JPH06152253A - Frequency multiplier - Google Patents

Frequency multiplier

Info

Publication number
JPH06152253A
JPH06152253A JP29900092A JP29900092A JPH06152253A JP H06152253 A JPH06152253 A JP H06152253A JP 29900092 A JP29900092 A JP 29900092A JP 29900092 A JP29900092 A JP 29900092A JP H06152253 A JPH06152253 A JP H06152253A
Authority
JP
Japan
Prior art keywords
fet
gate
bias voltage
voltage
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29900092A
Other languages
Japanese (ja)
Inventor
Masanori Iwatsuki
政典 岩附
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29900092A priority Critical patent/JPH06152253A/en
Publication of JPH06152253A publication Critical patent/JPH06152253A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To secure the long-time reliability of an FET without damaging the multiplication efficiency by generating a detection voltage in accordance with an input signal level higher than a threshold and superposing it on a gate bias voltage to suppress the gate current. CONSTITUTION:The input signal is inputted to not only a detector D1 through a coupler 21 but also the gate of an PET 12 through a matching device 11. The detector D1 outputs a detection voltage -V corresponding to the difference between the applied signal level and a threshold -V3 to a resistance R2, and it is superposed on an external bias voltage -V4 and is applied to the gate of the FET 12 through the matching device 11. Consequently, when the input signal level is excessive, the gate bias voltage of the FET 12 is made deeper to change the linear operation direction of the FET, and flow of the gate current is suppressed. Thus, the long-time reliability of the FET is secured without damaging the multiplication efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、無線通信シス
テムに使用する周波数逓倍器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency multiplier used in a wireless communication system, for example.

【0002】一般に、安定度が高く、しかも周波数の高
い信号が必要な時は、周波数は低いが安定度の高い発振
器の出力を周波数逓倍器で逓倍して所望の周波数の信号
を得ている。逓倍素子としては、従来から用いられてい
るバラクタダイオードやステップリカバリダイオードな
どの2端子素子の他に、GaAs FETやHEMTなどの3端子素
子も用いられている。
Generally, when a signal with high stability and high frequency is required, the output of an oscillator with low frequency but high stability is multiplied by a frequency multiplier to obtain a signal of a desired frequency. As the multiplication element, a three-terminal element such as a GaAs FET or HEMT is used in addition to a two-terminal element such as a varactor diode or a step recovery diode which has been conventionally used.

【0003】3端子素子は増幅作用があること、入出力
にある程度のアイソレーションがあることなどの2端子
素子にはない特徴を有している為、最近では2端子素子
に代わり、様々な周波数帯で利用されている。
Since the three-terminal element has characteristics that the two-terminal element does not have, such as having an amplifying function and a certain degree of isolation between input and output, recently, instead of the two-terminal element, various frequencies have been used. It is used in obi.

【0004】この為、3端子素子であるFET としては、
逓倍効率を損なうことなく、長期的な信頼性の確保がで
きる様にすることが必要である。
Therefore, as a FET, which is a three-terminal element,
It is necessary to ensure long-term reliability without degrading the multiplication efficiency.

【0005】[0005]

【従来の技術】図3は従来例の構成図、図4は図3の動
作説明図で、(a) はFET の VGS-IDS特性図, (b) は入力
レベル対ゲート電流特性図である。
2. Description of the Related Art FIG. 3 is a configuration diagram of a conventional example, FIG. 4 is an operation explanatory diagram of FIG. 3, (a) is a V GS -I DS characteristic diagram of an FET, (b) is an input level vs. gate current characteristic diagram Is.

【0006】以下、図4を参照して、図3の動作を説明
するが、逓倍次数は2とする。先ず、FET 12のゲートに
はバイアス電圧( −V1) が抵抗R1, 高周波チョーク c
h1, 入力側整合部分11を介して加えられ、ドレインには
電圧 V2 が高周波チョークch2, 出力側整合部分と2倍
波を抽出するフイルタ部分からなるフイルタ・整合部分
13を介して加えられている。
The operation of FIG. 3 will be described below with reference to FIG. 4, but the multiplication order is 2. First, the gate of FET 12 has a bias voltage (−V 1 ) of resistance R 1 and high frequency choke c.
h 1 is a high-frequency choke applied to the input side matching part 11 and has a voltage V 2 at the drain ch 2 , a filter / matching part consisting of an output side matching part and a filter part for extracting the second harmonic.
It has been added through 13.

【0007】さて、例えば 10GHzの信号が端子IN, コン
デンサC1, 入力側整合部分11を介してFET のゲートに加
えられると、図4(a) に示す VGS-IDSの非線形特性によ
り、歪信号がドレイン側に現れる。そして、フイルタ部
分で歪信号から 20GHz成分を抽出した後、出力側整合部
分,コンデンサ C2 を介して端子OUT から取り出す。
Now, for example, when a signal of 10 GHz is applied to the gate of the FET via the terminal IN, the capacitor C 1 and the input side matching portion 11, the nonlinear characteristics of V GS -I DS shown in FIG. The distortion signal appears on the drain side. Then, after extracting the 20 GHz component from the distortion signal in the filter part, it is taken out from the terminal OUT via the output side matching part and the capacitor C 2 .

【0008】ここで、周波数逓倍を効率よく行う為に
は、FET でより大きな歪信号を発生させる必要があるの
で、FET のゲートバイアス電圧は通常0V またはピンチ
オフ電圧(IDSが0の点の VGS) 付近に設定される。
Here, in order to efficiently perform frequency multiplication, it is necessary to generate a larger distortion signal in the FET, so the gate bias voltage of the FET is usually 0 V or the pinch-off voltage (V at the point where I DS is 0). It is set near GS ).

【0009】[0009]

【発明が解決しようとする課題】さて、図4(a) はFET
のゲート電圧対ドレイン電流の静特性を示すが、FET の
ゲート・ソース間には、外部から供給されるゲートバイ
アス電圧( −V1) に端子INから入力される高周波信号に
よる電圧が重畳されて加わる。
[Fig. 4 (a)] is a FET
Shows the static characteristics of gate voltage versus drain current, between the gate and source of the FET, is superimposed voltage by the high-frequency signal input to the gate bias voltage supplied from the outside (-V 1) from terminal IN Join.

【0010】今、ゲートバイアス電圧が0の近くの−V1
に設定された時、入力レベルが小さい時はゲート電圧の
ピーク値が0V を越えず、特に問題はないが、入力レベ
ルが大きくなってそのピーク値が0V を越えると( 図4
(a) の斜線部分) 、ゲートに印加する電圧がソースに対
して正となり、ゲートからソースにゲート電流が流れ
る。
Now, when the gate bias voltage is near 0, -V 1
When the input level is low, the peak value of the gate voltage does not exceed 0V and there is no particular problem, but when the input level increases and the peak value exceeds 0V (Fig. 4).
In (a), the voltage applied to the gate is positive with respect to the source, and a gate current flows from the gate to the source.

【0011】このゲート電流はゲート・ソース間をダイ
オードとみなした時、順方向電流であり、一旦ゲート電
流が流れると、僅かな入力レベルの増加によってゲート
電流が急増する。これにり、FET が劣化するので、この
ゲート電流を抑える必要があるが、この方法の一つに図
3に示すようゲートバイアス回路に抵抗R1を挿入するこ
とであり、図4(b) に示す様に、抵抗値を大きくするこ
とによってゲート電流の増加が抑圧されるが完全に抑え
るこはとはできない。
This gate current is a forward current when the gate-source is regarded as a diode, and once the gate current flows, the gate current rapidly increases due to a slight increase in the input level. As a result, the FET deteriorates, so it is necessary to suppress this gate current. One of the methods is to insert a resistor R 1 in the gate bias circuit as shown in FIG. As shown in, the increase in the gate current is suppressed by increasing the resistance value, but it cannot be completely suppressed.

【0012】即ち、ゲート電流の完全な抑圧が不可能な
為、FET の長期的な信頼性の確保が困難である云う問題
がある。本発明は、FET の長期的な信頼性の確保が可能
となる様にすることを目的とする。
That is, since it is impossible to completely suppress the gate current, it is difficult to secure the long-term reliability of the FET. An object of the present invention is to make it possible to ensure long-term reliability of a FET.

【0013】[0013]

【課題を解決するための手段】図1は本発明の原理構成
図である。図中、2は入力信号のレベルがしきい値以上
の時、該入力信号のレベルとしきい値との差に対応する
所定極性の検波電圧を出力するが、入力信号のレベルが
しきい値以下の時、検波電圧を出力しない検波部分、3
は印加する該所定極性の外部バイアス電圧と該検波電圧
とを重畳して、該バイアス電圧として送出する重畳部
分、12は電界効果トランジスタである。
FIG. 1 is a block diagram showing the principle of the present invention. In the figure, 2 indicates that when the level of the input signal is equal to or higher than the threshold value, the detection voltage of a predetermined polarity corresponding to the difference between the level of the input signal and the threshold value is output, but the level of the input signal is equal to or lower than the threshold value When, the detection part that does not output the detection voltage, 3
Is a superimposing portion for superimposing the applied external bias voltage of the predetermined polarity and the detection voltage and sending the superposed voltage as the bias voltage, and 12 is a field effect transistor.

【0014】[0014]

【作用】本発明は検波部分で入力信号のレベルがしきい
値以上の時、(入力信号のレベル−しきい値)に対応す
る所定極性の検波電圧を生成して重畳部分に送出する。
重畳部分には外部からのゲートバイアス電圧も印加して
いるので、ゲートバイアス電圧に同一極性の検波電圧を
重畳した電圧がバイアス電圧としてFET のゲートに印加
する。
According to the present invention, when the level of the input signal is equal to or higher than the threshold value in the detection portion, a detection voltage of a predetermined polarity corresponding to (input signal level-threshold value) is generated and sent to the superposition portion.
Since the gate bias voltage from the outside is also applied to the superposed portion, the voltage obtained by superposing the detection voltage of the same polarity on the gate bias voltage is applied to the gate of the FET as the bias voltage.

【0015】これにより、入力信号のレベルがしきい値
以上の時でも、即ち、入力信号が過大レベルであっても
ゲート電流が流れることなくFET の長期的な信頼生が確
保される。
As a result, even when the level of the input signal is equal to or higher than the threshold value, that is, even when the input signal is at an excessive level, the long-term reliability of the FET is secured without the gate current flowing.

【0016】[0016]

【実施例】図2は本発明の実施例の構成図である。ここ
で、結合器21, ダイオードD1, コンデンサC3, C4, 抵抗
R2, 高周波チョークch3 は検波部分2の構成部分、抵抗
R3, R4は重畳部分3の構成部分である。なお、全図を通
じて同一符号は同一対象物を示す。以下、図2の動作説
明をするが、上記で詳細説明した部分に対しては概略説
明し、本発明の部分について詳細説明する。
FIG. 2 is a block diagram of an embodiment of the present invention. Where coupler 21, diode D 1 , capacitors C 3 , C 4 , resistance
R 2 and high frequency choke ch 3 are the components of the detection part 2 and the resistance.
R 3 and R 4 are constituent parts of the overlapping part 3. The same reference numerals denote the same objects throughout the drawings. The operation of FIG. 2 will be described below, but the parts described in detail above will be briefly described, and the part of the present invention will be described in detail.

【0017】図において、端子INを介して入力した周波
数f0の信号は結合器で一部分が検波器D1に、残りの部分
がコンデンサC1, 入力側整合部分11を通ってFET 12のゲ
ートにそれぞれ加えられる。検波器D1は印加した信号の
電圧としきい値 (−V3) との差分に対応する検波電圧
(−v ) を抵抗 R2 の両端に出力する。
In the figure, the signal of frequency f 0 input via the terminal IN is a combiner, a part of which passes through the detector D 1 and the remaining part of which passes through the capacitor C 1 and the input side matching portion 11 and the gate of the FET 12. Added to each. The detector D 1 detects the detected voltage corresponding to the difference between the applied signal voltage and the threshold value (−V 3 ).
Output (−v) across resistor R 2 .

【0018】また、外部バイアス電圧として (−V4) が
印加しているので、抵抗R4, 抵抗R3を介して外部バイア
ス電圧( −V4) に検波電圧( −v)が重畳され、外部バイ
アス電圧(−V4) よりも, より負側にシフトしたバイア
ス電圧−(v+V4) がチョークch1,入力側整合部分11を介
してFET 12に加えられる。
Since (-V 4 ) is applied as the external bias voltage, the detection voltage (-v) is superimposed on the external bias voltage (-V 4 ) via the resistors R 4 and R 3 . A bias voltage − (v + V 4 ) that is more negatively shifted than the external bias voltage (−V 4 ) is applied to the FET 12 via the choke ch 1 and the input side matching section 11.

【0019】そこで、検波電圧が重畳しなければ、図4
(a) の斜線部分の様にゲート電流が流れる様な状態にな
る筈の所が、より負側にシフトするので、ゲート電流が
流れるのが抑圧される。
Therefore, if the detected voltage does not overlap, the condition shown in FIG.
The place where the gate current should flow like the shaded area in (a) shifts to the negative side, so that the flow of the gate current is suppressed.

【0020】即ち、FET に加えられた信号のレベルが何
らかの原因で大きくなったとすると、ゲート電圧が流
れ、逓倍器の出力も大きくなろうとする。しかし、上記
の様に外部バイアス電圧( −V4) に検波電圧( −v)が重
畳して、より負側にシフトするので、ゲート電流が流れ
ず、FET が線形動作する方向に変化して歪発生が小さく
なり、周波数逓倍器として出力する逓倍波のレベル変動
が小さく抑えられる。
That is, if the level of the signal applied to the FET increases for some reason, the gate voltage flows and the output of the multiplier also tends to increase. However, as described above, the detection voltage (-v) is superimposed on the external bias voltage (-V 4 ) and shifts to the more negative side, so the gate current does not flow and the FET changes in the direction of linear operation. Distortion is reduced, and the level fluctuation of the multiplied wave output as the frequency multiplier is suppressed.

【0021】上記の様に、入力の高周波信号が過大とな
った時だけ、ゲートバイアス電圧を深くすることがで
き、逓倍効率を損なうことなくFET の信頼生を確保する
ことができる。
As described above, the gate bias voltage can be deepened only when the input high frequency signal becomes excessive, and the reliability of the FET can be secured without impairing the multiplication efficiency.

【0022】[0022]

【発明の効果】以上詳細に説明した様に本発明によれ
ば、FET の長期的な信頼性の確保が可能となる様にする
ことができると云う効果がある。
As described in detail above, according to the present invention, it is possible to ensure long-term reliability of the FET.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理構成図である。FIG. 1 is a principle configuration diagram of the present invention.

【図2】本発明の実施例の構成図である。FIG. 2 is a configuration diagram of an embodiment of the present invention.

【図3】従来例の構成図である。FIG. 3 is a configuration diagram of a conventional example.

【図4】図3の動作説明図で、(a) はFET の VGS-IDS
性図, (b) は入力レベル対ゲート電流特性図である。
4 is an operation explanatory diagram of FIG. 3, (a) is a V GS -I DS characteristic diagram of the FET, and (b) is an input level-gate current characteristic diagram.

【符号の説明】[Explanation of symbols]

2 検波部分 3 重畳部分 12 電界効果トランジスタ 2 Detection part 3 Superposition part 12 Field effect transistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バイアス電圧が印加された電界効果トラ
ンジスタ(12)を用いて、入力信号を逓倍して所望周波数
の信号を出力信号として取り出す周波数逓倍器におい
て、 該入力信号のレベルがしきい値以上の時、該入力信号の
レベルとしきい値との差に対応する所定極性の検波電圧
を出力するが、入力信号のレベルがしきい値以下の時、
検波電圧を出力しない検波部分(2) と、印加する該所定
極性の外部バイアス電圧と該検波電圧とを重畳して、該
バイアス電圧として送出する重畳部分(3) とを設けたこ
とを特徴とする周波数逓倍器。
1. A frequency multiplier that multiplies an input signal by using a field effect transistor (12) to which a bias voltage is applied and extracts a signal of a desired frequency as an output signal, wherein the level of the input signal is a threshold value. In the above case, a detection voltage of a predetermined polarity corresponding to the difference between the level of the input signal and the threshold value is output, but when the level of the input signal is below the threshold value,
A detection part (2) that does not output a detection voltage, and a superimposition part (3) that superimposes the external bias voltage of the predetermined polarity to be applied and the detection voltage, and sends it as the bias voltage are provided. Frequency multiplier.
JP29900092A 1992-11-10 1992-11-10 Frequency multiplier Withdrawn JPH06152253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29900092A JPH06152253A (en) 1992-11-10 1992-11-10 Frequency multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29900092A JPH06152253A (en) 1992-11-10 1992-11-10 Frequency multiplier

Publications (1)

Publication Number Publication Date
JPH06152253A true JPH06152253A (en) 1994-05-31

Family

ID=17866939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29900092A Withdrawn JPH06152253A (en) 1992-11-10 1992-11-10 Frequency multiplier

Country Status (1)

Country Link
JP (1) JPH06152253A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913913A (en) * 1987-02-25 1990-04-03 The Calpis Food Industry Co., Ltd. Method of preparation of bifidobacteria-containing fermented milk
KR101004672B1 (en) * 2008-08-28 2011-01-03 전자부품연구원 Frequency double for wireless communication and driving method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913913A (en) * 1987-02-25 1990-04-03 The Calpis Food Industry Co., Ltd. Method of preparation of bifidobacteria-containing fermented milk
KR101004672B1 (en) * 2008-08-28 2011-01-03 전자부품연구원 Frequency double for wireless communication and driving method thereof

Similar Documents

Publication Publication Date Title
JPH0347766B2 (en)
JPH07185457A (en) Supersonic wave oscillator drive circuit
US7227392B2 (en) Frequency multiplier
US20070281656A1 (en) Mixer Circuits and Methods
US5374899A (en) Self biased power amplifier employing FETs
US10212006B2 (en) Feed-forward filtering device and associated method
US20090015337A1 (en) Device and method for biasing a transistor amplifier
JPH0213487B2 (en)
US7755440B2 (en) Voltage controlled oscillator for controlling phase noise and method using the same
JP3339892B2 (en) Integrated circuit and method of using same
JPH06152253A (en) Frequency multiplier
US5392004A (en) Combination amplifier/bias voltage generator
US5414354A (en) Apparatus and method for generating a substantially rectangular output signal
CA1261411A (en) Low noise oscillator
US4723113A (en) Very high frequency harmonic generator
JP2000196365A (en) High frequency isolation amplifier
JP2882329B2 (en) Amplifier circuit
US10637396B1 (en) Transconductance controlling circuit
JP3469680B2 (en) Semiconductor switch circuit
JP2848617B2 (en) Frequency doubler
JP2001292039A (en) Front end distortion compensation circuit and power amplifier
JP2822943B2 (en) Frequency correction circuit
KR20040038174A (en) Digital audio amplifier capable of increasing self-oscillation frequency and reducing the number of component
JP3912124B2 (en) Demodulator circuit
JPH0685554A (en) Semiconductor transmitter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201