JPH06151320A - Method of combining terminal of ceramics heater with power supply member - Google Patents

Method of combining terminal of ceramics heater with power supply member

Info

Publication number
JPH06151320A
JPH06151320A JP29578092A JP29578092A JPH06151320A JP H06151320 A JPH06151320 A JP H06151320A JP 29578092 A JP29578092 A JP 29578092A JP 29578092 A JP29578092 A JP 29578092A JP H06151320 A JPH06151320 A JP H06151320A
Authority
JP
Japan
Prior art keywords
terminal
power supply
supply member
heating element
resistance heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29578092A
Other languages
Japanese (ja)
Inventor
和宏 ▲のぼり▼
Kazuhiro Nobori
Ryusuke Ushigoe
隆介 牛越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP29578092A priority Critical patent/JPH06151320A/en
Publication of JPH06151320A publication Critical patent/JPH06151320A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To easily combine the terminal of a ceramics heater with an electric power supply member, in a short time, at a low cost, and prevent generation of deterioration in a resistance heating element at the time of combination. CONSTITUTION:A resistance heating element 5 is buried in a ceramics substratun 4. A terminal 3 is buried in the ceramics substratum 4, and the resistance heating element 5 is connected with the terminal 3. A part of the surface of the terminal 3 is exposed from the ceramics substratum 4. An intermediate layer 2 containing metal is formed on the surface 3a of the terminal 3, and an electric power supply member 1 is brought into contact with the intermediate layer 2. By generating discharge between the terminal 3 and the electric power supply member 1, the metal is partly fused, so that the terminal 3 is bonded to the electric power supply member 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスヒーター
の端子と電力供給部材とを結合する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for connecting a terminal of a ceramic heater and a power supply member.

【0002】[0002]

【従来の技術】スーパークリーン状態を必要とする半導
体製造装置において、半導体ウエハーを腐食性ガスに接
触させた状態で加熱するための加熱装置が、幾つか知ら
れている。このうち、ステンレススチール製の外殻を有
するヒーターは、腐食性ガスによって腐食されるので、
高純度半導体の製造用には不適当である。また、いわゆ
る間接加熱方式によると、熱損失が大きく温度上昇に時
間がかかることなどの問題がある。
2. Description of the Related Art In a semiconductor manufacturing apparatus that requires a super clean state, there are known some heating apparatuses for heating a semiconductor wafer in a state of being in contact with a corrosive gas. Of these, the heater with a stainless steel outer shell is corroded by corrosive gas,
Not suitable for the production of high-purity semiconductors. Further, the so-called indirect heating method has a problem that heat loss is large and it takes time to raise the temperature.

【0003】この問題を解決するため、本出願人は、特
開平4−87179号公報等において、円盤状の緻密質
セラミックス内に抵抗発熱体を埋設したセラミックスヒ
ーターを提案した。ここで、ヒーターの形状を円盤状に
したのは、以下の理由からであった。
In order to solve this problem, the applicant of the present invention has proposed a ceramics heater in which a resistance heating element is embedded in a disc-shaped dense ceramics in Japanese Patent Laid-Open No. 4-87179. The reason why the heater has a disk shape is as follows.

【0004】従来のステンレスヒーターの場合には、半
導体ウエハー加熱面と抵抗発熱体の端子とは大きく離れ
ており、端子と外部の電力供給ケーブルとは、半導体製
造装置の容器外で結合されていた。従って、加熱部分は
高温であって、腐食性雰囲気に曝されるが、端子と電力
供給ケーブルとの結合部分は、こうした高温や腐食性雰
囲気には曝されなかった。
In the case of the conventional stainless steel heater, the heating surface of the semiconductor wafer and the terminal of the resistance heating element are largely separated from each other, and the terminal and the external power supply cable are connected outside the container of the semiconductor manufacturing apparatus. . Therefore, the heated part is exposed to the high temperature and corrosive atmosphere, but the connecting part between the terminal and the power supply cable is not exposed to such high temperature and corrosive atmosphere.

【0005】これに対し、セラミックスヒーターの製造
時には、抵抗発熱体をセラミックス粉体内に入れて成形
するため、円盤状等の単純形状としなければならない。
焼成段階でもホットプレス焼成するので同様である。し
かも、焼成後の焼成体表面には黒皮といわれる焼成変質
層があり、加工によりこの変質層を除去する必要があ
る。このとき、ダイヤモンド砥石による研削加工が必要
であり、焼成体の形状が複雑であると、その加工コスト
が高い。このように、抵抗体を埋設したセラミックスヒ
ーターでは、製造上の困難さから円盤状等の単純形状と
しなければならない。従って、ヒーターの端子を半導体
製造容器の外に出すことは構造上困難であり、必然的
に、端子が高温、腐食性ガスに曝されることになる。
On the other hand, when the ceramic heater is manufactured, the resistance heating element is put into the ceramic powder and is molded, so that the ceramic heater must have a simple shape such as a disk shape.
The same applies because hot press firing is performed in the firing stage. In addition, there is a fired altered layer called black skin on the surface of the fired body after firing, and it is necessary to remove this altered layer by processing. At this time, a grinding process with a diamond grindstone is required, and the processing cost is high if the shape of the fired body is complicated. As described above, the ceramic heater in which the resistor is embedded must have a simple shape such as a disk shape because of difficulty in manufacturing. Therefore, it is structurally difficult to expose the terminals of the heater to the outside of the semiconductor manufacturing container, and the terminals are inevitably exposed to high temperature and corrosive gas.

【0006】この問題を解決するため、本出願人は、特
開平4−87179号公報において、セラミックスヒー
ターの端子と電力供給部材とを、耐熱耐腐食性の結合に
よって接続させる方法を開示した。具体的には、以下の
ような結合方法があった。上記端子と電力供給部材と
を、ネジ切り法によって機械的に結合すること。上記端
子と電力供給部材とを、ろう材で接合すること。端子と
電極供給部材との間に、Mo,W等の高融点金属の粉末
や箔を介在させ、高温に加熱して拡散接合すること。端
子の端面又は電力供給部材の端面に、めっき、CVD、
溶射等によって被覆層を形成し、次いで拡散接合又は摩
擦圧接すること。溶接すること。
In order to solve this problem, the present applicant has disclosed in Japanese Patent Laid-Open No. 4-87179 a method of connecting a terminal of a ceramic heater and a power supply member by a heat and corrosion resistant connection. Specifically, there were the following binding methods. Mechanically connecting the terminal and the power supply member by a threading method. Joining the terminal and the power supply member with a brazing material. Between the terminal and the electrode supply member, a powder or foil of a refractory metal such as Mo or W is interposed and heated to a high temperature for diffusion bonding. On the end face of the terminal or the end face of the power supply member, plating, CVD,
Forming a coating layer by thermal spraying, and then diffusion welding or friction welding. Welding.

【0007】[0007]

【発明が解決しようとする課題】しかし、ネジ切り法の
場合には、端子及び電力供給部材がタングステン等の固
く脆い高融点金属からなることから、通常のダイスによ
る加工は不可能であった。このため、放電加工法によっ
てネジを形成した。しかし、この方法は非常に高コスト
であり、長い時間がかかる。また、端子付近が長時間高
温に曝されるので、抵抗発熱体に劣化、断線が生ずるこ
とがあった。
However, in the case of the thread cutting method, since the terminal and the power supply member are made of a hard and brittle refractory metal such as tungsten, it is impossible to process them by a normal die. Therefore, the screw was formed by the electric discharge machining method. However, this method is very expensive and takes a long time. Further, since the vicinity of the terminal is exposed to high temperature for a long time, the resistance heating element may be deteriorated or broken.

【0008】また、ろう材で接合する場合、最高600
℃程度までしか、充分な接合強度を保持することができ
なかった。このため、1000℃以上もの高温での使用
が予想される半導体用途には、適さない場合があった。
また、高温に曝されると、マグネシウム、チタン、銅な
どのろう成分が気化し、半導体不良の原因となることが
あった。
[0008] When brazing is used, the maximum is 600.
Sufficient bonding strength could be maintained only up to about ° C. Therefore, it may not be suitable for semiconductor applications where use at a high temperature of 1000 ° C. or higher is expected.
Further, when exposed to high temperatures, brazing components such as magnesium, titanium, and copper may be vaporized, causing a semiconductor defect.

【0009】また、金属粉末や金属箔を用いて拡散接合
させる場合にはタングステンの場合、1700℃以上の
高温で2〜3時間程度、加熱処理する必要がある。この
ため、抵抗発熱体の劣化や断線、セラミックスの劣化が
生ずることがあった。
When diffusion bonding is performed using metal powder or metal foil, in the case of tungsten, it is necessary to perform heat treatment at a high temperature of 1700 ° C. or higher for about 2 to 3 hours. As a result, the resistance heating element may be deteriorated or broken, and the ceramics may be deteriorated.

【0010】めっき、CVD、溶射等によって被覆層を
形成する方法では、被覆層が端面から剥離することがあ
った。また、特にCVD法は極めて高コストであった。
電力供給部材と端子とを密着させ、この状態で電流を流
し、両部材の界面付近を溶かし、溶接する方法も検討し
た。この場合には、電力供給部材の端面付近は若干溶解
したが、端子の側は溶解せず、両部材が接合しなかっ
た。これは、比熱の比較的大きいセラミックスの方へ
と、端子から熱が逃げるからであろう。
In the method of forming the coating layer by plating, CVD, thermal spraying, etc., the coating layer may be separated from the end face. In addition, the CVD method is extremely expensive.
A method was also studied in which the power supply member and the terminal were brought into close contact with each other, an electric current was applied in this state to melt the vicinity of the interface between both members, and welding was performed. In this case, the vicinity of the end surface of the power supply member was slightly melted, but the terminal side was not melted and both members were not joined. This is probably because heat escapes from the terminals to the ceramics having a relatively large specific heat.

【0011】本発明の課題は、セラミックスヒーターの
端子と電力供給部材とを結合するのに際し、この結合
を、短時間に容易に低コストで行えるようにすることで
あり、また、この結合の際に抵抗発熱体等に劣化が生じ
ないようにすることである。
An object of the present invention is to make it possible to easily and cost-effectively connect the terminals of the ceramic heater and the power supply member in a short time. First, it is necessary to prevent deterioration of the resistance heating element and the like.

【0012】[0012]

【課題を解決するための手段】本発明は、セラミックス
基体と、このセラミックス基体の内部に埋設された抵抗
発熱体と、この抵抗発熱体に接続され、前記セラミック
ス基体に埋設されかつ表面の一部が露出した端子とを備
えたセラミックスヒーターを準備した後、前記抵抗発熱
体に電力を供給する電力供給部材を前記端子と結合する
方法であって、金属を含む中間層を前記端子の表面に形
成し、前記電力供給部材を前記中間層に接触させ、前記
端子と前記電力供給部材との間で放電させることで前記
金属を溶融させると共に前記端子と前記電力供給部材と
を接合させる、セラミックスヒーターの端子と電力供給
部材とを結合する方法に係るものである。
SUMMARY OF THE INVENTION The present invention is directed to a ceramic substrate, a resistance heating element embedded in the ceramic substrate, a resistance heating element connected to the resistance heating element, embedded in the ceramic substrate and part of the surface. A method of connecting a power supply member for supplying power to the resistance heating element to the terminal after preparing a ceramics heater having an exposed terminal, wherein an intermediate layer containing metal is formed on the surface of the terminal. Then, the power supply member is brought into contact with the intermediate layer, and the metal is melted by discharging between the terminal and the power supply member, and the terminal and the power supply member are joined together. The present invention relates to a method of connecting a terminal and a power supply member.

【0013】[0013]

【実施例】最初に、本発明を適用できるセラミックスヒ
ーターの一態様を、説明する。図1は、セラミックスヒ
ーターを熱CVD装置へと取りつけた状態を概略的に示
す断面図である。
First, one embodiment of a ceramic heater to which the present invention can be applied will be described. FIG. 1 is a sectional view schematically showing a state in which a ceramics heater is attached to a thermal CVD device.

【0014】半導体製造用CVDに使われる容器18内
には、ガス供給孔20から矢印A方向に熱CVD用のガ
スが供給され、吸引孔19から真空ポンプによって矢印
Bのように内部の空気が排出される。容器18の上部開
口を覆うようにフランジ10が取り付けられ、フランジ
10に水冷ジャケット17が取り付けられている。Oリ
ング16によって、フランジ10と容器18との間がシ
ールされる。フランジ10によって、容器の天井面が構
成される。フランジ10の下側面にケース6が取り付け
られ、ケース6の内側にセラミックスヒーターが支持さ
れている。
Gas for thermal CVD is supplied from the gas supply hole 20 in the direction of arrow A into the container 18 used for semiconductor manufacturing CVD, and the air inside is sucked from the suction hole 19 by a vacuum pump as shown by arrow B. Is discharged. The flange 10 is attached so as to cover the upper opening of the container 18, and the water cooling jacket 17 is attached to the flange 10. The O-ring 16 seals between the flange 10 and the container 18. The flange 10 constitutes the ceiling surface of the container. The case 6 is attached to the lower surface of the flange 10, and the ceramics heater is supported inside the case 6.

【0015】円盤状セラミックス基体4の内部に、抵抗
発熱体5が埋設されている。本例においては、抵抗発熱
体5が、平面的にみて略渦巻状に埋設される。円盤状セ
ラミックス基体4のウエハー加熱面4bの寸法は、半導
体ウエハーを設置可能な大きさにする。円盤状セラミッ
クス基体4のほぼ中央付近及び周縁部において、抵抗発
熱体5の末端に、後述の端子3(13)が接続されてい
る。各端子3(13)に、それぞれ後述の電力供給部材
1(11)が結合されており、ケーブル7が容器の外に
取り出されている。これら一対のケーブル7、電力供給
部材1(11)、端子3(13)を介して、抵抗発熱体
5に電力を供給する。
A resistance heating element 5 is embedded inside the disk-shaped ceramic substrate 4. In this example, the resistance heating element 5 is embedded in a substantially spiral shape when seen in a plan view. The dimension of the wafer heating surface 4b of the disk-shaped ceramic substrate 4 is set so that a semiconductor wafer can be installed. A terminal 3 (13), which will be described later, is connected to the end of the resistance heating element 5 in the vicinity of the center of the disk-shaped ceramic substrate 4 and the peripheral portion. A power supply member 1 (11) described later is connected to each terminal 3 (13), and the cable 7 is taken out of the container. Electric power is supplied to the resistance heating element 5 via the pair of cables 7, the power supply member 1 (11), and the terminal 3 (13).

【0016】中空シース8は、フランジ10の貫通孔を
通って容器26内に挿入されている。中空シース8の先
端が、セラミックス基体4の背面4a側に接合されてい
る。中空シース8の内部に、ステンレスシース付の熱電
対9が挿入されている。中空シース8とフランジ10と
の間にはOリングを設け、大気の侵入を防止している。
The hollow sheath 8 is inserted into the container 26 through the through hole of the flange 10. The tip of the hollow sheath 8 is joined to the back surface 4a side of the ceramic base 4. A thermocouple 9 with a stainless sheath is inserted inside the hollow sheath 8. An O-ring is provided between the hollow sheath 8 and the flange 10 to prevent entry of air.

【0017】図1から解るように、端子3(13)と電
力供給部材1(11)との結合部分は、容器18内に位
置するので、必然的に高温や腐食性ガスに曝される。こ
の結合部分の形成方法等について、図2、図3を参照し
つつ説明する。
As can be seen from FIG. 1, since the connecting portion between the terminal 3 (13) and the power supply member 1 (11) is located inside the container 18, it is inevitably exposed to high temperature and corrosive gas. A method of forming the joint portion and the like will be described with reference to FIGS.

【0018】図2に示すように、セラミックス基体4の
背面4a側に表面3aが露出するように、たとえば円柱
形状の端子3が埋設されている。本例では、端子3に小
突起3bが設けられ、抵抗発熱体5の末端が小突起3b
によって挟持されている。表面3aを覆うように、端子
3及び電力供給部材1に拡散可能な金属の粉末を含む中
間層2を形成する。電力供給部材1の端面1aを中間層
2に接触させる。
As shown in FIG. 2, a columnar terminal 3, for example, is embedded so that the surface 3a is exposed on the rear surface 4a side of the ceramic substrate 4. In this example, the terminal 3 is provided with a small protrusion 3b, and the end of the resistance heating element 5 is a small protrusion 3b.
Being pinched by. An intermediate layer 2 containing a metal powder capable of diffusing is formed on the terminal 3 and the power supply member 1 so as to cover the surface 3a. The end surface 1a of the power supply member 1 is brought into contact with the intermediate layer 2.

【0019】本発明者は、この状態で電力供給部材1と
端子3との間に電圧を印加し、両者の間で放電させてみ
た。すると、中間層2は一部が溶解して消滅し、図3に
示すように、電力供給部材1と端子3とが接合されるこ
とが判った。この接合強度は充分に大きく、かつ電気的
接触も問題ないものであった。
The inventor tried to apply a voltage between the power supply member 1 and the terminal 3 in this state to cause a discharge between them. Then, it was found that the intermediate layer 2 was partially dissolved and disappeared, and the power supply member 1 and the terminal 3 were joined as shown in FIG. This bonding strength was sufficiently high, and electrical contact was satisfactory.

【0020】この方法によると、電力供給部材1と端子
3との結合を、極めて短時間に、簡便に、低コストで行
うことができる。しかも、短時間で行えるため、抵抗発
熱体の劣化や断線、セラミックスの劣化や変質が生じな
い。
According to this method, the power supply member 1 and the terminal 3 can be connected to each other in an extremely short time, simply and at low cost. Moreover, since it can be performed in a short time, the resistance heating element is not deteriorated or broken, and the ceramics are not deteriorated or altered.

【0021】円盤状セラミックス基体4の材質として
は、窒化珪素、サイアロン、窒化アルミニウム等が好ま
しい。窒化珪素やサイアロンが、耐熱衝撃性の点では好
ましい。また、窒化アルミニウムは、NF3 などのフッ
素系腐食性ガスに対して、高い耐食性を有する。
As the material of the disk-shaped ceramic substrate 4, silicon nitride, sialon, aluminum nitride or the like is preferable. Silicon nitride and sialon are preferable in terms of thermal shock resistance. Further, aluminum nitride has high corrosion resistance against a fluorine-based corrosive gas such as NF 3 .

【0022】抵抗発熱体5、端子3、電力供給部材1の
材質としては、タングステン、モリブデン、白金、ニッ
ケル、等の高融点金属が好ましく、これらの合金でもよ
い。中間層2に含まれる金属は、粉末の形態であること
が望ましいが、放電で溶解可能であれば、箔や小片であ
ってもよい。また、端子3及び電力供給部材1を構成す
る金属が単体である場合には、これと同じ金属にするこ
とが好ましい。端子3を構成する金属や電力供給部材1
を構成する金属が合金である場合は、上記金属をこの合
金で構成することが好ましい。この場合は、合金の組成
比率も一致させる方が好ましい。
The materials for the resistance heating element 5, the terminal 3 and the power supply member 1 are preferably refractory metals such as tungsten, molybdenum, platinum and nickel, and alloys thereof may also be used. The metal contained in the intermediate layer 2 is preferably in the form of powder, but may be a foil or a small piece as long as it can be dissolved by electric discharge. Further, when the metal forming the terminal 3 and the power supply member 1 is a simple substance, it is preferable to use the same metal. The metal that constitutes the terminal 3 and the power supply member 1
When the metal forming the above is an alloy, it is preferable that the above metal is formed of this alloy. In this case, it is preferable to match the composition ratios of the alloys.

【0023】上記粉末の平均粒径は、5μm以下とする
のが好ましい。中間層2を形成するには、幾つかの方法
がある。上記粉末を有機溶媒中に分散させ、この分散液
を端子3上に塗布することができる。この有機溶媒とし
ては、アセトン、メタノール、エタノール、ヘキサンな
どの低沸点有機溶媒が良い。水などを使用すると、金属
が酸化される。また、この分散液中に、有機バインダー
を混合することができる。更に他の方法として、表面3
aに上記の粉末を薄くプリントすることで中間層2を形
成することができる。
The average particle size of the powder is preferably 5 μm or less. There are several methods for forming the intermediate layer 2. The above powder can be dispersed in an organic solvent, and this dispersion can be applied onto the terminals 3. As the organic solvent, low boiling point organic solvents such as acetone, methanol, ethanol and hexane are preferable. When water or the like is used, the metal is oxidized. Further, an organic binder can be mixed in this dispersion liquid. As another method, the surface 3
The intermediate layer 2 can be formed by thinly printing the above powder on a.

【0024】電力供給部材1と端子3との間の放電は、
非酸化性雰囲気中で行うことが好ましく、アルゴン、窒
素等の不活性ガス中で行うことが、更に好ましい。
The discharge between the power supply member 1 and the terminal 3 is
It is preferably performed in a non-oxidizing atmosphere, more preferably in an inert gas such as argon or nitrogen.

【0025】図2,3に示す方法の具体的実験結果につ
いて述べる。図1、図2にて示すようなセラミックスヒ
ーターを作製した。円盤状セラミックス基体4の材質は
窒化珪素とし、抵抗発熱体5、端子3、電力供給部材1
の材質はタングステンとした。平均粒径1μmのタング
ステンを有機溶媒に分散させ、この分散液を表面3aに
塗布し中間層2を形成した。この上に電力供給部材1を
固定し、真空吸引し、アルゴンガスを装置内に充填し
た。この際、気流によって粉末が飛散しないようにする
ため、ゆっくりと気体の置換を行った。100A、10
数Vの電力を供給し、電力供給部材1と端子3との間で
放電させると、瞬時にして両部材が接合された。
Specific experimental results of the method shown in FIGS. 2 and 3 will be described. A ceramic heater as shown in FIGS. 1 and 2 was produced. The material of the disk-shaped ceramic substrate 4 is silicon nitride, and the resistance heating element 5, the terminal 3, the power supply member 1
The material was tungsten. Tungsten having an average particle size of 1 μm was dispersed in an organic solvent, and this dispersion was applied on the surface 3a to form the intermediate layer 2. The power supply member 1 was fixed on this, vacuum suction was carried out, and argon gas was filled into the apparatus. At this time, the gas was slowly replaced in order to prevent the powder from being scattered by the air flow. 100A, 10
When a power of several V was supplied and a discharge was generated between the power supply member 1 and the terminal 3, both members were instantly joined.

【0026】このヒーターについて、一対の電力供給部
材1を通して電力を供給し、室温から10℃/分の速度
で温度を1000℃まで上昇させ、1000℃で5分保
持し、10℃/分で500℃まで温度を下降させ、50
0℃以下は自然冷却させた。この通電加熱過程を通じ
て、安定した電力供給が可能であった。
With respect to this heater, electric power is supplied through a pair of electric power supply members 1 to raise the temperature from room temperature to 1000 ° C. at a rate of 10 ° C./minute, hold at 1000 ° C. for 5 minutes, and hold at 500 ° C. at 10 ° C./minute. Decrease the temperature to ℃, 50
It was naturally cooled below 0 ° C. A stable power supply was possible through this electric heating process.

【0027】図4に示す例においては、電力供給部材1
1の末端に、例えば円形の突起11aを設けた。一方、
端子13の小突起13bに抵抗発熱体5を接続し、小突
起13bの反対側に、例えば円形の凹部13cを設け
た。凹部13c及び表面13aに、上記粉末を含む中間
層2を設け、突起11aを凹部13cに挿入した。この
際、電力供給部材11と端子13とが直接に接触しない
ようにした。この状態で放電させ、電力供給部材11と
端子13とを接合した。本実施例では、電力供給部材1
1と端子13との接合が一層強固になった。
In the example shown in FIG. 4, the power supply member 1
For example, a circular protrusion 11a is provided at the end of 1. on the other hand,
The resistance heating element 5 was connected to the small protrusion 13b of the terminal 13, and a circular recess 13c, for example, was provided on the opposite side of the small protrusion 13b. The intermediate layer 2 containing the above powder was provided in the recess 13c and the surface 13a, and the protrusion 11a was inserted into the recess 13c. At this time, the power supply member 11 and the terminal 13 were prevented from directly contacting each other. In this state, electric discharge was performed and the power supply member 11 and the terminal 13 were joined. In this embodiment, the power supply member 1
The connection between 1 and the terminal 13 became stronger.

【0028】図5に示す例においては、中空シース21
の空洞21b内に熱電対9が挿入され、中空シース21
の先端部21a内に熱電対9が位置している。中空シー
ス21は、タングステン、モリブデン、白金等の高融点
金属からなり、電力供給部材として機能する。凹部13
c内に中間層2を形成し、先端部21aを凹部13c内
に挿入し、電力供給部材21と端子13との間で放電さ
せる。表面13a上には中間層を設けなくてもよい。熱
電対9と電力供給部材21との間には、絶縁層を設け
る。
In the example shown in FIG. 5, the hollow sheath 21
The thermocouple 9 is inserted into the cavity 21b of the hollow sheath 21
The thermocouple 9 is located in the tip portion 21a of the. The hollow sheath 21 is made of a refractory metal such as tungsten, molybdenum, or platinum, and functions as a power supply member. Recess 13
The intermediate layer 2 is formed in c, the tip 21a is inserted into the recess 13c, and the electric discharge is generated between the power supply member 21 and the terminal 13. The intermediate layer may not be provided on the surface 13a. An insulating layer is provided between the thermocouple 9 and the power supply member 21.

【0029】[0029]

【発明の効果】本発明によれば、セラミックスヒーター
の端子と電力供給部材とを結合するのに際し、金属を含
む中間層を端子の表面に形成し、電力供給部材を中間層
に接触させ、端子と電力供給部材との間で放電させるこ
とで、金属を一部溶融させると共に端子と電力供給部材
とを接合させることができた。この接合強度は充分に大
きく、かつ電気的接触も問題ないものであった。
According to the present invention, when the terminal of the ceramics heater and the power supply member are joined, an intermediate layer containing metal is formed on the surface of the terminal, and the power supply member is brought into contact with the intermediate layer. It was possible to partially melt the metal and to bond the terminal and the power supply member by discharging between the power supply member and the power supply member. This bonding strength was sufficiently high, and electrical contact was satisfactory.

【0030】この方法によると、電力供給部材と端子と
の結合を、極めて短時間に、簡便に、低コストで行うこ
とができる。しかも、短時間で行えるため、抵抗発熱体
の劣化や断線、セラミックスの劣化や変質が生じない。
According to this method, the power supply member and the terminal can be connected in a very short time, simply and at low cost. Moreover, since it can be performed in a short time, the resistance heating element is not deteriorated or broken, and the ceramics are not deteriorated or altered.

【図面の簡単な説明】[Brief description of drawings]

【図1】セラミックスヒーターを容器18内に取り付け
た状態を概略的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a state in which a ceramics heater is installed in a container 18.

【図2】電力供給部材1を中間層2と接触させた状態を
示す断面図である。
FIG. 2 is a cross-sectional view showing a state where the power supply member 1 is in contact with the intermediate layer 2.

【図3】電力供給部材1と端子3とを接合させた状態を
示す断面図である。
FIG. 3 is a cross-sectional view showing a state in which a power supply member 1 and a terminal 3 are joined together.

【図4】電力供給部材11と端子13とを接合する前の
状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state before the power supply member 11 and the terminal 13 are joined together.

【図5】電力供給部材21と端子13とを接合する前の
状態を示す断面図である。
5 is a cross-sectional view showing a state before joining the power supply member 21 and the terminal 13. FIG.

【符号の説明】[Explanation of symbols]

1,11,21 電力供給部材 2 中間層 3,13 端子 4 円盤状セラミックス基体 5 抵抗発熱体 7 電力供給ケーブル 1,11,21 Power supply member 2 Intermediate layer 3,13 terminal 4 Disk-shaped ceramic substrate 5 Resistance heating element 7 Power supply cable

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基体と、このセラミックス
基体の内部に埋設された抵抗発熱体と、この抵抗発熱体
に接続され、前記セラミックス基体に埋設されかつ表面
の一部が露出した端子とを備えたセラミックスヒーター
を準備した後、前記抵抗発熱体に電力を供給する電力供
給部材を前記端子と結合する方法であって、 金属を含む中間層を前記端子の表面に形成し、前記電力
供給部材を前記中間層に接触させ、前記端子と前記電力
供給部材との間で放電させることで前記金属を溶融させ
ると共に前記端子と前記電力供給部材とを接合させる、
セラミックスヒーターの端子と電力供給部材とを結合す
る方法。
1. A ceramic substrate, a resistance heating element embedded in the ceramic substrate, and a terminal connected to the resistance heating element, embedded in the ceramic substrate, and having a part of the surface exposed. A method of connecting a power supply member for supplying power to the resistance heating element to the terminal after preparing a ceramics heater, wherein an intermediate layer containing a metal is formed on a surface of the terminal, and the power supply member is formed as follows. Contacting the intermediate layer, and by melting the metal by causing a discharge between the terminal and the power supply member, to join the terminal and the power supply member,
A method for connecting a terminal of a ceramic heater and a power supply member.
JP29578092A 1992-11-05 1992-11-05 Method of combining terminal of ceramics heater with power supply member Withdrawn JPH06151320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29578092A JPH06151320A (en) 1992-11-05 1992-11-05 Method of combining terminal of ceramics heater with power supply member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29578092A JPH06151320A (en) 1992-11-05 1992-11-05 Method of combining terminal of ceramics heater with power supply member

Publications (1)

Publication Number Publication Date
JPH06151320A true JPH06151320A (en) 1994-05-31

Family

ID=17825063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29578092A Withdrawn JPH06151320A (en) 1992-11-05 1992-11-05 Method of combining terminal of ceramics heater with power supply member

Country Status (1)

Country Link
JP (1) JPH06151320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020090379A1 (en) * 2018-10-30 2021-09-30 京セラ株式会社 Substrate structure and heater system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020090379A1 (en) * 2018-10-30 2021-09-30 京セラ株式会社 Substrate structure and heater system

Similar Documents

Publication Publication Date Title
JP4034145B2 (en) Susceptor device
JP3746594B2 (en) Ceramic bonding structure and manufacturing method thereof
TWI308366B (en)
US2763822A (en) Silicon semiconductor devices
TWI299539B (en) Wafer support member and semiconductor manufacturing system using the same
JP3790000B2 (en) Bonding structure of ceramic member and power supply connector
JP3870824B2 (en) SUBSTRATE HOLDER, SENSOR FOR SEMICONDUCTOR MANUFACTURING DEVICE, AND PROCESSING DEVICE
US6869689B2 (en) Joined structures of metal terminals and ceramic members, joined structures of metal members and ceramic members, and adhesive materials
JP3967278B2 (en) Joining member and electrostatic chuck
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
CN108476006A (en) The electrostatic chuck and its manufacturing method being clamped in being processed for high temperature semiconductors
JP4331427B2 (en) Power supply electrode member used in semiconductor manufacturing equipment
JP3288922B2 (en) Joint body and method of manufacturing the same
JP2001313331A (en) Electrostatic attraction device
JPH09249462A (en) Bonded material, its production and brazing material for ceramic member
JP2000106391A (en) Semiconductor supporting device and its manufacture, composite body and its manufacture
JP2000277592A (en) Substrate holder
JPH09235166A (en) Joint structure of metal member with ceramics member and production thereof
JP3966376B2 (en) SUBSTRATE HOLDER, PROCESSING DEVICE, AND CERAMIC SUSCEPTOR FOR SEMICONDUCTOR MANUFACTURING DEVICE
JPH06151320A (en) Method of combining terminal of ceramics heater with power supply member
JP2006313919A (en) Processed object retainer, susceptor for semiconductor manufacturing apparatus, and processor
JPH0870036A (en) Electrostatic chuck
US7252872B2 (en) Joined structures of ceramics
JP2644650B2 (en) Ceramic heater
JP3681824B2 (en) Ceramic bonded body and ceramic bonding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201