JPH06151762A - Ferroelectric material and ferroelectric memory element formed thereof - Google Patents

Ferroelectric material and ferroelectric memory element formed thereof

Info

Publication number
JPH06151762A
JPH06151762A JP4328802A JP32880292A JPH06151762A JP H06151762 A JPH06151762 A JP H06151762A JP 4328802 A JP4328802 A JP 4328802A JP 32880292 A JP32880292 A JP 32880292A JP H06151762 A JPH06151762 A JP H06151762A
Authority
JP
Japan
Prior art keywords
ferroelectric
ferroelectric material
same
oxide target
abox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4328802A
Other languages
Japanese (ja)
Inventor
Koji Mori
孝二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4328802A priority Critical patent/JPH06151762A/en
Publication of JPH06151762A publication Critical patent/JPH06151762A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ferroelectric material film small in fatigue by a method wherein ferroelectric material of ilmenite or perovskite structure is specified in composition. CONSTITUTION:The electrical properties of a ferroelectric body are represented by a P-E hysteresis loop. A ferroelectric body grows more excellent in memory properties when it is larger in both self-polarization Ps and residual polarization Pr and smaller in read electrical field En. PbTiO3 and PZT of perovskite structure and LiNbO3 and LiTO3 of ilmenite structure are large in self-polarizability and desirable. But, oxygen-shorted ABOx [wherein A and B are elements which compose ferroelectric material, X denotes a numerical value smaller than 3] is excellent, and stable in actual ferroelectric properties. A ferroelectric memory element of this design is formed through a laser ablation method. By this setup, ABOx of ferroelectric material can be controlled in oxygen content, so that a thin film excellent in ferroelectric properties can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、強誘電体の分極を利用して情報
を蓄積する強誘電体メモリの分野に関する。
TECHNICAL FIELD The present invention relates to the field of a ferroelectric memory that stores information by utilizing polarization of a ferroelectric substance.

【0002】[0002]

【従来技術】強誘電体の分極を利用して情報を蓄積する
強誘電体メモリの材料としては、PZT〔PbyZrx
TiO3(y=1−x)〕が主流であるが、最近、ラン
タン(La)を入れたPLZTが登場している。製法と
しては、スパッタ法、ゾルゲル法、あるいはMOCVD
法が多く用いられ、これら方法により前記誘電体メモリ
材料の薄膜が形成されるが、これら方法のプロセス温度
は200〜250℃前後であり、この温度で作製される
薄膜は非晶質構造になっていることが予想され、強誘電
体特性を有する薄膜を得るために、さらにこれら薄膜を
500〜700℃でアニールし、その結晶性を向上する
ことが行われている。このため、メモリの電極材料とし
ては、高融点の金属、例えばPtが使用されている。ま
た、メモリの下層に存在するトランジスタを、前記のよ
うな高温熱処理による熱的ダメージから保護するため
に、Pt電極層の下部には、下地SiO2との密着性を
考慮してTi層をバッファ層として設けられることがあ
る。しかしながら、前記PZT〔PbyZrxTiO3
(y=1−x)〕およびPLZTも106回位で膜疲労
が生じ始め、分極特性が劣化する。また、その薄膜形成
法についても、以下のような問題が存在する。 スパッタ法 →イオン衝撃による下地トランジスタへの
ダメージ MOCVD法→材料組成の制御が不充分 ゾルゲル法 →膜の緻密性に問題があり、電極間のショ
トがおきる。膜厚の制御性がわるい。 さらに、電極材料としては、現在Ptが主に使用されて
いるが、Ptはコストが高く、かつそれを加工するプロ
セスはまだ十分に確立されていない。
2. Description of the Related Art PZT [PbyZrx] is used as a material for a ferroelectric memory that stores information by utilizing polarization of a ferroelectric.
TiO 3 (y = 1−x)] is the mainstream, but recently, PLZT containing lanthanum (La) has appeared. The manufacturing method is a sputtering method, a sol-gel method, or MOCVD.
Although a thin film of the dielectric memory material is formed by these methods, the process temperature of these methods is around 200 to 250 ° C., and the thin film formed at this temperature has an amorphous structure. Therefore, in order to obtain a thin film having ferroelectric properties, these thin films are further annealed at 500 to 700 ° C. to improve their crystallinity. Therefore, a high melting point metal such as Pt is used as the electrode material of the memory. Further, in order to protect the transistor existing in the lower layer of the memory from the thermal damage due to the high temperature heat treatment as described above, a Ti layer is buffered under the Pt electrode layer in consideration of the adhesion with the underlying SiO 2. It may be provided as a layer. However, the PZT [PbyZrxTiO 3
(Y = 1-x)] and PLZT also start film fatigue after about 10 6 times and deteriorate the polarization characteristics. Further, the thin film forming method also has the following problems. Sputtering method → Damage to underlying transistor due to ion bombardment MOCVD method → Insufficient control of material composition Sol gel method → There is a problem in film denseness, causing short between electrodes. Poor controllability of film thickness. Further, Pt is currently mainly used as an electrode material, but Pt has a high cost, and a process for processing it has not been sufficiently established.

【0003】[0003]

【目的】本発明は、膜疲労が少ない強誘電材料、および
該材料の製法ならびに加工法に関して新規な方法の提供
を目的とする。
An object of the present invention is to provide a ferroelectric material with less film fatigue, and a novel method for manufacturing and processing the material.

【0004】[0004]

【構成】強誘電体の電気的特性は、図2に示すようなP
−Eヒステリシスループで表現できる。自発分極Ps及
び残留分極Prが大きく、読み出し電界Enが小さい程
その強誘電体は優れたメモリ特性を有しているといえ
る。自発分極率としては、ペロブスカイト構造である。
PbTiO3,PZT、ならびにイルミナイト構造であ
るLiNbO3,LiTaO3が大きな値を示し有望であ
る。表1に自発分極の値を示す。この値は、強誘電体メ
モリとして使用するには十分な値である。 (以下余白)
[Structure] The electrical characteristics of the ferroelectric substance are P as shown in FIG.
-E Can be expressed by a hysteresis loop. It can be said that the ferroelectric substance has excellent memory characteristics as the spontaneous polarization Ps and the remanent polarization Pr are large and the read electric field En is small. The spontaneous polarizability is a perovskite structure.
PbTiO 3 , PZT, and LiNbO 3 , LiTaO 3 having an illuminite structure show great values and are promising. Table 1 shows the values of spontaneous polarization. This value is sufficient for use as a ferroelectric memory. (Below margin)

【表1】 しかしながら、ABO3なる組成は完全な化学量論組成
を示しているが、実際の電気的特性は酸素が欠乏したA
BOxが良好かつ安定した強誘電特性を示す。特に2.
5〈x〈3が望ましい。特に、イルミナイト構造はメモ
リ特性が良好であり、LiNbO3,LiTaO3及びそ
の混晶LiNbxTazO3(z=1−x)(0≦x≦
1)は、有効である。しかしながら従来、LiNb
3,LiTaO3等の材料をスパッタ、MOCVD法e
tcで強誘電体薄膜を形成しても、スパッタ法は高エネ
ルギーイオンが結晶性を悪くしてしまう可能性が高く、
MOCVD法は、800℃以上の高温のプロセスを有す
る為特性に悪影響を及ぼし、良好な特性を有した強誘電
体メモリが得られなかった。
[Table 1] However, although the composition of ABO 3 shows a perfect stoichiometric composition, the actual electrical characteristics are that oxygen-deficient A
BOx exhibits good and stable ferroelectric properties. Especially 2.
5 <x <3 is desirable. In particular, the illuminite structure has good memory characteristics, and LiNbO 3 , LiTaO 3 and its mixed crystal LiNbxTazO 3 (z = 1-x) (0 ≦ x ≦
1) is effective. However, conventionally, LiNb
Materials such as O 3 and LiTaO 3 are sputtered and MOCVD method e
Even if a ferroelectric thin film is formed by tc, in the sputtering method, high-energy ions are likely to deteriorate the crystallinity,
Since the MOCVD method has a high temperature process of 800 ° C. or higher, the characteristics are adversely affected, and a ferroelectric memory having good characteristics cannot be obtained.

【0005】それを解決するために、本発明はABOx
の製造法としてレーザアブレーション法を採用すること
により、ABOxの酸素原子を容易に制御することがで
き、良好な強誘電性をもつABOx(x<3)の薄膜を
得ることができる。レーザアブレーション法の1つとし
て、ターゲット母材として金属元素Aの酸化物ターゲッ
トと金属元素Bの酸化物ターゲットを用い、各々にレー
ザを照射し、A元素酸化層、B元素酸化層を層状にし
て、その制御性が極めてよく作製することができ、又、
作製したABO3薄膜に直接する方法があり、この方法
によると、レーザ光を照射すると照射された部分は光エ
ネルギーにより蒸発(アブレーション)、良好な加工が
可能となる。ABO3なる構造は、イオン結合が強いた
め、エキシマレーザetcの高いフォトンエネルギーを
有する光によって容易に結合が切られ、上記のような製
膜、加工が可能となる。又、レーザアブレーション法の
他の方法として、母材としてはABOy(y>3)の組
成のターゲットに直接レーザを照射して膜を形成するこ
とも可能である。前記レーザアブレーションにおいて、
膜中の酸素原子量を制御するため、O2,O3,N2O e
tcの酸化性ガス中でレーザアブレーションすると、よ
り良好な膜質制御が可能となる。又、強誘電体の膜は、
下地トランジスタの段差を考慮して、500〜3000
Åが好ましい。レーザとしては、ArF(193n
m)、KrF(248nm)、XeCl(308nm)
等のエキシマレーザが好ましい。金属元素Aの酸化物タ
ーゲットと金属元素Bの酸化物ターゲットのレーザの照
射条件としては、波長が350nm以下のエキシマレー
ザを用い、1回当り酸化物ターゲットに照射するレーザ
パルスが、1〜100ショットに制御され照射される。
ABOyで示される酸化物ターゲットのレーザ照射条件
も上記のレーザ照射条件と同様の条件を採用することが
できる。次に、代表的な強誘電体メモリの断面を図1に
示す。ワードラインであるトランジスタ(Tr)のゲー
トの上部に、バッファ層および下地電極であるTi/P
t層を形成、加工後PZT、LiNbO3、LiTaO3
等をスパッタ等で形成後、ドライエッチングして所定形
状に加工する。さらに上部電極としてPtをスパッタに
より形成及びドライエッチングによる加工によりメモリ
部分が形成される。このとき、500〜700℃で熱処
理すると配向性及び分極特性が向上する。その後、誘電
体5である層間絶縁膜を形成後、Al電極を形成して完
成する。
In order to solve this, the present invention uses ABOx.
By adopting the laser ablation method as the manufacturing method of ABOx, the oxygen atoms of ABOx can be easily controlled, and a thin film of ABOx (x <3) having good ferroelectricity can be obtained. As one of the laser ablation methods, an oxide target of the metal element A and an oxide target of the metal element B are used as target base materials, and each is irradiated with a laser to form a layer of the A element oxide layer and the B element oxide layer. , Its controllability can be made very well, and
There is a method of directly making the produced ABO 3 thin film. According to this method, when the laser beam is irradiated, the irradiated portion is evaporated (ablated) by light energy, and good processing becomes possible. Since the structure of ABO 3 has a strong ionic bond, the bond is easily broken by the light having high photon energy of the excimer laser etc, and the film formation and processing as described above are possible. As another method of the laser ablation method, it is also possible to directly irradiate a laser having a composition of ABOy (y> 3) as a base material with a laser to form a film. In the laser ablation,
In order to control the amount of oxygen atoms in the film, O 2 , O 3 , N 2 O e
Laser ablation in an oxidizing gas of tc enables better control of film quality. The ferroelectric film is
Considering the step difference of the underlying transistor, 500 to 3000
Å is preferred. As a laser, ArF (193n
m), KrF (248 nm), XeCl (308 nm)
Excimer lasers such as As laser irradiation conditions for the oxide target of the metal element A and the oxide target of the metal element B, an excimer laser having a wavelength of 350 nm or less is used, and a laser pulse for irradiating the oxide target once is 1 to 100 shots. It is controlled and irradiated.
As the laser irradiation conditions for the oxide target represented by ABOy, the same conditions as the above laser irradiation conditions can be adopted. Next, a cross section of a typical ferroelectric memory is shown in FIG. Above the gate of the transistor (Tr) which is the word line, Ti / P which is the buffer layer and the base electrode is formed.
After forming and processing the t layer, PZT, LiNbO 3 , LiTaO 3
Etc. are formed by sputtering or the like, and then dry etching is performed to form a predetermined shape. Further, Pt is formed as an upper electrode by sputtering, and a memory portion is formed by processing by dry etching. At this time, if heat treatment is performed at 500 to 700 ° C., orientation and polarization characteristics are improved. After that, an interlayer insulating film which is the dielectric 5 is formed, and then an Al electrode is formed to complete the process.

【0006】[0006]

【実施例】【Example】

実施例1 図1の誘電体1の上に、DCスパッタ法により、Ti1
000Å、Pt500Åをスパッタ形成後、Ar100
%のRIEにより下地電極を加工する。その上に、Li
2O,Nb23の2種類のターゲットを用意し、ArF
(λ=193nm)エキシマレーザを50μmに絞り、
0.2J/cm2のエネルギーでターゲットに照射し、
製膜を行なった。アブレーションのrateは、Li2
O,Nb23ともに20Å/pulseとなった。各タ
ーゲットをコンピュータコントロールして、各ターゲッ
トに5pulseずつ、100Åずつ成膜を繰返し、L
iNbOx(x<3)を2000Å成膜した。次に必要
なLiNbOxの部分以外に同じく、ArFエキシマレ
ーザを照射しアブレーションをおこし、不要なLiNb
Oxを除去後、500℃、O2中でアニール後、Ptを
1000Åスパッタで製膜後、同じ方法でエッチング加
工してメモリ部分を完成させた。
Example 1 Ti1 was deposited on the dielectric 1 of FIG. 1 by DC sputtering.
After forming 000Å and Pt500Å by sputtering, Ar100
The base electrode is processed by RIE of%. On top of that, Li
Two kinds of targets, 2 O and Nb 2 O 3 , are prepared, and ArF is used.
(Λ = 193 nm) Focus the excimer laser to 50 μm,
Irradiate the target with energy of 0.2 J / cm 2 ,
Film formation was performed. The ablation rate is Li 2
Both O and Nb 2 O 3 were 20Å / pulse. Computer control each target and repeat film formation for each target by 5 pulses, 100Å.
A film of iNbOx (x <3) was formed at 2000Å. Next, in addition to the necessary LiNbOx portion, the ArF excimer laser is similarly irradiated to perform ablation to remove unnecessary LiNbOx.
After removing Ox, it was annealed in O 2 at 500 ° C., Pt was formed into a film by 1000 Å sputtering, and then etching processing was performed by the same method to complete a memory portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】代表的な強誘電体メモリの断面を示す図であ
る。
FIG. 1 is a diagram showing a cross section of a typical ferroelectric memory.

【図2】強誘電体におけるP−Eヒステリシスループを
示す図である。
FIG. 2 is a diagram showing a PE hysteresis loop in a ferroelectric.

【図3】ABO3構造における各元素の位置を示す図で
ある。 (a)極性が+の場合の各元素の位置を示す図である。 (b)極性が−の場合の各元素の位置を示す図である。
FIG. 3 is a diagram showing the position of each element in the ABO 3 structure. (A) It is a figure which shows the position of each element when polarity is +. (B) It is a figure which shows the position of each element when polarity is-.

【符号の説明】[Explanation of symbols]

1 上部電極層(Pt) 2 強誘電体層(PZT,PLZT) 3 下部電極層(Pt) 4 Al配線 5 誘電体層II 6 誘電体層I 7 バッファ層(Ti) 8 ワードライン 9 ビットライン Ps 自発分極 Pr 残留分極 En 読み出し電界 A A元素 B B元素 1 Upper Electrode Layer (Pt) 2 Ferroelectric Layer (PZT, PLZT) 3 Lower Electrode Layer (Pt) 4 Al Wiring 5 Dielectric Layer II 6 Dielectric Layer I 7 Buffer Layer (Ti) 8 Wordline 9 Bitline Ps Spontaneous polarization Pr Remanent polarization En Readout electric field A A element BB element

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 【化1】ABOx (式中、AおよびBは、強誘電材料を構成する元素、x
は3未満の数値)なる組成を有し、かつイルミナイトあ
るいはペロブスカイト構造を有することを特徴とする強
誘電体材料。
1. ABOx (wherein A and B are elements constituting a ferroelectric material, x
Is a composition of less than 3) and has an illuminite or perovskite structure.
【請求項2】 【化2】ABOx (式中、A、Bおよびxは前記に同じ)で示される強誘
電体材料が、式、LiNbOx(式中、xは前記に同
じ)あるいは式、LiTaOx(式中、xは前記に同
じ)で示される組成を有する酸化物またはその混晶であ
る請求項1記載の強誘電体材料。
2. A ferroelectric material represented by ABOx (wherein A, B and x are the same as above) is represented by the formula, LiNbOx (wherein x is the same as above) or the formula, LiTaOx The ferroelectric material according to claim 1, which is an oxide having a composition represented by the formula (wherein x is the same as above) or a mixed crystal thereof.
【請求項3】 強誘電体材料が、金属元素A(Aは前記
に同じ)の酸化物ターゲットと金属元素B(Bは前記に
同じ)の酸化物ターゲットをレーザ照射して形成したも
のである請求項1または2記載の強誘電体材料。
3. The ferroelectric material is formed by laser irradiation of an oxide target of metal element A (A is the same as above) and an oxide target of metal element B (B is the same as above). The ferroelectric material according to claim 1.
【請求項4】 強誘電体材料が、 【化3】ABOy (式中、AおよびBは前記に同じ、yは3を越える数
値)で示される酸化物ターゲットをレーザアブレーショ
ンして形成したものである強誘電体材料。
4. The ferroelectric material is formed by laser ablation of an oxide target represented by the following formula: ABOy (wherein A and B are the same as above, y is a numerical value exceeding 3). A ferroelectric material.
【請求項5】 酸化性ガスの存在下あるいは非存在下
に、金属元素A(Aは前記に同じ)の酸化物ターゲット
と金属元素B(Bは前記に同じ)の酸化物ターゲットの
別々に、レーザ照射することを特徴とする請求項3記載
の強誘電体材料の製造法。
5. An oxide target of a metal element A (A is the same as above) and an oxide target of a metal element B (B is the same as above) are separately provided in the presence or absence of an oxidizing gas. Laser irradiation is carried out, The manufacturing method of the ferroelectric material of Claim 3 characterized by the above-mentioned.
【請求項6】 酸化性ガスの存在下あるいは非存在下
に、 【化4】ABOy (式中、A、Bおよびyは前記に同じ)の酸化物ターゲ
ットに、レーザ照射してレーザアブレーションを行うこ
とを特徴とする請求項4記載の強誘電体材料の製造法。
6. Laser ablation is performed by irradiating an oxide target of ABOy (wherein A, B and y are the same as above) with a laser in the presence or absence of an oxidizing gas. 5. The method for manufacturing a ferroelectric material according to claim 4, wherein.
【請求項7】 強誘電体メモリ素子における強誘電体薄
膜が、請求項1,2,3または4記載の強誘電体材料で
形成されたものであることを特徴とする強誘電体メモリ
素子。
7. A ferroelectric memory device, wherein the ferroelectric thin film in the ferroelectric memory device is formed of the ferroelectric material according to claim 1, 2, 3 or 4.
JP4328802A 1992-11-13 1992-11-13 Ferroelectric material and ferroelectric memory element formed thereof Pending JPH06151762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4328802A JPH06151762A (en) 1992-11-13 1992-11-13 Ferroelectric material and ferroelectric memory element formed thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4328802A JPH06151762A (en) 1992-11-13 1992-11-13 Ferroelectric material and ferroelectric memory element formed thereof

Publications (1)

Publication Number Publication Date
JPH06151762A true JPH06151762A (en) 1994-05-31

Family

ID=18214269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328802A Pending JPH06151762A (en) 1992-11-13 1992-11-13 Ferroelectric material and ferroelectric memory element formed thereof

Country Status (1)

Country Link
JP (1) JPH06151762A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069381A (en) * 1997-09-15 2000-05-30 International Business Machines Corporation Ferroelectric memory transistor with resistively coupled floating gate
US6433376B2 (en) * 1999-12-08 2002-08-13 Dongbu Electronics Co., Ltd. Ferroelectric memory integrated circuit
US6503810B2 (en) * 1999-12-29 2003-01-07 Hyundai Electronics Industries Co., Ltd. Method for forming a capacitor for semiconductor devices with an amorphous LixTa1-xO3 dieletric layer having a perovskite structure
US6515322B1 (en) * 1995-05-18 2003-02-04 Nec Corporation Nonvolatile semiconductor memory utilizing polarization of ferroelectric material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515322B1 (en) * 1995-05-18 2003-02-04 Nec Corporation Nonvolatile semiconductor memory utilizing polarization of ferroelectric material
US6069381A (en) * 1997-09-15 2000-05-30 International Business Machines Corporation Ferroelectric memory transistor with resistively coupled floating gate
US6433376B2 (en) * 1999-12-08 2002-08-13 Dongbu Electronics Co., Ltd. Ferroelectric memory integrated circuit
US6605508B2 (en) 1999-12-08 2003-08-12 Dongbu Electronics Co., Ltd. Semiconductor device and method of manufacturing thereof
US6503810B2 (en) * 1999-12-29 2003-01-07 Hyundai Electronics Industries Co., Ltd. Method for forming a capacitor for semiconductor devices with an amorphous LixTa1-xO3 dieletric layer having a perovskite structure

Similar Documents

Publication Publication Date Title
JP3258899B2 (en) Ferroelectric thin film element, semiconductor device using the same, and method of manufacturing ferroelectric thin film element
JP3159255B2 (en) Sputter growth method for electrodes used in ferroelectric capacitors
US5532504A (en) Process for the production of dielectric thin films
JP2005011931A (en) Ferroelectric memory element
Zhu et al. Laser-assisted low temperature processing of Pb (Zr, Ti) O 3 thin film
WO2004079059A1 (en) (001)-orientated perovskite film formation method and device having perovskite film
JPH06151762A (en) Ferroelectric material and ferroelectric memory element formed thereof
US6472229B1 (en) Method for manufacturing a ferroelectric capacitor having improved polarization characteristics and a method for manufacturing a ferroelectric memory device incorporating such capacitor
KR100706015B1 (en) Method of using titanium doped aluminum oxide for passivation of ferroelectric materials and devices including the same
JPH09232532A (en) Manufacturing method of ferroelectrics memory
WO1998013300A1 (en) Ferroelectric material, method of manufacturing the same, semiconductor memory, and method of manufacturing the same
JP2878986B2 (en) Thin film capacitor and semiconductor storage device
JPH05343642A (en) Manufacture of dielectric substance element
JPH07183397A (en) Dielectric thin film element and fabrication thereof
KR100795664B1 (en) 001-orientated perovskite film formation method and device having perovskite film
JPH08340084A (en) Manufacture of dielectric thin film and dielectric thin film manufactured by it
JPH02249278A (en) Manufacture of ferroelectric film
JPH11286774A (en) Ferromagnetic and ferroelectric thin film and its production
JPH06163847A (en) Memory device and its manufacture
Sudhama et al. Thickness-scaling of sputtered PZT films in the 200 nm range for memory applications
JPH07193135A (en) Method of manufacturing dielectric thin film and field-effect transistor
Norga et al. The effect of Pb stiochiometry on switching behavior of Pt/lead zirconate titanate/Pt ferroelectric capacitors
US7157144B1 (en) Giant remnant polarization in laser ablated SrBi2Nb2O9 thin films on Pt/TiO2/SiO2/Si substrates
JPH10270646A (en) Manufacture of ferroelectric thin film element and semiconductor device
JPH10101431A (en) Production of strong dielectric material, semiconductor memory device and production thereof