JPH05343642A - Manufacture of dielectric substance element - Google Patents

Manufacture of dielectric substance element

Info

Publication number
JPH05343642A
JPH05343642A JP4149524A JP14952492A JPH05343642A JP H05343642 A JPH05343642 A JP H05343642A JP 4149524 A JP4149524 A JP 4149524A JP 14952492 A JP14952492 A JP 14952492A JP H05343642 A JPH05343642 A JP H05343642A
Authority
JP
Japan
Prior art keywords
film
dielectric substance
dielectric
manufacturing
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4149524A
Other languages
Japanese (ja)
Other versions
JP3206105B2 (en
Inventor
Katsuto Shimada
勝人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14952492A priority Critical patent/JP3206105B2/en
Publication of JPH05343642A publication Critical patent/JPH05343642A/en
Application granted granted Critical
Publication of JP3206105B2 publication Critical patent/JP3206105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve ferroelectric or paraellectric characteristics like residual polarization or permittivity, and obtain a large capacity DRAM or nonvolatile storage device excellent in reliability, by improving the orientation of a specified crystal face of dielectric crystal, reducing grain diameter, and making a film dense. CONSTITUTION:The title method contains a process wherein an amorphous dielectric substance film 105 is formed on a silicon substrate 101, and a process wherein the amorphous dielectric substance film is irradiated with ultraviolet rays like excimer laser, and the amorphous dielectric substance film is crystallized 107 by absorbing energy of the ultraviolet rays.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主にダイナミック・ラ
ンダム・アクセス・メモリ(DRAM)あるいは、不揮
発性メモリに用いられる強誘電体キャパシタの製造方法
に関し、特に、誘電体キャパシタの結晶化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a ferroelectric capacitor mainly used in a dynamic random access memory (DRAM) or a non-volatile memory, and more particularly to a method of crystallizing a dielectric capacitor. .

【0002】[0002]

【従来の技術】従来、例えばアプライド・フィジックス
・レターズ(Applied Physics Let
ters)1991年、第58巻、11号、1161項
〜1163項に記載されていたように、大容量のダイナ
ミック・ランダム・アクセス・メモリ(DRAM)や強
誘電体を用いた不揮発性メモリに使われる強誘電体キャ
パシタには、チタン酸ジルコン酸鉛(PZT)が用いら
れており、その結晶化アニールとして、ランプを用いた
高速熱処理を行なっていた。
2. Description of the Related Art Conventionally, for example, Applied Physics Letters (Applied Physics Letters) is used.
ters), 1991, Vol. 58, No. 11, Item 1161-1163, used for large-capacity dynamic random access memory (DRAM) and non-volatile memory using ferroelectrics. Lead zirconate titanate (PZT) is used for the so-called ferroelectric capacitor, and high-speed heat treatment using a lamp is performed as its crystallization annealing.

【0003】ランプ加熱条件は、例えば、650℃、1
0秒、100℃/secであった。
Lamp heating conditions are, for example, 650 ° C. and 1
It was 0 second and 100 ° C./sec.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のランプ
加熱を使ったときの残留分極密度は、10μm/cm2
であり、この強誘電体キャパシタを大容量の不揮発性メ
モリとして用いた場合、残留分極の保持特性や繰り返し
分極反転による膜疲労を考慮に入れると、十分な値とは
言えなかった。
However, the remanent polarization density when the conventional lamp heating is used is 10 μm / cm 2
Therefore, when this ferroelectric capacitor is used as a large-capacity non-volatile memory, it cannot be said to be a sufficient value in consideration of the retention characteristic of remanent polarization and film fatigue due to repeated polarization reversal.

【0005】保持特性及び繰り返し分極反転による膜疲
労を以下に簡単に説明する。
The retention characteristic and film fatigue due to repeated polarization reversal will be briefly described below.

【0006】強誘電体を用いた不揮発性メモリ装置の情
報の書き込みは、強誘電体膜の分極の向きにより行な
う。
Writing of information in a non-volatile memory device using a ferroelectric substance is performed depending on the polarization direction of the ferroelectric film.

【0007】すなわち強誘電体膜は、上下の2つの電極
によって挟まれたキャパシタ構造を有し、例えば上部電
極が下部電極に対してプラスの電位となるように強誘電
体膜の抗電界以上のバイアスをかけたとき、分極の向き
は下向きであり、上記方向と逆向きにバイアスをかけた
とき上向きとなる。
That is, the ferroelectric film has a capacitor structure sandwiched between two upper and lower electrodes, and for example, the coercive electric field of the ferroelectric film or more is set so that the upper electrode has a positive potential with respect to the lower electrode. When biased, the polarization direction is downward, and when biased in the opposite direction, it is upward.

【0008】この分極の向きが情報の0、1と対応して
いる。
The direction of this polarization corresponds to information 0 and 1.

【0009】従って、残留分極密度の値が0μm/cm
2になれば情報の0、1が判別できなくなりメモリ破壊
が発生する。
Therefore, the value of the remanent polarization density is 0 μm / cm.
If it becomes 2 , 0 or 1 of the information cannot be discriminated and memory destruction occurs.

【0010】メモリ保持特性とは、分極の向きを例えば
下向きに保持しておき、読み出した時に保持した情報を
読み出せるかどうかである。
The memory retention characteristic is whether or not the information held at the time of reading can be read out by holding the polarization direction downward, for example.

【0011】一般的に、温度や時間とともに、残留分極
の値は、減衰するので、保持した情報が消えてしまう。
In general, the value of remanent polarization decays with temperature and time, so that the retained information disappears.

【0012】一方、情報を書き換える時には、キャパシ
タにかけるバイアスの方向を変えるが、これを繰り返し
ても、残留分極の値が減衰することが知られており、こ
れを繰り返し分極反転による膜疲労と呼ぶ。
On the other hand, when rewriting information, the direction of the bias applied to the capacitor is changed, and it is known that the remanent polarization value is attenuated even if this is repeated, and this is called film fatigue due to repeated polarization reversal. .

【0013】そこで、本発明は、従来のこのような課題
を解決しようとするもので、その目的とするところは、
強誘電体キャパシタを大容量の不揮発性メモリとして用
いた場合に於いても、残留分極の保持特性や繰り返し分
極反転による膜疲労を考慮にいれても、実用上問題の無
いほど残留分極密度を向上する誘電体素子の製造方法を
提供することである。
Therefore, the present invention is intended to solve such a conventional problem, and its purpose is to:
Even when a ferroelectric capacitor is used as a large-capacity non-volatile memory, the remanent polarization density is improved so that there is no practical problem even if the retention characteristic of remanent polarization and film fatigue due to repeated polarization reversal are taken into consideration. To provide a method of manufacturing a dielectric element.

【0014】[0014]

【課題を解決するための手段】本発明の誘電体素子の製
造方法は、 (1) 半導体基板上に、直接あるいは他の層を介し
て、非晶質の誘電体膜を形成する工程と、前記非晶質の
誘電体膜に紫外線を照射して前記非晶質の誘電体膜を結
晶化する工程を含むことを特徴とする。
The method of manufacturing a dielectric element according to the present invention comprises: (1) a step of forming an amorphous dielectric film on a semiconductor substrate directly or through another layer; The method may further include the step of crystallizing the amorphous dielectric film by irradiating the amorphous dielectric film with ultraviolet rays.

【0015】(2) 上記(1)の紫外線がエキシマレ
ーザであることを特徴とする。
(2) The ultraviolet ray of (1) above is an excimer laser.

【0016】(3) 上記(1)及び(2)の結晶質の
誘電体膜の結晶構造が、ペロブスカイト構造であること
を特徴とする。
(3) The crystalline structure of the crystalline dielectric film of (1) and (2) above is a perovskite structure.

【0017】(4) 上記(1)及び(2)及び(3)
の半導体基板に、能動素子が形成されていることを特徴
とする。
(4) The above (1), (2) and (3)
Is characterized in that an active element is formed on the semiconductor substrate.

【0018】[0018]

【実施例】本発明の誘電体素子の製造方法の第1実施例
を図1(a)〜(c)の製造工程断面図に基づいて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the method of manufacturing a dielectric element according to the present invention will be described with reference to the manufacturing process sectional views of FIGS.

【0019】図1(a)に示すよう、シリコン基板10
1上に層間絶縁膜として、二酸化珪素膜(SiO2)1
02を形成した後、密着層のチタン(Ti)膜103を
介して下部電極のPt104を形成し、その上にPb、
Zr、Ti、Oを主成分とする非晶質の誘電体膜105
を、例えばPbOを10%過剰に含むPb1.1(Zr0.5
Ti0.5)O3.1をターゲットに用いた高周波マグネトロ
ンスパッタ法により形成する。
As shown in FIG. 1A, a silicon substrate 10
On top of which a silicon dioxide film (SiO 2 ) 1 is formed as an interlayer insulating film.
After forming 02, Pt104 of the lower electrode is formed through the titanium (Ti) film 103 of the adhesion layer, and Pb, Pb,
Amorphous dielectric film 105 containing Zr, Ti, and O as main components
Of, for example, Pb 1.1 (Zr 0.5
It is formed by a high frequency magnetron sputtering method using Ti 0.5 ) O 3.1 as a target.

【0020】この非晶質の誘電体膜は、後述の結晶化ア
ニールにより強誘電体特性を示す多結晶のチタン酸ジル
コン酸鉛Pb(Zr0.5Ti0.5)O3、略してPZTに
なる基である。
This amorphous dielectric film is made of polycrystalline lead zirconate titanate Pb (Zr 0.5 Ti 0.5 ) O 3 , which exhibits ferroelectric characteristics by crystallization annealing described later, which is a group which becomes PZT for short. is there.

【0021】SiO2102は、テトラ・エチル・オル
ト・シリケート(TEOS)のプラズマ化学気相成長法
で形成し、その膜厚を5000Åとした。
The SiO 2 102 was formed by the plasma chemical vapor deposition method of tetra ethyl ortho silicate (TEOS), and its film thickness was 5000 Å.

【0022】Ti膜103及びPt104は、直流スパ
ッタ法により成膜し、その膜厚はそれぞれ200Å、5
000Åとした。
The Ti film 103 and the Pt 104 are formed by the DC sputtering method, and the film thicknesses thereof are 200 Å and 5 respectively.
It was 000Å.

【0023】非晶質の誘電体膜105の膜厚を5000
Åとした。
The thickness of the amorphous dielectric film 105 is set to 5000
Å

【0024】次に図1(b)に示すように、例えば誘電
体膜105にXeClのエキシマーレーザ106をシリ
コン基板に対して垂直に照射する。
Next, as shown in FIG. 1B, for example, the dielectric film 105 is irradiated with a XeCl excimer laser 106 perpendicularly to the silicon substrate.

【0025】XeClエキシマレーザは、紫外光であ
り、その波長は、308nmであるので、誘電体膜10
5の吸収帯にあたり、誘電体膜105は、エキシマレー
ザを吸収し、急速に加熱し、その温度により、みずから
結晶化する。
Since the XeCl excimer laser is ultraviolet light and its wavelength is 308 nm, the dielectric film 10
In the absorption band of No. 5, the dielectric film 105 absorbs the excimer laser and heats rapidly, and due to the temperature thereof, crystallizes itself.

【0026】エキシマレーザ照射条件は、酸素雰囲気中
で、500mJ、20Hzの10Wとし、0.5秒間照
射した。
The excimer laser irradiation conditions were 500 mJ, 20 Hz and 10 W in an oxygen atmosphere, and irradiation was performed for 0.5 seconds.

【0027】その結果、図1(c)に示すようにペロブ
スカイト結晶構造を有する多結晶PZT107が形成さ
れる。
As a result, a polycrystalline PZT107 having a perovskite crystal structure is formed as shown in FIG. 1 (c).

【0028】このときの多結晶PZT107の結晶配向
度は、強い(111)配向を示し、PZTの粒径は20
0Å程度となり、非常に緻密な膜が得られた。
At this time, the degree of crystal orientation of the polycrystalline PZT107 shows a strong (111) orientation, and the grain size of PZT is 20.
It was about 0Å, and a very dense film was obtained.

【0029】残留分極密度は、20μC/cm2であっ
た。
The residual polarization density was 20 μC / cm 2 .

【0030】本発明の誘電体素子の製造方法の第2実施
例を図2の製造工程断面図に基づいて説明する。
A second embodiment of the method for manufacturing a dielectric element according to the present invention will be described with reference to the manufacturing process sectional view of FIG.

【0031】第1の実施例と異なるところは、非晶質の
誘電体膜105の上にキャップ層として二酸化珪素膜
(SiO2)108が形成されている点である。
The difference from the first embodiment is that a silicon dioxide film (SiO 2 ) 108 is formed as a cap layer on the amorphous dielectric film 105.

【0032】SiO2108の膜厚は、500Åとし、
紫外線の一部は、SiO2108で吸収されるが、一部
は透過する。
The film thickness of SiO 2 108 is 500 Å,
Part of the ultraviolet light is absorbed by SiO 2 108, but part of it is transmitted.

【0033】このように、非晶質の誘電体膜105上に
キャップ層を設けることで、誘電体膜105からの酸素
の蒸発を防ぐことができるため、酸素雰囲気にする必要
はないし、真空中で結晶化を行なうこともできる。
As described above, by providing the cap layer on the amorphous dielectric film 105, it is possible to prevent the evaporation of oxygen from the dielectric film 105. Therefore, it is not necessary to use an oxygen atmosphere, and it is not necessary to use oxygen in a vacuum. Crystallization can also be performed with.

【0034】上記2つの実施例では、紫外線源としてX
eClエキシマレーザを用いて説明したが、ArCl、
ArF、KrCl、KrF、XeBr、XeCl、Xe
F等のエキシマレーザを用いても誘電体膜の吸収帯にあ
たるため勿論良い。
In the above two embodiments, X is used as the ultraviolet ray source.
As described above using the eCl excimer laser, ArCl,
ArF, KrCl, KrF, XeBr, XeCl, Xe
Even if an excimer laser such as F is used, the absorption band of the dielectric film is reached, which is of course preferable.

【0035】更に、水素放電管、低圧及び高圧の水銀ラ
ンプ、Xeランプ等の紫外線を用いてもよい。
Further, ultraviolet rays such as hydrogen discharge tubes, low-pressure and high-pressure mercury lamps, and Xe lamps may be used.

【0036】また、非晶質の誘電体膜を形成方法とし
て、高周波マグネトロンスパッタを用いて説明したが、
ゾルゲル法を用いても勿論良い。
Further, as the method for forming the amorphous dielectric film, the high frequency magnetron sputtering has been described.
Of course, the sol-gel method may be used.

【0037】また、エキシマレーザ106のシリコン基
板101への打ち込み角を垂直として説明したが、0度
より大きく、90度より小さい角度であれば何度の入射
角で打ち込んでもよい。
Although the angle of impact of the excimer laser 106 on the silicon substrate 101 has been described as vertical, the angle of incidence may be any number as long as it is greater than 0 degrees and less than 90 degrees.

【0038】また、強誘電体膜としてPZTを用いて説
明したが、PbTiO3、KNbO3、Pb(MnNb)
3等他のペロブスカイト結晶構造を有する酸化物強誘
電体でもよいし、それらにランタン(La)、カルシウ
ム(Ca)、ナイオビウム(Nb)、ネオジウム(N
d)、ビスマス(Bi)、アンチモン(Sb)、タンタ
ル(Ta)等の不純物がドーピングされていてもよい。
Although PZT was used as the ferroelectric film, PbTiO 3 , KNbO 3 and Pb (MnNb) were used.
Oxide ferroelectrics having other perovskite crystal structure such as O 3 may be used, and lanthanum (La), calcium (Ca), niobium (Nb), neodymium (N) may be used.
Impurities such as d), bismuth (Bi), antimony (Sb), and tantalum (Ta) may be doped.

【0039】また、上記実施例では、シリコン基板上に
キャパシタを形成したが、シリコン基板にトランジスタ
等の能動素子が形成されていてもよい。
Further, in the above embodiment, the capacitor is formed on the silicon substrate, but an active element such as a transistor may be formed on the silicon substrate.

【0040】その場合は、紫外線の侵入長を非晶質の誘
電体膜程度に抑えることで、下地の能動素子への悪影響
もなくすことができる。
In this case, by suppressing the penetration depth of ultraviolet rays to the extent of an amorphous dielectric film, it is possible to prevent the underlying active element from being adversely affected.

【0041】[0041]

【発明の効果】本発明の誘電体素子の製造方法は、以上
説明したように誘電体が吸収可能な紫外線を非晶質の誘
電体に照射し、結晶化を行なうことにより、非常に急速
に結晶化ができ、特定結晶面の配向度を高めたり、粒径
を小さくし、膜を緻密にすることができるので、強誘電
体の残留分極を大きくしたり、各結晶粒の特性を均一に
することができ、抗電界や飽和電界を小さくすることが
でき、常誘電体の場合に於いても、誘電率を大きくする
ことができるといった効果を有し、更にトランジスタ等
の能動素子の形成された半導体基板に集積する場合に
は、その能動素子に悪影響を与えずに誘電体素子を集積
化することができ、更に従来に比較して高速に結晶化が
できるので短時間で製造できると言った効果を有する。
As described above, the method of manufacturing a dielectric element according to the present invention irradiates the amorphous dielectric material with ultraviolet rays which can be absorbed by the dielectric material, and crystallizes the amorphous dielectric material very rapidly. It can be crystallized, the degree of orientation of specific crystal planes can be increased, the grain size can be reduced, and the film can be made dense, so that the remanent polarization of the ferroelectric substance can be increased and the characteristics of each crystal grain can be made uniform. It is possible to reduce the coercive electric field and the saturation electric field, and even in the case of a paraelectric material, it is possible to increase the dielectric constant. Furthermore, it is possible to form an active element such as a transistor. When integrated on a semiconductor substrate, the dielectric element can be integrated without adversely affecting the active element, and crystallization can be performed at a higher speed than in the past, so it can be manufactured in a short time. Have the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の誘電体素子の製造方法の第1実施例
を説明する製造工程断面図である。
FIG. 1 is a manufacturing step sectional view illustrating a first embodiment of a method for manufacturing a dielectric element according to the present invention.

【図2】 本発明の誘電体素子の製造方法の第2実施例
を説明する製造工程断面図である。
FIG. 2 is a cross sectional view of a manufacturing process illustrating a second embodiment of the method for manufacturing a dielectric element according to the present invention.

【符号の説明】[Explanation of symbols]

101 シリコン基板 102 SiO2 103 Ti膜 104 Pt下部電極 105 非晶質の誘電体膜 106 エキシマレーザ 107 多結晶PZT 108 SiO 101 Silicon Substrate 102 SiO 2 103 Ti Film 104 Pt Lower Electrode 105 Amorphous Dielectric Film 106 Excimer Laser 107 Polycrystalline PZT 108 SiO 2

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/04 C 8427−4M 27/105 29/788 29/792 H01L 29/78 371 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical indication location H01L 27/04 C 8427-4M 27/105 29/788 29/792 H01L 29/78 371

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、直接あるいは他の層を
介して、非晶質の誘電体膜を形成する工程と、前記非晶
質の誘電体膜に紫外線を照射して前記誘電体膜を結晶化
する工程を含むことを特徴とする誘電体素子の製造方
法。
1. A step of forming an amorphous dielectric film on a semiconductor substrate directly or through another layer, and irradiating the amorphous dielectric film with ultraviolet rays to form the dielectric film. A method of manufacturing a dielectric element, which comprises the step of crystallizing.
【請求項2】 請求項1記載の紫外線がエキシマレーザ
であることを特徴とする誘電体素子の製造方法。
2. A method for manufacturing a dielectric element, wherein the ultraviolet ray according to claim 1 is an excimer laser.
【請求項3】 請求項1及び2記載の結晶質の誘電体膜
の結晶構造が、ペロブスカイト構造であることを特徴と
する誘電体素子の製造方法。
3. A method of manufacturing a dielectric element, wherein the crystalline structure of the crystalline dielectric film according to claim 1 is a perovskite structure.
【請求項4】 請求項1及び2及び3記載の半導体基板
に、能動素子が形成されていることを特徴とする誘電体
素子の製造方法。
4. A method of manufacturing a dielectric element, wherein an active element is formed on the semiconductor substrate according to any one of claims 1, 2 and 3.
JP14952492A 1992-06-09 1992-06-09 Method for manufacturing dielectric element and semiconductor memory device Expired - Lifetime JP3206105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14952492A JP3206105B2 (en) 1992-06-09 1992-06-09 Method for manufacturing dielectric element and semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14952492A JP3206105B2 (en) 1992-06-09 1992-06-09 Method for manufacturing dielectric element and semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH05343642A true JPH05343642A (en) 1993-12-24
JP3206105B2 JP3206105B2 (en) 2001-09-04

Family

ID=15477024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14952492A Expired - Lifetime JP3206105B2 (en) 1992-06-09 1992-06-09 Method for manufacturing dielectric element and semiconductor memory device

Country Status (1)

Country Link
JP (1) JP3206105B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029726A1 (en) * 1995-03-17 1996-09-26 Symetrix Corporation Uv radiation process for making electronic devices having low-leakage-current and low-polarization fatigue
EP0821415A2 (en) * 1996-07-26 1998-01-28 Texas Instruments Inc. A capacitor and method of manufacture thereof
US5828098A (en) * 1995-06-22 1998-10-27 Matsushita Electronics Corporation Semiconductor capacitor dielectric having various grain sizes
US6323057B1 (en) 1998-05-25 2001-11-27 Nec Corporation Method of producing a thin-film capacitor
KR20020085843A (en) * 2001-05-08 2002-11-16 닛본 덴기 가부시끼가이샤 Method for producing semiconductor device
US6495412B1 (en) 1998-09-11 2002-12-17 Fujitsu Limited Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
WO2003083945A1 (en) * 2002-03-29 2003-10-09 Seiko Epson Corporation Method of forming ferroelectric film, ferroelectric memory, process for producing ferroelectric memory, semiconductor device and process for producing semiconductor device
WO2004109804A1 (en) * 2003-06-06 2004-12-16 Fujitsu Limited Method for fabricating semiconductor device
US6884631B2 (en) 2002-03-29 2005-04-26 Seiko Epson Corporation Method of forming a ferroelectric film by direct annealing of the ferroelectric film using laser or lamp followed by a second annealing through a light transmission and/or absorption film
KR100612860B1 (en) * 2004-09-24 2006-08-14 삼성전자주식회사 Method of forming ferroelectric layer and methods of forming capacitor and semiconductor memory device using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133050A (en) * 1992-10-23 2000-10-17 Symetrix Corporation UV radiation process for making electronic devices having low-leakage-current and low-polarization fatigue
WO1996029726A1 (en) * 1995-03-17 1996-09-26 Symetrix Corporation Uv radiation process for making electronic devices having low-leakage-current and low-polarization fatigue
US5828098A (en) * 1995-06-22 1998-10-27 Matsushita Electronics Corporation Semiconductor capacitor dielectric having various grain sizes
EP0821415A2 (en) * 1996-07-26 1998-01-28 Texas Instruments Inc. A capacitor and method of manufacture thereof
EP0821415A3 (en) * 1996-07-26 1998-02-04 Texas Instruments Inc. A capacitor and method of manufacture thereof
US6323057B1 (en) 1998-05-25 2001-11-27 Nec Corporation Method of producing a thin-film capacitor
US6495412B1 (en) 1998-09-11 2002-12-17 Fujitsu Limited Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
JP2002334970A (en) * 2001-05-08 2002-11-22 Nec Corp Method for manufacturing semiconductor device
KR20020085843A (en) * 2001-05-08 2002-11-16 닛본 덴기 가부시끼가이샤 Method for producing semiconductor device
JP4626925B2 (en) * 2001-05-08 2011-02-09 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
WO2003083945A1 (en) * 2002-03-29 2003-10-09 Seiko Epson Corporation Method of forming ferroelectric film, ferroelectric memory, process for producing ferroelectric memory, semiconductor device and process for producing semiconductor device
US6787371B2 (en) 2002-03-29 2004-09-07 Seiko Epson Corporation Method of forming ferroelectric film, ferroelectric memory, method of manufacturing the same, semiconductor device, and method of manufacturing the same
US6884631B2 (en) 2002-03-29 2005-04-26 Seiko Epson Corporation Method of forming a ferroelectric film by direct annealing of the ferroelectric film using laser or lamp followed by a second annealing through a light transmission and/or absorption film
WO2004109804A1 (en) * 2003-06-06 2004-12-16 Fujitsu Limited Method for fabricating semiconductor device
US7029984B2 (en) 2003-06-06 2006-04-18 Fujitsu Limited Method for fabricating semiconductor device
KR100612860B1 (en) * 2004-09-24 2006-08-14 삼성전자주식회사 Method of forming ferroelectric layer and methods of forming capacitor and semiconductor memory device using the same

Also Published As

Publication number Publication date
JP3206105B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US6929956B2 (en) Ferroelectric random access memory device and fabrication method therefor
JP3258899B2 (en) Ferroelectric thin film element, semiconductor device using the same, and method of manufacturing ferroelectric thin film element
JP4601902B2 (en) Ferroelectric integrated circuit device with oxygen permeation path
JP4998461B2 (en) Semiconductor device and manufacturing method thereof
KR100737636B1 (en) Metal thin film and method of forming the same, dielectric capacitor and method of manufacturing the same, and semiconductor device
KR19990013720A (en) Ferroelectric Capacitor, Manufacturing Method Thereof and Memory Cell Using the Capacitor
JP3206105B2 (en) Method for manufacturing dielectric element and semiconductor memory device
US6472229B1 (en) Method for manufacturing a ferroelectric capacitor having improved polarization characteristics and a method for manufacturing a ferroelectric memory device incorporating such capacitor
JPH09232532A (en) Manufacturing method of ferroelectrics memory
US7419837B2 (en) Method of manufacturing semiconductor device
JP3641142B2 (en) Ferroelectric memory
JP2004296681A (en) Ferroelectric film, forming method thereof, ferroelectric capacitor, manufacturing method thereof, and ferroelectric memory
JP3171110B2 (en) Method of manufacturing ferroelectric capacitor structure
JP5561300B2 (en) Manufacturing method of semiconductor device
JPH104181A (en) Ferroelectric element and semiconductor device
JP3294214B2 (en) Thin film capacitors
JPH06140570A (en) Electronic component having dielectric thin film of high dielectric constant and manufacture thereof
JP4289843B2 (en) Capacitor manufacturing method for semiconductor device
JPH05343641A (en) Dielectric element and its manufacture
JPH1022463A (en) Multilayer structure, its manufacture, capacitor structure, and non-volatile memory
JP3239852B2 (en) High dielectric constant capacitor and method of manufacturing the same
WO2004017391A1 (en) Ferroelectric memory, semiconductor device, production method for ferroelectric memory, and production method for semiconductor device
JPH09321237A (en) Non-volatile semiconductor storage device having ferroelectric film, capacitor having ferroelectric film and its manufacture
JPH0479266A (en) Manufacture of semiconductor device
JP3872917B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

EXPY Cancellation because of completion of term