-08 |
JP2810981B2 true JP2810981B2 (en) | 1998-10-15 |
Family
ID=18425377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35263295A Expired - Lifetime JP2810981B2 (en) | 1995-12-28 | 1995-12-28 | Method for producing copper hexacyanoferrate (II) -supported porous resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2810981B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013027652A1 (en) | 2011-08-19 | 2013-02-28 | 一般財団法人生産技術研究奨励会 | Radioactive cesium adsorbent and method for producing same, and method for removing radioactive cesium from environment using said adsorbent |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3749941B2 (en) * | 1997-09-04 | 2006-03-01 | 独立行政法人産業技術総合研究所 | Method for producing cesium separator |
JP5967435B2 (en) * | 2012-09-27 | 2016-08-10 | 日本エクスラン工業株式会社 | Ferrocyanide composite vinyl polymer, preparation of the polymer, and cesium ion adsorbent containing the polymer |
JP6152764B2 (en) * | 2013-09-24 | 2017-06-28 | 東亞合成株式会社 | Cesium adsorbent manufacturing method and cesium adsorbent |
JP6504436B2 (en) * | 2015-01-16 | 2019-04-24 | 国立研究開発法人産業技術総合研究所 | Radioactive material adsorbent, radioactive material adsorption cartridge and monitoring device for radioactive material |
-
1995
- 1995-12-28 JP JP35263295A patent/JP2810981B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013027652A1 (en) | 2011-08-19 | 2013-02-28 | 一般財団法人生産技術研究奨励会 | Radioactive cesium adsorbent and method for producing same, and method for removing radioactive cesium from environment using said adsorbent |
US9455054B2 (en) | 2011-08-19 | 2016-09-27 | The Foundation For The Promotion Of Industrial Science | Radioactive cesium adsorbent, method for producing the same, and method for removing radioactive cesium in environment with said adsorbent |
Also Published As
Publication number | Publication date |
---|---|
JPH09173832A (en) | 1997-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3749941B2 (en) | Method for producing cesium separator | |
CN109195922B (en) | Sustainable system and method for removing and concentrating perfluoro and polyfluoroalkyl materials (PFAS) from water | |
JP6093944B2 (en) | Method for separating and recovering rare earth elements and acids from solutions containing rare earth elements | |
CA2381853C (en) | Method and installation for eliminating metal cations from a liquid with polyazacycloalkane resins grafted on a support | |
JP3469899B2 (en) | Radioactive material decontamination method | |
US4747949A (en) | Liquid membrane coated ion-exchange column solids | |
WO1996011056A1 (en) | Polyazacycloalkanes, tri, tetra or pentaazamacrocyclic complexes grafted to a support | |
JP2560253B2 (en) | Method for producing and regenerating ion exchanger for cesium separation | |
JP2810981B2 (en) | Method for producing copper hexacyanoferrate (II) -supported porous resin | |
Hiraide et al. | Enrichment of metal-APDC complexes on admicelle-coated alumina for water analysis | |
Reiller et al. | Extraction and release of metal ions by micellar-enhanced ultrafiltration: influence of complexation and pH | |
CN111019147A (en) | Metal organic framework adsorbent, one-step preparation method and application thereof | |
JP2016163864A (en) | Reactivation method of activated carbon and recovery method of gold | |
JPS61274789A (en) | Method of removing metallic complex from waste liquor | |
JP3014186B2 (en) | Purification method of alkyl phosphate solution | |
JPH0319520B2 (en) | ||
US4113467A (en) | Process for recovering gold | |
US4886598A (en) | Liquid membrane coated ion-exchange column solids | |
JP4069291B2 (en) | Method for separating metal ions from metal complex solution | |
US2863717A (en) | Recovery of uranium values from copper-bearing solutions | |
US5788937A (en) | Method for the recovery of silver value from aqueous solution | |
Matulionytė et al. | Removal of various components from fixing rinse water by anion-exchange resins | |
JP2009084673A (en) | Selective separation/recovery method for specified metal ion | |
JPS626678B2 (en) | ||
US5015458A (en) | Method for purifying sulfuric acid solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |