JPH06151411A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPH06151411A
JPH06151411A JP31941592A JP31941592A JPH06151411A JP H06151411 A JPH06151411 A JP H06151411A JP 31941592 A JP31941592 A JP 31941592A JP 31941592 A JP31941592 A JP 31941592A JP H06151411 A JPH06151411 A JP H06151411A
Authority
JP
Japan
Prior art keywords
gas
holes
plasma cvd
aluminum
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31941592A
Other languages
Japanese (ja)
Inventor
Katsumi Oyama
勝美 大山
Hitoshi Hikima
仁 引間
Masayuki Hachitani
昌幸 蜂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP31941592A priority Critical patent/JPH06151411A/en
Publication of JPH06151411A publication Critical patent/JPH06151411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evenly sustain the film quality and film thickness distribution of a thin film formed on a wafer surface by a method wherein a gas dispersing sheet having multiple through holes are arranged adjacently to an aluminum- made bored sheet. CONSTITUTION:A gas dispersing sheet 60 is arranged this side of a shower electrode 40. Next, a reactive gas led in by an inlet is mixed in the first gas reservoir 62 further to be led in the second gas reservoir 66 passing through holes 64 made in the dispersing sheet 60. Next, the reactive gas is mixed again in the second gas reservoir 66 to be fed to the wafer surface passing the other through holes 41 made in the shower electrode 40. In such a constitution, two gas reservoirs can be arranged so that the uneven feed of the reactive gas due to the fluctuation in the production requirements may be avoided thereby enabling the evenness in the film quality and film thickness on wafer surface of a produced CVD film to be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラズマCVD装置に関
する。更に詳細には、本発明はウエハ面内の膜質および
膜厚分布を均一にすることができるプラズマCVD装置
に関する。
FIELD OF THE INVENTION The present invention relates to a plasma CVD apparatus. More specifically, the present invention relates to a plasma CVD apparatus capable of uniformizing the film quality and film thickness distribution within the wafer surface.

【0002】[0002]

【従来の技術】半導体ICの製造においては、ウエハの
表面に酸化シリコンなどの薄膜を形成する工程がある。
薄膜の形成方法には化学的気相成長法(CVD)が用い
られており、CVD法は大別すると、常圧法、減圧法お
よびプラズマ法の3種類がある。最近の超LSIにおい
ては高集積化に対応して高品質で高精度な薄膜が要求さ
れ、従来の常圧、または減圧CVD法では対応が困難と
なり、プラズマCVD法が注目されている。
2. Description of the Related Art In the manufacture of semiconductor ICs, there is a step of forming a thin film of silicon oxide or the like on the surface of a wafer.
A chemical vapor deposition method (CVD) is used as a method for forming a thin film. The CVD method is roughly classified into an atmospheric pressure method, a reduced pressure method and a plasma method. In recent ultra LSIs, high quality and highly accurate thin films are required for high integration, and it is difficult to meet the conventional atmospheric pressure or low pressure CVD method, and the plasma CVD method is drawing attention.

【0003】このプラズマCVD法は真空中において反
応ガスをグロー放電させてプラズマ化して反応に必要な
エネルギーを得るもので、ステップカバレージ(まわり
込み、またはパターン段差部の被覆性)が良好で、また
膜質が強くて耐湿性が優れているなどの特長があり、さ
らに成膜速度(デポレート)が減圧法に比べて極めて速
い点が有利である。
In this plasma CVD method, the reaction gas is glow-discharged in a vacuum to generate plasma and energy required for the reaction is obtained. The step coverage is good, and the step coverage is good. It has advantages such as strong film quality and excellent moisture resistance, and is also advantageous in that the film formation rate (deporate) is extremely fast compared to the depressurization method.

【0004】[0004]

【発明が解決しようとする課題】従来から使用されてい
るプラズマCVD装置の一例を図1に示す。図におい
て、チャンバー(反応炉)10は気密とされ、そのベース
101 にヒーターユニット21と均熱板22とよりなるサセプ
タ20を固設し、これを接地電極とする。チャンバーの蓋
板102 に金属製のノズル部30を固定し、その下部にアル
ミニウム製の円盤状のシャワー電極40を絶縁リング103
により支持する。シャワー電極に対して高周波電圧を印
加する高周波電源7が設けられる。反応処理において
は、チャンバー10の側面に設けられた搬入/搬出路50の
ゲート51を開き、キャリッジ52によりウエハ6を搬入し
て均熱板22に載置する。ゲートを閉じてチャンバー内部
を真空とした後、ヒーターユニット21により均熱板が
加熱され、これに載置されたウエハが所定の温度となる
と、インレット31,32 より所定の反応ガスおよびキャリ
ヤーガスが吸入されてノズル部30の内部で混合され、シ
ャワー電極の噴射孔41より噴射される。ここで、シャワ
ー電極に高周波電圧が印加されるとグロー放電により反
応ガスがプラズマ化し、反応による生成物がウエハの表
面に蒸着して薄膜が形成される。反応後のガスは矢印の
経路を通って排気口104 より外部に排出される。
FIG. 1 shows an example of a conventional plasma CVD apparatus used. In the figure, the chamber (reactor) 10 is made airtight and its base
A susceptor 20 including a heater unit 21 and a heat equalizing plate 22 is fixedly installed on 101, and this is used as a ground electrode. The metal nozzle part 30 is fixed to the cover plate 102 of the chamber, and the aluminum disc-shaped shower electrode 40 is attached to the lower part of the nozzle part 30 with the insulating ring 103
Supported by. A high frequency power supply 7 for applying a high frequency voltage to the shower electrode is provided. In the reaction process, the gate 51 of the loading / unloading path 50 provided on the side surface of the chamber 10 is opened, and the wafer 6 is loaded by the carriage 52 and placed on the heat equalizing plate 22. After the gate is closed and the inside of the chamber is evacuated, the soaking plate is heated by the heater unit 21, and when the wafer mounted on the soaking plate reaches a predetermined temperature, predetermined reaction gas and carrier gas are supplied from the inlets 31 and 32. It is sucked, mixed inside the nozzle portion 30, and ejected from the ejection hole 41 of the shower electrode. Here, when a high frequency voltage is applied to the shower electrode, the reaction gas is turned into plasma by glow discharge, and the product of the reaction is deposited on the surface of the wafer to form a thin film. The gas after the reaction is discharged to the outside from the exhaust port 104 through the path indicated by the arrow.

【0005】従来のシャワー電極では、生成条件(例え
ば、ガス条件、圧力、高周波出力、温度、電極間隔な
ど)の変化が、直接ウエハ表面への反応ガスの供給パタ
ーンの変化として現れていた。このため、ウエハ面上に
成膜される薄膜の膜質および膜厚分布にもバラツキが発
生し、製品歩留りの低下原因となっていた。
In the conventional shower electrode, changes in production conditions (for example, gas conditions, pressure, high frequency output, temperature, electrode interval, etc.) appear as changes in the reaction gas supply pattern directly on the wafer surface. For this reason, the film quality and film thickness distribution of the thin film formed on the wafer surface also fluctuate, which causes a reduction in product yield.

【0006】従って、本発明の目的は、生成条件が変化
しても、ウエハ面上に成膜される薄膜の膜質および膜厚
分布を均一に保つことができるプラズマCVD装置を提
供することである。
Therefore, an object of the present invention is to provide a plasma CVD apparatus capable of maintaining uniform film quality and film thickness distribution of a thin film formed on a wafer surface, even if production conditions change. .

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明では、接地基板電極を構成するアルミ製均熱
板を上面に有し、このアルミ製均熱板を加熱するための
ヒータを有するサセプタと、このサセプタ上の接地基板
電極に対峙するアルミニウム製有孔板からなる高周波電
極とを有するチャンバーを有するプラズマCVD装置に
おいて、前記アルミニウム製有孔板に隣接して、多数の
貫通孔を有するガス分散板を設けたことを特徴とするプ
ラズマCVD装置を提供する。
To achieve the above object, in the present invention, a heater for heating the aluminum soaking plate is provided which has an aluminum soaking plate constituting a ground substrate electrode on the upper surface. In a plasma CVD apparatus having a chamber having a susceptor having a hole and a high frequency electrode made of an aluminum perforated plate facing the ground substrate electrode on the susceptor, a number of through holes are provided adjacent to the aluminum perforated plate There is provided a plasma CVD apparatus characterized in that a gas dispersion plate having the above is provided.

【0008】[0008]

【作用】本発明のプラズマCVD装置では、シャワー電
極の手前に別のガス分散板を配設しているので、反応ガ
ス溜りが2箇所形成され、ウエハへのガスの分散性が改
善される。
In the plasma CVD apparatus of the present invention, since another gas dispersion plate is disposed in front of the shower electrode, two reaction gas reservoirs are formed and the dispersibility of the gas on the wafer is improved.

【0009】[0009]

【実施例】以下、図面を参照しながら本発明のプラズマ
CVD装置の一例について更に詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the plasma CVD apparatus of the present invention will be described in more detail below with reference to the drawings.

【0010】図2は本発明による新規な高周波電極の部
分断面図である。図示されているように、シャワー電極
40の手前に、ガス分散板60が配設されている。これ
により、図1におけるインレット31および32から導
入された反応ガスは第1のガス溜り62で混合され、ガ
ス分散板60に開設された貫通孔64を通って第2のガ
ス溜り66に入る。ここで再び混合され、シャワー電極
40の貫通孔41を通ってウエハ上面に供給される。こ
のように、ガスの溜り部分が2箇所になることにより、
生成条件の変動による反応ガスの不均一供給が防止さ
れ、生成されたCVD膜のウエハ面内の膜質および膜厚
の均一性が向上する。
FIG. 2 is a partial sectional view of a novel high frequency electrode according to the present invention. As shown in the figure, a gas dispersion plate 60 is arranged in front of the shower electrode 40. As a result, the reaction gases introduced from the inlets 31 and 32 in FIG. 1 are mixed in the first gas pool 62 and enter the second gas pool 66 through the through holes 64 formed in the gas dispersion plate 60. Here, they are mixed again and supplied to the upper surface of the wafer through the through holes 41 of the shower electrode 40. In this way, by having two gas reservoirs,
The non-uniform supply of the reaction gas due to the fluctuation of the generation condition is prevented, and the uniformity of the film quality and the film thickness of the generated CVD film on the wafer surface is improved.

【0011】ガス分散板60の材質自体は特に限定され
ない。例えば、アルミニウム、アルミナなどの金属素材
の他に、ガラス、セラミックなどの無機質も使用するこ
とができる。ガス分散板の厚さは特に限定されない。ガ
スを分散させるのに必要十分な厚さであればよい。開設
される貫通孔の数も特に限定されない。ガスの分散効果
を高めるために、下部のシャワー電極に開設されている
貫通孔と一致しないような位置に貫通孔が開設されてい
ることが好ましい。
The material itself of the gas dispersion plate 60 is not particularly limited. For example, in addition to metal materials such as aluminum and alumina, inorganic materials such as glass and ceramics can be used. The thickness of the gas dispersion plate is not particularly limited. The thickness may be any thickness sufficient for dispersing the gas. The number of through holes to be opened is also not particularly limited. In order to enhance the gas dispersion effect, it is preferable that the through holes are formed at positions that do not coincide with the through holes formed in the lower shower electrode.

【0012】[0012]

【発明の効果】以上説明したように、本発明のプラズマ
CVD装置における高周波電極では、ウエハと対峙する
シャワー電極に隣接して、別の有孔ガス分散板が挿入さ
れている。このため、ガスインレットからノズル部を経
て通過してきた反応ガスは先ず、ガス分散板により拡散
混合され、次いで、ガス分散板とシャワー電極との間の
空間で更に拡散混合されてウエハ上面に供給される。こ
のため、生成条件が変動してもウエハ上面へのガス供給
は常に均一に保たれる。その結果、生成されるCVD膜
の膜質および膜厚が均一となり、デバイスの製造歩留り
が向上する。
As described above, in the high frequency electrode in the plasma CVD apparatus of the present invention, another perforated gas dispersion plate is inserted adjacent to the shower electrode facing the wafer. Therefore, the reaction gas that has passed through the nozzle from the gas inlet is first diffusively mixed by the gas dispersion plate, and then further diffusively mixed in the space between the gas dispersion plate and the shower electrode and supplied to the upper surface of the wafer. It Therefore, the gas supply to the upper surface of the wafer is always kept uniform even if the generation conditions are changed. As a result, the quality and thickness of the produced CVD film become uniform, and the device manufacturing yield is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のプラズマCVD装置の一例の構成を示す
模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing the configuration of an example of a conventional plasma CVD apparatus.

【図2】本発明による高周波電極の一例の部分概要断面
図である。
FIG. 2 is a partial schematic sectional view of an example of a high-frequency electrode according to the present invention.

【符号の説明】[Explanation of symbols]

1 プラズマCVD装置 6 ウエハ 7 高周波電源 10 チャンバー(反応炉) 101 ベース 102 蓋板 103 絶縁リング 104 排気口 20 サセプタ 21 ヒータユニット 22 均熱板 30 ノズル部 31,32 インレット 40 シャワー電極 41 噴射孔 50 搬入/搬出路 51 ゲート 52 キャリッジ 60 ガス分散板 62 第1のガス溜り 64 貫通孔 66 第2のガス溜り 1 Plasma CVD Device 6 Wafer 7 High Frequency Power Supply 10 Chamber (Reactor) 101 Base 102 Cover Plate 103 Insulation Ring 104 Exhaust Port 20 Susceptor 21 Heater Unit 22 Soaking Plate 30 Nozzle 31, 32 Inlet 40 Shower Electrode 41 Injection Hole 50 Carry In / Carry-out path 51 Gate 52 Carriage 60 Gas dispersion plate 62 First gas reservoir 64 Through hole 66 Second gas reservoir

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 接地基板電極を構成するアルミ製均熱板
を上面に有し、このアルミ製均熱板を加熱するためのヒ
ータを有するサセプタと、このサセプタ上の接地基板電
極に対峙するアルミニウム製有孔板からなる高周波電極
とを有するチャンバーを有するプラズマCVD装置にお
いて、前記アルミニウム製有孔板に隣接して、多数の貫
通孔を有するガス分散板を設けたことを特徴とするプラ
ズマCVD装置。
1. A susceptor having an aluminum soaking plate constituting a ground substrate electrode on its upper surface and having a heater for heating the aluminum soaking plate, and aluminum facing the ground substrate electrode on the susceptor. In a plasma CVD apparatus having a chamber having a high-frequency electrode made of a perforated plate, a gas dispersion plate having a large number of through holes is provided adjacent to the aluminum perforated plate. .
【請求項2】 ガス分散板はアルミニウムからできてい
る請求項1のプラズマCVD装置。
2. The plasma CVD apparatus according to claim 1, wherein the gas dispersion plate is made of aluminum.
【請求項3】 ガス分散板の貫通孔の位置とアルミニウ
ム製有孔板の貫通孔の位置が一致しないようにガス分散
板が配設されている請求項1のプラズマCVD装置。
3. The plasma CVD apparatus according to claim 1, wherein the gas dispersion plate is arranged such that the positions of the through holes of the gas dispersion plate and the positions of the through holes of the aluminum perforated plate do not coincide with each other.
JP31941592A 1992-11-04 1992-11-04 Plasma cvd device Pending JPH06151411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31941592A JPH06151411A (en) 1992-11-04 1992-11-04 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31941592A JPH06151411A (en) 1992-11-04 1992-11-04 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPH06151411A true JPH06151411A (en) 1994-05-31

Family

ID=18109942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31941592A Pending JPH06151411A (en) 1992-11-04 1992-11-04 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPH06151411A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077031A (en) * 1999-09-01 2001-03-23 Nec Kyushu Ltd Plasma treatment device
US6499425B1 (en) * 1999-01-22 2002-12-31 Micron Technology, Inc. Quasi-remote plasma processing method and apparatus
KR100423953B1 (en) * 2001-03-19 2004-03-24 디지웨이브 테크놀러지스 주식회사 Chemical Vapor Deposition Apparatus
KR100462905B1 (en) * 2001-11-29 2004-12-23 주성엔지니어링(주) manufacturing apparatus for liquid crystal display
JP2009079265A (en) * 2007-09-26 2009-04-16 Fuji Electric Systems Co Ltd Plasma apparatus
WO2017149738A1 (en) * 2016-03-03 2017-09-08 コアテクノロジー株式会社 Plasma treatment device, and structure of reaction vessel for plasma treatment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499425B1 (en) * 1999-01-22 2002-12-31 Micron Technology, Inc. Quasi-remote plasma processing method and apparatus
JP2001077031A (en) * 1999-09-01 2001-03-23 Nec Kyushu Ltd Plasma treatment device
KR100423953B1 (en) * 2001-03-19 2004-03-24 디지웨이브 테크놀러지스 주식회사 Chemical Vapor Deposition Apparatus
KR100462905B1 (en) * 2001-11-29 2004-12-23 주성엔지니어링(주) manufacturing apparatus for liquid crystal display
JP2009079265A (en) * 2007-09-26 2009-04-16 Fuji Electric Systems Co Ltd Plasma apparatus
WO2017149738A1 (en) * 2016-03-03 2017-09-08 コアテクノロジー株式会社 Plasma treatment device, and structure of reaction vessel for plasma treatment
JPWO2017149738A1 (en) * 2016-03-03 2018-12-06 コアテクノロジー株式会社 Structure of plasma processing apparatus and reaction container for plasma processing
US20190019656A1 (en) * 2016-03-03 2019-01-17 Core Technology, Inc. Plasma treatment device and structure of reaction vessel for plasma treatment
US11227748B2 (en) 2016-03-03 2022-01-18 Core Technology, Inc. Plasma treatment device and structure of reaction vessel for plasma treatment

Similar Documents

Publication Publication Date Title
US7709063B2 (en) Remote plasma apparatus for processing substrate with two types of gases
US6050506A (en) Pattern of apertures in a showerhead for chemical vapor deposition
US6103304A (en) Chemical vapor deposition apparatus
JP4335438B2 (en) Process chamber lid assembly using asymmetric flow geometry
US20050252447A1 (en) Gas blocker plate for improved deposition
US20010050144A1 (en) Plasma processing apparatus
JP2802865B2 (en) Plasma CVD equipment
JPH0817748A (en) Plasma processing device
JPH06151411A (en) Plasma cvd device
JP7562671B2 (en) Gas distribution ceramic heater for deposition chambers.
JP2000223429A (en) Film-forming device, film-forming method and cleaning method therefor
CN109312461B (en) Plasma processing apparatus and structure of reaction vessel for plasma processing
JPH0456770A (en) Method for cleaning plasma cvd device
JPH0435029A (en) Shower electrode structure for plasma cvd device
JPH01298725A (en) Thin film formation, apparatus therefor, and semiconductor element
KR101596329B1 (en) Apparatus and method for performing plasma enhanced atomic layer deposition employing very high frequency
JP2848755B2 (en) Plasma CVD equipment
JPH05267277A (en) Plasma cvd apparatus
JP2003027242A (en) Plasma enhanced cvd system and deposition method using the same
JPH08139037A (en) Vapor phase reaction equipment
JPS58132932A (en) Plasma processing device
TW202342806A (en) Showerhead assembly with heated showerhead
JP2002141290A (en) System for producing semiconductor
TW202410259A (en) Gas injection device, apparatus for processing substrate and method for depositing thin film
JP2000208424A (en) Treatment device and its method