JPH06154614A - Diesel engine exhaust gas purifying catalyst - Google Patents

Diesel engine exhaust gas purifying catalyst

Info

Publication number
JPH06154614A
JPH06154614A JP4318431A JP31843192A JPH06154614A JP H06154614 A JPH06154614 A JP H06154614A JP 4318431 A JP4318431 A JP 4318431A JP 31843192 A JP31843192 A JP 31843192A JP H06154614 A JPH06154614 A JP H06154614A
Authority
JP
Japan
Prior art keywords
catalyst
supporting layer
exhaust gas
diesel engine
sof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4318431A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Ogura
義次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4318431A priority Critical patent/JPH06154614A/en
Publication of JPH06154614A publication Critical patent/JPH06154614A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To maintain a high SOF adsorptivity level over a long time even at the time of continuously driving a diesel engine car at a low speed by adding magnesium oxysulfate to a catalyst supporting layer of a diesel engine exhaust gas purifying catalyst comprising a carrier base material, the catalyst supporting layer and the catalyst metal. CONSTITUTION:The diesel engine exhaust gas purifying catalyst comprises the carrier base material, the catalyst supporting layer formed on the surface of the carrier base material and the catalyst metal supported on the catalyst supporting layer. The catalyst supporting layer contains magnesium oxysulfate. Although the catalyst supporting layer may consist of magnesium oxysulfate only, it desirably consists of both active alumina and magnesium oxysulfate. At this time the adhesion of the coating layer is improved. This catalyst shows high SOF adsorption performance even at the time of continuously driving a diesel engine car over a long time at a low speed. When the exhaust gas temperature is raised to the active temperature region of the catalyst metal, the adsorbed SOF is burned and removed by the catalytic action.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジン
(以下、DEという)からの排気ガス中に含まれるH
C、CO及びSOF(Soluble Organic Fraction)を浄
化する排気浄化用触媒に関する。
The present invention relates to H contained in exhaust gas from a diesel engine (hereinafter referred to as DE).
The present invention relates to an exhaust gas purification catalyst that purifies C, CO and SOF (Soluble Organic Fraction).

【0002】[0002]

【従来の技術】ガソリンエンジンについては、排気ガス
の厳しい規制とそれに対処できる技術の進歩により、排
気ガス中の有害物質は確実に減少している。しかしDE
については、有害成分が主としてパティキュレートとし
て排出されるという特異な事情から、規制も技術の開発
もガソリンエンジンに比べて遅れており、確実に浄化で
きる排気ガス浄化装置の開発が望まれている。
2. Description of the Related Art With respect to gasoline engines, toxic substances in exhaust gas have been steadily reduced due to strict regulations on exhaust gas and advances in technology capable of coping with the regulations. But DE
With regard to the above, due to the peculiar circumstances in which harmful components are mainly discharged as particulates, the regulations and the development of technology are behind that of the gasoline engine, and the development of an exhaust gas purification device that can surely purify is desired.

【0003】現在までに開発されているDE排気ガス浄
化装置としては、大きく分けてトラップを用いる方法
(触媒無しと触媒付き)と、オープン型SOF分解触媒
とが知られている。このうちトラップを用いる方法は、
ディーゼルパティキュレートをトラップして排出を規制
するものであり、特にドライスーツの比率の高い排気ガ
スに有効である。しかしながら再生処理装置が必要とな
り、再生時の触媒担体の割れ、アッシュによる閉塞ある
いはシステムが複雑になるなど、実用上多くの課題を残
している。
As a DE exhaust gas purifying apparatus which has been developed up to now, a method using a trap (without a catalyst and with a catalyst) and an open type SOF decomposition catalyst are known. Of these, the method that uses a trap is
It traps diesel particulates to control emissions, and is particularly effective for exhaust gas with a high proportion of dry suits. However, a regeneration treatment device is required, and many problems remain for practical use, such as cracking of the catalyst carrier during regeneration, blockage due to ash, or complicated system.

【0004】一方オープン型SOF分解触媒は、例えば
特開平3−38255号公報に示されるように、活性ア
ルミナなどの触媒担持層にガソリンエンジンと同様に白
金族金属などの酸化触媒を担持した触媒が利用され、C
OやHCとともにディーゼルパティキュレート中のSO
Fを酸化分解して浄化する。このオープン型SOF分解
触媒は、ドライスーツの除去率が低いという欠点がある
が、ドライスーツの量はDEや燃料自体の改良によって
低減することが可能であり、かつ再生処理装置が不要と
いう大きなメリットがあるため、今後の一段の技術の向
上が期待されている。
On the other hand, the open type SOF decomposition catalyst is, for example, as disclosed in Japanese Patent Application Laid-Open No. 3-38255, a catalyst in which an oxidation catalyst such as a platinum group metal is supported on a catalyst supporting layer such as activated alumina as in a gasoline engine. Used, C
SO in diesel particulate along with O and HC
F is oxidatively decomposed and purified. This open type SOF decomposition catalyst has the drawback that the removal rate of dry suit is low, but the amount of dry suit can be reduced by improving DE and fuel itself, and a great advantage that a regeneration treatment device is unnecessary. Therefore, further improvement of technology is expected in the future.

【0005】ところで、上記したオープン型SOF分解
触媒は、触媒金属の酸化作用によりSOFを分解して浄
化するものである。ところが触媒金属は活性温度域以下
では触媒作用を奏せず、始動時や低速走行時などの排気
ガス温度が低い場合にはSOFがそのまま排出されてし
まう。そこで従来は、吸着性能に優れた活性アルミナを
触媒担持層に用い、低温時にはSOFを触媒担持層に吸
着させて排出を防止し、排気ガス温度が上昇したときに
Pdなどの酸化触媒金属で吸着したSOFを燃焼除去し
て浄化している。
By the way, the above-mentioned open type SOF decomposition catalyst decomposes and purifies SOF by the oxidizing action of the catalyst metal. However, the catalytic metal does not exert a catalytic action below the activation temperature range, and SOF is discharged as it is when the exhaust gas temperature is low at the time of starting or running at low speed. Therefore, conventionally, activated alumina having excellent adsorption performance is used for the catalyst supporting layer, SOF is adsorbed on the catalyst supporting layer at a low temperature to prevent emission, and when the exhaust gas temperature rises, it is adsorbed by an oxidation catalyst metal such as Pd. The SOF is burned and removed for purification.

【0006】[0006]

【発明が解決しようとする課題】活性アルミナは、シリ
カ,チタニア,ジルコニアなどの他のコート材と比べて
高いSOF吸着性能を有している。しかしながら、DE
の排気ガス温度はガソリンエンジンに比べてかなり低
く、例えば車速80km/h以下の速度で走行すると、
排気ガス温度が触媒金属の活性温度域まで上昇しないと
いう現実がある。
Activated alumina has a higher SOF adsorption performance than other coating materials such as silica, titania and zirconia. However, DE
Exhaust gas temperature is considerably lower than that of a gasoline engine. For example, when traveling at a vehicle speed of 80 km / h or less,
The reality is that the exhaust gas temperature does not rise to the active temperature range of the catalytic metal.

【0007】そのため80km/h以下の低速で長時間
連続走行するような場合には、SOFが燃焼除去されず
に吸着され、ついには吸着が飽和状態となってSOFが
排出されてしまうという不具合があった。本発明はこの
ような事情に鑑みてなされたものであり、低速で連続走
行するような場合であっても、さらに長時間の間SOF
の吸着率を高く維持することを目的とする。
Therefore, when the vehicle continuously travels at a low speed of 80 km / h or less for a long time, the SOF is adsorbed without being removed by combustion, and the adsorption is finally saturated, so that the SOF is discharged. there were. The present invention has been made in view of such circumstances, and even if the vehicle continuously travels at a low speed, the SOF is continued for a longer time.
The purpose is to maintain a high adsorption rate of.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明のDEの排気浄化用触媒は、担体基材と、担体基材の
表面に形成された触媒担持層と、触媒担持層に担持され
た触媒金属とからなるディーゼルエンジンの排気浄化用
触媒において、触媒担持層はマグネシウムオキシサルフ
ェート〔MgSO4 ・nMg(OH)2〕を含むことを特徴とする。
The exhaust gas purification catalyst of DE of the present invention for solving the above problems is a carrier substrate, a catalyst carrier layer formed on the surface of the carrier substrate, and a catalyst carrier layer supported on the catalyst carrier layer. In a catalyst for purifying exhaust gas of a diesel engine, which comprises the catalyst metal, the catalyst supporting layer is characterized by containing magnesium oxysulfate [MgSO 4 · nMg (OH) 2 ].

【0009】触媒担持層は、マグネシウムオキシサルフ
ェートのみで構成してもよいが、マグネシウムオキシサ
ルフェートと活性アルミナの両方で構成することが望ま
しい。これによりコート層の密着性が向上する。この場
合、マグネシウムオキシサルフェートと活性アルミナと
の混合比率は、4:1〜1:2程度が最適である。この
範囲とすることにより最高のSOF吸着能が得られる。
The catalyst-supporting layer may be composed of magnesium oxysulfate alone, but is preferably composed of both magnesium oxysulfate and activated alumina. This improves the adhesion of the coat layer. In this case, the optimum mixing ratio of magnesium oxysulfate and activated alumina is about 4: 1 to 1: 2. By setting it in this range, the highest SOF adsorption capacity can be obtained.

【0010】[0010]

【作用】本発明の排気浄化用触媒では、触媒担持層にマ
グネシウムオキシサルフェート〔MgSO4 ・nMg(OH)2〕を
含んでいる。このマグネシウムオキシサルフェートの存
在により、理由は不明であるが低速で長時間連続走行し
た場合にも高いSOFの吸着性能を示し、吸着容量が格
段に増大する。
In the exhaust gas purifying catalyst of the present invention, the catalyst supporting layer contains magnesium oxysulfate [MgSO 4 .nMg (OH) 2 ]. Due to the presence of this magnesium oxysulfate, although the reason is unknown, it exhibits a high SOF adsorption performance even when continuously running at a low speed for a long time, and the adsorption capacity is remarkably increased.

【0011】そして排気ガス温度が触媒金属の活性温度
域に上昇すると、吸着されていたSOFは触媒金属の触
媒作用により燃焼除去される。
When the exhaust gas temperature rises to the active temperature range of the catalytic metal, the adsorbed SOF is burned and removed by the catalytic action of the catalytic metal.

【0012】[0012]

【実施例】以下、実施例により具体的に説明する。 (実施例1)硫酸マグネシウム水溶液を原料としてオー
トクレーブ処理を行い、マグネシウムオキシサルフェー
ト〔MgSO4 ・3Mg(OH)2〕のウィスカを得た。このウィス
カ50重量部を、100重量部の蒸留水と100重量部
のアルミナゾル(アルミナ含量10重量%)の混合溶液
中に投入し、ボールミル中で24時間分散してスラリー
を調製した。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 An autoclave treatment was performed using an aqueous magnesium sulfate solution as a raw material to obtain a whisker of magnesium oxysulfate [MgSO 4 .3Mg (OH) 2 ]. 50 parts by weight of the whiskers were put into a mixed solution of 100 parts by weight of distilled water and 100 parts by weight of alumina sol (alumina content 10% by weight), and dispersed in a ball mill for 24 hours to prepare a slurry.

【0013】次に、市販のコージェライト製ハニカム担
体(直径103mm、長さ100mm、400セル/i
2 )を吸水処理後、上記スラリー中に1分間浸漬し、
引き上げて余分なスラリーを吹き払った後、乾燥・焼成
してマグネシウムオキシサルフェートを主成分としアル
ミナを従成分とする触媒担持層を形成した。この触媒担
持層は、ハニカム担体1リットル当たり75g形成され
ていた。
Next, a commercially available cordierite honeycomb carrier (diameter 103 mm, length 100 mm, 400 cells / i)
n 2 ) after absorbing water, immersed in the above slurry for 1 minute,
After pulling up and blowing off the excess slurry, it was dried and calcined to form a catalyst supporting layer containing magnesium oxysulfate as a main component and alumina as a secondary component. This catalyst carrying layer was formed in an amount of 75 g per liter of the honeycomb carrier.

【0014】そして触媒担持層が形成されたハニカム担
体を塩化パラジウム水溶液中に1分間浸漬し、引き上げ
て余分な溶液を吹き払った後、乾燥・焼成してパラジウ
ムを担体容積1リットル当たり1.5g担持させ、本実
施例の排気浄化用触媒を得た。この触媒を排気量2.4
リットルの渦流室式DEの排気系に取付け、車速60k
m/h相当の条件(入ガス温度235℃)で連続運転を
行い、SOFの低減率を所定時間毎に測定した。結果を
図1に示す。なおSOFの低減率は、直接サンプリング
法で触媒上流部と下流部のパティキュレートをサンプリ
ングし、それぞれのパティキュレートに含まれるSOF
の量を化学分析で定量して算出した。
Then, the honeycomb carrier on which the catalyst supporting layer is formed is dipped in an aqueous solution of palladium chloride for 1 minute, pulled up to blow off an excess solution, dried and calcined to obtain 1.5 g of palladium per liter of carrier volume. The catalyst was supported to obtain an exhaust gas purification catalyst of this example. The displacement of this catalyst is 2.4
Installed in the exhaust system of a liter swirl chamber type DE, vehicle speed 60k
Continuous operation was performed under conditions equivalent to m / h (inlet gas temperature 235 ° C.), and the SOF reduction rate was measured every predetermined time. The results are shown in Fig. 1. Note that the SOF reduction rate is obtained by sampling the particulates on the upstream side and the downstream side of the catalyst by the direct sampling method and determining the SOF contained in each particulate.
Was calculated by chemical analysis.

【0015】なお本実施例ではコージェライト製ハニカ
ム担体を用いたが、担体基材はこれに限られるものでは
なく、メタルハニカム担体基材、ペレット担体基材など
公知の担体基材を用いることができる。触媒担持層はマ
グネシウムオキシサルフェートを含めばよく、アルミナ
以外にシリカ,チタニア,ジルコニアなどを用いること
もできる。また触媒金属としては、パラジウムの他に白
金、ロジウムなど、公知の触媒金属を用いることができ
る。
Although a cordierite honeycomb carrier is used in this embodiment, the carrier substrate is not limited to this, and a known carrier substrate such as a metal honeycomb carrier substrate or a pellet carrier substrate can be used. it can. The catalyst supporting layer may contain magnesium oxysulfate, and silica, titania, zirconia or the like can be used in addition to alumina. In addition to palladium, known catalyst metals such as platinum and rhodium can be used as the catalyst metal.

【0016】また本実施例では、マグネシウムオキシサ
ルフェートとしてn=3の〔MgSO4・3Mg(OH)2〕を用い
たが、これ以外にn=1,2,5などのものも用いるこ
とができる。 (実施例2)実施例1で用いたものと同一のマグネシウ
ムオキシサルフェート〔MgSO4 ・3Mg(OH)2〕のウィスカ
25重量部と、活性アルミナ粉末25重量部を、100
重量部の蒸留水と100重量部のアルミナゾルの混合溶
液に投入し、実施例1と同様にしてスラリーを調製し
た。
In this embodiment, [MgSO 4 .3Mg (OH) 2 ] with n = 3 was used as the magnesium oxysulfate, but n = 1, 2, 5, etc. can be used in addition to this. . Example 2 25 parts by weight of the same magnesium oxysulfate [MgSO 4 .3Mg (OH) 2 ] whiskers used in Example 1 and 25 parts by weight of activated alumina powder were added to 100 parts by weight.
A slurry was prepared in the same manner as in Example 1 by introducing into a mixed solution of 100 parts by weight of distilled water and 100 parts by weight of alumina sol.

【0017】このスラリーを用い、実施例1と同様のハ
ニカム体に同様にして触媒担持層を形成した。触媒担持
層には、マグネシウムオキシサルフェート〔MgSO4 ・3M
g(OH)2〕と活性アルミナが重量比で1対1の比率で含有
されている。また触媒担持層は、ハニカム担体1リット
ル当たり約75g形成されていた。そして実施例1と同
様にしてパラジウムを同量担持させ、実施例2の触媒と
した。そして同様にSOFの低減率が測定され、結果を
図1に示す。 (比較例1)触媒担持層がアルミナから形成されている
こと以外は実施例1と同様の構成である。なお、触媒担
持層を形成するのに用いたスラリーは、活性アルミナ粉
末が100重量部、アルミナゾルが50重量部、蒸留水
が100重量部の組成である。
Using this slurry, a catalyst supporting layer was formed in the same manner on a honeycomb body as in Example 1. The catalyst-supporting layer contains magnesium oxysulfate [MgSO 4 / 3M
g (OH) 2 ] and activated alumina are contained in a weight ratio of 1: 1. The catalyst supporting layer was formed in an amount of about 75 g per liter of the honeycomb carrier. Then, in the same manner as in Example 1, the same amount of palladium was carried to obtain the catalyst of Example 2. The SOF reduction rate was measured in the same manner, and the results are shown in FIG. (Comparative Example 1) The structure is the same as that of Example 1 except that the catalyst supporting layer is made of alumina. The slurry used for forming the catalyst supporting layer had a composition of 100 parts by weight of activated alumina powder, 50 parts by weight of alumina sol, and 100 parts by weight of distilled water.

【0018】この触媒も同様にSOFの低減率が測定さ
れ、結果を図1に示す。 (比較例2)触媒担持層がマグネシア(MgO)とアル
ミナから構成されていること以外は実施例1と同様の構
成である。なお、触媒担持層を形成するのに用いたスラ
リーは、市販のマグネシア粉末が25重量部、活性アル
ミナ粉末が25重量部、アルミナゾルが100重量部、
蒸留水が100重量部の組成である。
The SOF reduction rate of this catalyst was similarly measured, and the results are shown in FIG. (Comparative Example 2) The structure is the same as that of Example 1 except that the catalyst supporting layer is composed of magnesia (MgO) and alumina. The slurry used to form the catalyst-supporting layer was 25 parts by weight of commercially available magnesia powder, 25 parts by weight of activated alumina powder, and 100 parts by weight of alumina sol.
The composition is 100 parts by weight of distilled water.

【0019】この触媒も同様にSOFの低減率が測定さ
れ、結果を図1に示す。 (比較例3)比較例1と同様のスラリーを用い、同様に
活性アルミナからなる触媒担持層を形成した。次にこの
ハニカム担体を硫酸マグネシウム(MgSO4 )水溶液
に浸漬し、吸水率分だけ吸水させ引き上げて余分な液滴
を吹き払った後、乾燥・焼成して約38gの硫酸マグネ
シウムを担持させた。さらに実施例1と同様にパラジウ
ムを担持させ、比較例3の触媒とした。
The SOF reduction rate of this catalyst was also measured, and the results are shown in FIG. (Comparative Example 3) Using the same slurry as in Comparative Example 1, a catalyst supporting layer made of activated alumina was similarly formed. Next, this honeycomb carrier was immersed in an aqueous solution of magnesium sulfate (MgSO 4 ), absorbed by the amount of water absorption and pulled up to blow off excess droplets, and then dried and fired to carry about 38 g of magnesium sulfate. Further, palladium was loaded in the same manner as in Example 1 to obtain a catalyst of Comparative Example 3.

【0020】この触媒も同様にSOFの低減率が測定さ
れ、結果を図1に示す。 (評価)図1より、従来の構成の触媒である比較例1の
触媒では,約30時間でSOF吸着能が消失しているの
に対し、本発明の実施例1,2の触媒では徐々に低下し
てはいるものの、70時間経過後も30%以上のSOF
吸着率を示している。
The SOF reduction rate of this catalyst was similarly measured, and the results are shown in FIG. (Evaluation) From FIG. 1, the SOF adsorption capacity of the catalyst of Comparative Example 1 having a conventional structure disappeared in about 30 hours, whereas the catalysts of Examples 1 and 2 of the present invention gradually Although decreasing, SOF of 30% or more after 70 hours
The adsorption rate is shown.

【0021】すなわち本実施例の触媒によれば、低速で
長時間走行した場合でも高いSOF吸着容量を有してお
り、これは触媒担持層にマグネシウムオキシサルフェー
トを含むことに起因することが明らかである。なお、比
較例2及び比較例3の結果より、触媒担持層にマグネシ
ア(MgO)や硫酸マグネシウム(MgSO4 )を含ん
でも効果が得られないことから、マグネシウムオキシサ
ルフェートの形になって初めて特異な吸着作用が発現す
るものと考えられる。
That is, the catalyst of this example has a high SOF adsorption capacity even when it is run at a low speed for a long time, which is apparently due to the fact that the catalyst supporting layer contains magnesium oxysulfate. is there. From the results of Comparative Example 2 and Comparative Example 3, even if the catalyst-supporting layer contains magnesia (MgO) or magnesium sulfate (MgSO 4 ), no effect can be obtained. Therefore, it is unique only in the form of magnesium oxysulfate. It is considered that the adsorption action is exhibited.

【0022】[0022]

【発明の効果】本発明のDEの排気浄化用触媒によれ
ば、SOFの吸着特性に極めて優れ吸着容量が格段に高
くなることから、低速で長時間走行するような場合にお
いてもSOFの排出を防止することができる。
EFFECTS OF THE INVENTION According to the DE exhaust purification catalyst of the present invention, since the SOF adsorption characteristic is extremely excellent and the adsorption capacity is remarkably increased, the SOF emission can be achieved even when traveling at a low speed for a long time. Can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】DEを低速走行条件で長時間運転した場合のS
OF吸着率の変化を示すグラフである。
FIG. 1 S when DE is driven for a long time under low-speed running conditions
It is a graph which shows change of OF adsorption rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 担体基材と、該担体基材の表面に形成さ
れた触媒担持層と、該触媒担持層に担持された触媒金属
とからなるディーゼルエンジンの排気浄化用触媒におい
て、 前記触媒担持層はマグネシウムオキシサルフェート〔Mg
SO4 ・nMg(OH)2〕を含むことを特徴とするディーゼルエ
ンジンの排気浄化用触媒。
1. A catalyst for exhaust emission purification of a diesel engine, which comprises a carrier substrate, a catalyst carrier layer formed on the surface of the carrier substrate, and a catalyst metal supported on the catalyst carrier layer, wherein the catalyst carrier is Layer is magnesium oxysulfate [Mg
SO 4 · nMg (OH) 2 ], which is a catalyst for exhaust gas purification of a diesel engine.
JP4318431A 1992-11-27 1992-11-27 Diesel engine exhaust gas purifying catalyst Pending JPH06154614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318431A JPH06154614A (en) 1992-11-27 1992-11-27 Diesel engine exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318431A JPH06154614A (en) 1992-11-27 1992-11-27 Diesel engine exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
JPH06154614A true JPH06154614A (en) 1994-06-03

Family

ID=18099080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318431A Pending JPH06154614A (en) 1992-11-27 1992-11-27 Diesel engine exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JPH06154614A (en)

Similar Documents

Publication Publication Date Title
EP0494591B1 (en) Diesel engine exhaust gas-purifying catalyst
JP3328318B2 (en) Exhaust gas purification method
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP3511314B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
EP0622107B1 (en) Exhaust gas purifying catalyst in diesel engines
JPH05168860A (en) Purifying method of exhaust gas
JP3328322B2 (en) Exhaust gas purification method
JPH10202105A (en) Oxidation catalyst for diesel exhaust gas
JPH08266865A (en) Exhaust gas purification catalyst for diesel engine
US5686377A (en) Catalyst for purifying exhaust gases
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JP3137496B2 (en) Exhaust purification catalyst for diesel engines
JP2827532B2 (en) Catalyst device for reducing diesel particulates
JPH04171215A (en) Exhaust air cleaning device for diesel engine
JPH06154614A (en) Diesel engine exhaust gas purifying catalyst
JP2003326137A (en) Exhaust gas purification method and catalyst for exhaust gas purification
JP3316879B2 (en) Exhaust gas purification catalyst for diesel engines
JPH06165920A (en) Exhaust gas purifying method
JP3287473B2 (en) Exhaust purification catalyst for diesel engines
JPH0568888A (en) Waste gas cleaning catalyst
JP3377382B2 (en) Exhaust gas purification catalyst for diesel engines
JP3771608B2 (en) Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method using the same
JPH09173841A (en) Catalyst for cleaning exhaust gas from diesel engine
JPH0568886A (en) Waste gas cleaning catalyst from diesel engine
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method