JPH06151296A - Method and device for high pressure supply - Google Patents

Method and device for high pressure supply

Info

Publication number
JPH06151296A
JPH06151296A JP32594892A JP32594892A JPH06151296A JP H06151296 A JPH06151296 A JP H06151296A JP 32594892 A JP32594892 A JP 32594892A JP 32594892 A JP32594892 A JP 32594892A JP H06151296 A JPH06151296 A JP H06151296A
Authority
JP
Japan
Prior art keywords
wafer
insulating material
discharge nozzle
fluid insulating
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32594892A
Other languages
Japanese (ja)
Inventor
Masayoshi Omura
昌良 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP32594892A priority Critical patent/JPH06151296A/en
Publication of JPH06151296A publication Critical patent/JPH06151296A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a pressure supply device and method of supplying fluid insulating material evenly onto the upside of a wafer provided with a fine wiring pattern without voids. CONSTITUTION:A wafer 12 as a work is held by a wafer holder 10, liquid glass 16A such as SOG(spin on glass) is discharged out of a slit-like outlet 14a of a discharge nozzle 14 as compressed, making the discharge nozzle 14 move in the direction of an arrow S, whereby a coating film 16 of fluid glass 16A is formed on the surface of the wafer 12. The outlet 14a may be formed into the shape of a pinhole, and the wafer 12 may be spun. A flow rate of glass, a discharge pressure, and a distance between an outlet and a wafer are detected to control the movement and discharge pressure of the discharge nozzle 14, and ultrasonic vibrations are given to a coating film during and after application, whereby a coating film can be more enhanced in quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体ウエハ等の被
処理ウエハに液状ガラス等の流動性絶縁材を塗布する加
圧塗布方法及び装置に関し、特に吐出ノズルからウエハ
面に流動性絶縁材を加圧供給しながら吐出ノズルをウエ
ハ面に沿って移動させることによりボイドなしの平坦状
の塗布膜が得られるようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure application method and apparatus for applying a fluid insulating material such as liquid glass onto a wafer to be processed such as a semiconductor wafer, and more particularly to applying a fluid insulating material from a discharge nozzle to a wafer surface. By moving the discharge nozzle along the wafer surface while supplying pressure, a flat coating film without voids can be obtained.

【0002】[0002]

【従来の技術】従来、SOG(スピン・オン・ガラス)
等の液状ガラスを半導体ウエハに塗布する手段として
は、図5に示すような回転塗布装置が広く利用されてい
る。
2. Description of the Related Art Conventionally, SOG (spin on glass)
As a means for applying a liquid glass such as the above to a semiconductor wafer, a spin coating apparatus as shown in FIG. 5 is widely used.

【0003】図5において、ウエハホルダ1で保持され
た半導体ウエハ2の上面には、位置Aに到来した滴下ノ
ズル3から液状ガラス4Aが滴下される。そして、ウエ
ハ2を保持したウエハホルダ1を矢印Bのように高速で
回転させることにより遠心力で液状ガラス4Aがウエハ
面に塗り広げられ、余分な液状ガラスは振り切られる。
この場合、ウエハ回転数を調節することで塗布膜の厚さ
を調節できる。
In FIG. 5, the liquid glass 4A is dropped onto the upper surface of the semiconductor wafer 2 held by the wafer holder 1 from the dropping nozzle 3 which has reached the position A. Then, by rotating the wafer holder 1 holding the wafer 2 at a high speed as shown by an arrow B, the liquid glass 4A is spread and spread on the wafer surface by a centrifugal force, and excess liquid glass is shaken off.
In this case, the thickness of the coating film can be adjusted by adjusting the wafer rotation speed.

【0004】[0004]

【発明が解決しようとする課題】上記した従来技術によ
ると、図6,7に示すようにウエハ2の表面に配線等で
生じた凹凸により塗布膜4の厚さがばらつく不都合があ
った。すなわち、図6に示すように、ウエハ面の凸部2
Aでは、液状ガラスが矢印R方向に流動すると、塗布膜
4は、上流側4aで厚く且つ下流側4bで薄くなる。ま
た、図7に示すように、ウエハ面の凹部2Bでは、液状
ガラスが矢印R方向に流動すると、塗布膜4は、流入側
4cで薄く且つ流出側4dで厚くなる。
According to the above-mentioned conventional technique, as shown in FIGS. 6 and 7, there is a problem that the thickness of the coating film 4 varies due to the unevenness caused by the wiring on the surface of the wafer 2. That is, as shown in FIG.
In A, when the liquid glass flows in the direction of arrow R, the coating film 4 becomes thick on the upstream side 4a and thin on the downstream side 4b. Further, as shown in FIG. 7, in the concave portion 2B on the wafer surface, when the liquid glass flows in the direction of arrow R, the coating film 4 becomes thin on the inflow side 4c and thick on the outflow side 4d.

【0005】図8〜10に示すようにウエハ2の表面に
配線層W1 ,W2 が接近して形成されている場合、ガラ
スの流動方向Rに直交する断面では、図9に示すように
塗布膜4がW1 ,W2 の間の部分4eで大きく凹み、流
動方向Rに沿う断面では、図10に示すように塗布膜4
がW1 の上流側4fで厚く且つW2 の下流側4gで薄く
なる。
When wiring layers W 1 and W 2 are formed close to each other on the surface of the wafer 2 as shown in FIGS. 8 to 10, in a cross section orthogonal to the flow direction R of the glass, as shown in FIG. The coating film 4 is largely recessed at a portion 4e between W 1 and W 2 , and in a cross section along the flow direction R, as shown in FIG.
There is thinner in thickness and W 2 of the downstream 4g upstream 4f of W 1.

【0006】図11に示すようにウエハ2の表面に多数
n本の配線層W1 ,W2 ……Wn が並列的に接近して形
成されている場合、液状ガラスが矢印R方向に流動する
と、塗布膜4は、配線層上ではt1 ,t2 ……tn の厚
さになり、配線層間ではs1,s2 ……の厚さになる。
これらの膜厚の関係は、次の式(1),(2)に示す通
りである。 (1)t1 ,tn <t2 ,tn-1 <t3 ,tn-2 <…… (2)s1 ,sn-1 <s2 ,sn-2 <s3 ,sn-3 <…
… 実際には、約10本程度内側に行くと、膜厚の差は殆ど
なくなり、膜厚はほぼ一定となる。
As shown in FIG. 11, when a large number n of wiring layers W 1 , W 2, ... W n are formed in parallel on the surface of the wafer 2, the liquid glass flows in the direction of arrow R. Then, the coating film 4 has a thickness of t 1 , t 2 ... T n on the wiring layer and a thickness of s 1 , s 2 ... On the wiring layer.
The relationship between these film thicknesses is as shown in the following equations (1) and (2). (1) t 1 , t n <t 2 , t n-1 <t 3 , t n-2 <... (2) s 1 , s n-1 <s 2 , s n-2 <s 3 , s n-3 <...
In reality, when the distance is increased to the inside by about 10, the difference in film thickness is almost eliminated and the film thickness becomes almost constant.

【0007】ところで、上記した従来技術によると、図
12に示すようにウエハ2の表面に形成した配線層
11,W12,W13……の間隔が狭い場合、液状ガラスの
塗布膜4にボイドV1 ,V2 ,V3 が生ずる不都合もあ
った。すなわち、液状ガラスは、毛細管現象で配線層間
の間隙に入っていくので、液状ガラスの界面張力によっ
てはV3 の場合のように間隙に流入できなかったり、V
1 ,V2 の場合のように間隙に流入しても気泡を排除で
きなかったりしてボイドが生ずるものである。
By the way, according to the above-mentioned conventional technique, when the wiring layers W 11 , W 12 , W 13 ... Formed on the surface of the wafer 2 are close to each other as shown in FIG. There is also a disadvantage that voids V 1 , V 2 and V 3 are generated. That is, since the liquid glass enters the gap between the wiring layers due to the capillary phenomenon, it cannot flow into the gap as in the case of V 3 depending on the interfacial tension of the liquid glass, or V
As in the case of V 1 and V 2 , even if the bubbles flow into the gap, the bubbles cannot be eliminated and voids are generated.

【0008】なお、上記従来技術には、遠心力で振り切
られた液状ガラスがミストになり、雰囲気の流れに乗っ
て浮遊し、再びウエハ面に付着して汚染を招く不都合も
あった。
In the above-mentioned conventional technique, the liquid glass which has been shaken off by the centrifugal force becomes a mist, floats along with the flow of the atmosphere, and adheres to the wafer surface again to cause contamination.

【0009】この発明の目的は、微細な配線パターンを
有するウエハ上面にボイドなく平坦に流動性絶縁材を塗
布することができる新規な加圧塗布方法及び装置を提供
することにある。
An object of the present invention is to provide a novel pressure coating method and apparatus capable of flatly coating a fluid insulating material on the upper surface of a wafer having a fine wiring pattern without voids.

【0010】[0010]

【課題を解決するための手段】この発明に係る加圧塗布
方法は、被処理ウエハの表面に吐出ノズルから流動性絶
縁材を加圧供給しつつ該吐出ノズルを前記表面に沿って
移動させることにより前記表面に前記流動性絶縁材を塗
布することを特徴とするものである。
In the pressure coating method according to the present invention, a discharge nozzle is moved along the surface of a wafer to be processed while pressure-supplying a fluid insulating material from the discharge nozzle. According to the above, the fluid insulating material is applied to the surface.

【0011】また、この発明に係る加圧塗布装置は、被
処理ウエハを保持するための保持手段と、この保持手段
で保持された被処理ウエハの表面に吐出ノズルを介して
流動性絶縁材を加圧供給する供給手段であって、前記吐
出ノズルの吐出口から前記表面に前記流動性絶縁材を加
圧供給しつつ前記吐出ノズルを前記表面に沿って移動さ
せることにより前記表面に前記流動性絶縁材を塗布する
ものとを備えたものである。
Further, the pressure coating apparatus according to the present invention has a holding means for holding the wafer to be processed, and a fluid insulating material on the surface of the wafer to be processed held by the holding means via a discharge nozzle. A supply unit that supplies pressure to the surface of the discharge nozzle by moving the discharge nozzle along the surface while supplying the fluid insulating material to the surface from the discharge port of the discharge nozzle under pressure. And a device for applying an insulating material.

【0012】[0012]

【作用】この発明の方法及び装置によれば、ウエハの表
面に液状ガラス等の流動性絶縁材を吐出ノズルから加圧
供給するので、ウエハ表面に微細な配線パターンが存在
しても、微細な配線間隙内に気泡を排除して流動性絶縁
材を流入させることができ、ボイド発生を回避できる。
また、吐出ノズルをウエハ表面に対して所定の間隔を維
持して移動させることで良好な平坦性が得られる。
According to the method and apparatus of the present invention, since a fluid insulating material such as liquid glass is pressure-supplied onto the surface of a wafer from a discharge nozzle, even if a fine wiring pattern is present on the surface of the wafer, a fine wiring pattern is formed. It is possible to eliminate bubbles in the wiring gap and allow the fluid insulating material to flow in, and it is possible to avoid generation of voids.
Also, good flatness can be obtained by moving the discharge nozzle while maintaining a predetermined distance from the wafer surface.

【0013】[0013]

【実施例】図1及び2は、この発明の一実施例に係る加
圧塗布装置を示すものである。
1 and 2 show a pressure coating device according to an embodiment of the present invention.

【0014】これらの図において、ウエハホルダ10
は、本体中央部に半導体ウエハ等の被処理ウエハ12を
保持するための凹部10Rをそなえている。凹部10R
の深さは、ウエハ12の厚さより若干大きく設定されて
いる。
In these figures, the wafer holder 10
Has a recess 10R for holding a wafer to be processed 12 such as a semiconductor wafer in the center of the main body. Recess 10R
Is set to be slightly larger than the thickness of the wafer 12.

【0015】凹部12の底部には通気孔10Qが設けら
れており、この通気孔10Qには通気管10Pが接続さ
れている。通気管10Pは、バルブVaを介して真空ポ
ンプのパイプPaに接続されると共に、バルブVbを介
してN2 供給源のパイプPbに接続されている。
A vent hole 10Q is provided at the bottom of the recess 12, and a vent pipe 10P is connected to the vent hole 10Q. The ventilation pipe 10P is connected to the pipe Pa of the vacuum pump via the valve Va and is also connected to the pipe Pb of the N 2 supply source via the valve Vb.

【0016】ウエハホルダ10の凹部10Rの近傍に
は、図2に示すように凹部10Rを横切る方向に細長い
長方形状の吐出ノズル14が配置される。吐出ノズル1
4の上部には液状ガラス16Aを供給するための供給パ
イプ14Aが接続されており、吐出ノズル14の下方端
面にはスリット状の吐出口14aが設けられている。
In the vicinity of the recess 10R of the wafer holder 10, an elongated rectangular discharge nozzle 14 is arranged in a direction crossing the recess 10R as shown in FIG. Discharge nozzle 1
A supply pipe 14A for supplying the liquid glass 16A is connected to the upper part of the nozzle 4, and a slit-shaped discharge port 14a is provided on the lower end face of the discharge nozzle 14.

【0017】塗布処理に際しては、ウエハ12をウエハ
ホルダ10の凹部10R内に配置する。そして、バルブ
Vbを閉状態とし且つバルブVaを開状態とすることに
よりウエハ12を真空VCで吸着し、固定する。
In the coating process, the wafer 12 is placed in the recess 10R of the wafer holder 10. Then, by closing the valve Vb and opening the valve Va, the wafer 12 is attracted and fixed by the vacuum VC.

【0018】このようなウエハ固定状態において、吐出
ノズル14を凹部10Rの一端に配置した後、吐出口1
4aから液状ガラス16Aを加圧しつつ吐出させ且つ凹
部10Rの他端に向けて矢印S方向に吐出ノズル14を
人力又は機械力により移動させる。このとき、吐出ノズ
ル14は、前方のガラス液溜16aを押しながらウエハ
12の表面に沿って進み、ウエハ表面には吐出ノズル1
4の後方に液状ガラス16Aの塗布膜16が平坦状に形
成される。塗布膜16は、加圧状態で形成されるので、
殆どボイドを含まない。すなわち、ウエハ表面に微細な
配線パターンが形成されていても、液状ガラス16Aは
気泡を排除して微細間隙を埋める。
In such a wafer-fixed state, the discharge nozzle 14 is arranged at one end of the recess 10R, and then the discharge port 1 is formed.
The liquid glass 16A is discharged from 4a while being pressurized, and the discharge nozzle 14 is moved toward the other end of the recess 10R in the direction of arrow S by human force or mechanical force. At this time, the discharge nozzle 14 advances along the surface of the wafer 12 while pressing the front glass liquid reservoir 16a, and the discharge nozzle 1 is located on the wafer surface.
The coating film 16 of the liquid glass 16A is formed in a flat shape on the rear side of 4. Since the coating film 16 is formed under pressure,
It contains almost no voids. That is, even if a fine wiring pattern is formed on the wafer surface, the liquid glass 16A eliminates bubbles and fills the fine gap.

【0019】塗布膜16の上面の平坦性を良好にするに
は、吐出口14aとウエハ12との間の間隔を一定に維
持しながら吐出ノズル14を移動すればよい。このた
め、図1,2の装置では、ウエハホルダ10の上面に沿
って吐出ノズル14を摺動させると、吐出口14aとウ
エハ12との間隔が凹部10Rの深さとウエハ12の厚
さとの差に対応して一定に保たれるようになっており、
該間隔は、例えば吐出口14aのスリット幅に等しく定
められる。なお、吐出口14aとウエハ12との間隔を
可変制御してもよく、その制御系については図4を参照
して後述する。
In order to improve the flatness of the upper surface of the coating film 16, the discharge nozzle 14 may be moved while maintaining a constant gap between the discharge port 14a and the wafer 12. Therefore, in the apparatus shown in FIGS. 1 and 2, when the ejection nozzle 14 is slid along the upper surface of the wafer holder 10, the distance between the ejection port 14a and the wafer 12 becomes the difference between the depth of the recess 10R and the thickness of the wafer 12. Correspondingly, it is supposed to be kept constant,
The interval is set equal to the slit width of the discharge port 14a, for example. The distance between the ejection port 14a and the wafer 12 may be variably controlled, and its control system will be described later with reference to FIG.

【0020】吐出ノズル14が凹部10Rの他端を越
え、1回目の塗布処理が終ったときは、必要に応じて吐
出ノズル14の進行方向を反転して2回目の塗布処理を
行なうこともできる。いずれにしても、所望回数の塗布
処理が終ったときは、バルブVaを閉状態とし且つバル
ブVbを開状態とすることによりウエハ12をN2 ガス
の圧力で浮かせて凹部10Rから取出す。この後は、ウ
エハ12上の塗布膜16を硬化させるべくプリベーク処
理等を行なう。
When the discharge nozzle 14 has passed the other end of the recess 10R and the first coating process has been completed, the advancing direction of the discharge nozzle 14 can be reversed to perform the second coating process, if necessary. . In any case, when the desired number of coating processes are completed, the valve Va is closed and the valve Vb is opened so that the wafer 12 is floated by the pressure of N 2 gas and taken out from the recess 10R. After that, a pre-baking process or the like is performed to cure the coating film 16 on the wafer 12.

【0021】図1,2の塗布装置には、(イ)吐出ノズ
ルを水平方向に移動させて塗布を行なうので、ウエハ面
の凹凸に左右されずに平坦状の塗布膜が得られること、
(ロ)加圧状態で塗布するので、ボイドのない塗布膜が
得られること、(ハ)回転塗布しないので、揮発性の高
い溶媒も使用可能であり、プリベーク温度を下げられる
こと等の利点がある。
In the coating apparatus of FIGS. 1 and 2, (a) the coating is performed by moving the discharge nozzle in the horizontal direction, so that a flat coating film can be obtained without being affected by the unevenness of the wafer surface.
(B) Since coating is performed under pressure, a void-free coating film can be obtained. (C) Since spin coating is not performed, a solvent with high volatility can be used and the pre-bake temperature can be lowered. is there.

【0022】図3は、この発明の他の実施例に係る加圧
塗布装置を示すもので、この装置は、図5の従来装置を
改造することで安価に製作可能である。
FIG. 3 shows a pressure coating apparatus according to another embodiment of the present invention, which can be manufactured at a low cost by modifying the conventional apparatus shown in FIG.

【0023】図3において、ウエハホルダ11は、被処
理ウエハ12を保持して矢印Pの如く回転可能なもので
ある。吐出ノズル14は、上部に液状ガラス供給用のパ
イプ14Aが接続されると共に、下端にピンホール状の
吐出口14aを有するものである。
In FIG. 3, the wafer holder 11 holds the wafer 12 to be processed and is rotatable as indicated by an arrow P. The discharge nozzle 14 is connected to a pipe 14A for supplying liquid glass at the upper part and has a pinhole-shaped discharge port 14a at the lower end.

【0024】塗布処理に際しては、ウエハホルダ11で
ウエハ12を保持して矢印P方向に1000〜5000
[rpm]の回転数で回転させる。ウエハ12の回転中
にウエハ表面に吐出ノズルを接近させて吐出口14aか
ら液状ガラスを加圧して吐出させつつ矢印Qの如くウエ
ハの半径方向又は直径方向に吐出ノズル14を往復的に
移動させることにより塗布を行なう。
In the coating process, the wafer 12 is held by the wafer holder 11 and the wafer is held in the direction of arrow P in the range of 1000 to 5000.
Rotate at a rotation speed of [rpm]. While the wafer 12 is rotating, the discharge nozzle is moved closer to the wafer surface to pressurize and discharge the liquid glass from the discharge port 14a, and the discharge nozzle 14 is reciprocally moved in the radial direction or the diameter direction of the wafer as indicated by an arrow Q. Apply by.

【0025】図3の塗布装置によると、加圧塗布するの
で、ボイド発生を回避できる利点がある。
According to the coating apparatus shown in FIG. 3, since pressure coating is performed, there is an advantage that voids can be avoided.

【0026】図4は、図1,2の装置又は図3の装置に
用いられる制御系を示すものである。
FIG. 4 shows a control system used in the apparatus shown in FIGS. 1 and 2 or the apparatus shown in FIG.

【0027】図4において、間隔検出装置20は、吐出
ノズル14の吐出口とウエハ12との間隔を検出するも
ので、例えば吐出口とウエハとの間の静電容量を測定す
る型式のもの、レーザー等の光源を用いた測距装置によ
りウエハとの距離や傾きを測定する型式のものを用いる
ことができる。
In FIG. 4, a gap detecting device 20 detects the gap between the discharge port of the discharge nozzle 14 and the wafer 12, for example, a type that measures the electrostatic capacitance between the discharge port and the wafer. It is possible to use a type in which the distance and the inclination to the wafer are measured by a distance measuring device using a light source such as a laser.

【0028】圧力検出装置22は、吐出ノズル14内で
液状ガラスの圧力(吐出圧力)を検出するものであり、
流量検出装置24は、吐出ノズル14内で液状ガラスの
流量を検出するものである。
The pressure detection device 22 detects the pressure (discharge pressure) of the liquid glass in the discharge nozzle 14.
The flow rate detection device 24 detects the flow rate of the liquid glass in the discharge nozzle 14.

【0029】制御データ作成装置26は、検出装置2
0,22,24からの検出出力に応じて吐出ノズル14
の移動状態(移動速度、移動方向等)及び加圧状態(吐
出口−ウエハ間の間隔、ノズルの傾き等)を制御するた
め制御データを作成するもので、例えばマイクロコンピ
ュータ等により構成される。なお、検出装置は20,2
2,24のうちの1つを設けるだけでもよい。
The control data creating device 26 is the detecting device 2
The discharge nozzle 14 according to the detection output from 0, 22, 24.
The control data is created to control the moving state (moving speed, moving direction, etc.) and the pressurizing state (interval between the discharge port and the wafer, the inclination of the nozzle, etc.), and is composed of, for example, a microcomputer. The detection device is 20,2
Only one of 2, 24 may be provided.

【0030】移動・加圧制御装置28は、制御データ作
成装置26からの制御データに応じて吐出ノズル14の
移動及び加圧状態を制御するものである。
The movement / pressurization control device 28 controls the movement and pressurization state of the discharge nozzle 14 according to the control data from the control data creation device 26.

【0031】図4の制御系を用いると、被処理ウエハの
表面状態等を考慮して最適の塗布動作を吐出ノズル14
に行なわせることができ、一層良好な塗布膜が得られ
る。
When the control system of FIG. 4 is used, the discharge nozzle 14 performs an optimum coating operation in consideration of the surface condition of the wafer to be processed.
And a better coating film can be obtained.

【0032】また、図1,2の装置又は図3の装置にあ
っては、図4の制御系を用いる場合でも、用いない場合
でも、塗布中又は塗布後に塗布膜に超音波振動を与える
装置を設けるとよい。このようにすると、塗布膜中の気
泡を塗布膜表面にまで浮かび上がらせることができ、微
細な配線間隙に気泡を残すことがなくなる。
Further, in the apparatus of FIGS. 1 and 2 or the apparatus of FIG. 3, an apparatus for applying ultrasonic vibration to the coating film during or after coating, whether or not the control system of FIG. 4 is used. Should be provided. By doing so, the bubbles in the coating film can be made to rise to the surface of the coating film, and the bubbles are not left in the fine wiring gap.

【0033】上記実施例では、SOG等の液状ガラスを
塗布する場合についてこの発明を説明したが、この発明
は、ポリイミド樹脂等を塗布する場合にも適用可能であ
る。
Although the present invention has been described in the above embodiment in the case of applying liquid glass such as SOG, the present invention is also applicable to the case of applying polyimide resin or the like.

【0034】[0034]

【発明の効果】以上のように、この発明によれば、ウエ
ハ表面に吐出ノズルから流動性絶縁材を加圧供給しつつ
吐出ノズルをウエハ表面に沿って移動させることにより
流動性絶縁材の塗布を行なうようにしたので、ボイドの
ない平坦な塗布膜を得ることができる。
As described above, according to the present invention, the fluid insulating material is applied to the wafer surface while being pressurized and supplied from the dispensing nozzle, and the dispensing nozzle is moved along the wafer surface to apply the fluid insulating material. Therefore, a flat coating film without voids can be obtained.

【0035】また、流動性絶縁材の流量や吐出圧力、吐
出口−ウエハ間の間隔等を検出して吐出ノズルの移動及
び加圧状態を制御したり、塗布中又は塗布後に塗布膜に
超音波振動を与えたりすると、一層良好な塗布膜を得る
ことができる。
The flow rate and discharge pressure of the fluid insulating material, the distance between the discharge port and the wafer are detected to control the movement and pressurization of the discharge nozzle, and ultrasonic waves are applied to the coating film during or after coating. When vibration is applied, a better coating film can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例に係る加圧塗布装置を示
す断面図である。
FIG. 1 is a cross-sectional view showing a pressure application device according to an embodiment of the present invention.

【図2】 図1の装置の斜視図である。2 is a perspective view of the device of FIG. 1. FIG.

【図3】 他の実施例を示す斜視図である。FIG. 3 is a perspective view showing another embodiment.

【図4】 加圧塗布装置の制御系を示すブロック図であ
る。
FIG. 4 is a block diagram showing a control system of the pressure application device.

【図5】 従来の回転塗布装置を示す斜視図である。FIG. 5 is a perspective view showing a conventional spin coating device.

【図6】 ウエハ面の凸部における塗布状態を示す断面
図である。
FIG. 6 is a cross-sectional view showing a coating state on a convex portion of a wafer surface.

【図7】 ウエハ面の凹部における塗布状態を示す断面
図である。
FIG. 7 is a cross-sectional view showing a coating state in a concave portion on the wafer surface.

【図8】 ウエハ面の配線層形成状態を示す上面図であ
る。
FIG. 8 is a top view showing a wiring layer formation state on the wafer surface.

【図9】 図8のX−X’線に沿う断面図である。9 is a cross-sectional view taken along line X-X 'of FIG.

【図10】 図8のY−Y’線に沿う断面図である。10 is a cross-sectional view taken along the line Y-Y 'of FIG.

【図11】 多数の並列配線層の塗布状態を示す断面図
である。
FIG. 11 is a cross-sectional view showing a coating state of a large number of parallel wiring layers.

【図12】 塗布膜内のボイド発生状況を示す断面図で
ある。
FIG. 12 is a cross-sectional view showing the occurrence of voids in the coating film.

【符号の説明】[Explanation of symbols]

10,11:ウエハホルダ、12:被処理ウエハ、1
4:吐出ノズル、16A:液状ガラス、16:塗布膜、
20:間隔検出装置、22:圧力検出装置、24:流量
検出装置、26:制御データ作成装置、28:移動・加
圧制御装置。
10, 11: Wafer holder, 12: Processed wafer, 1
4: discharge nozzle, 16A: liquid glass, 16: coating film,
20: Interval detection device, 22: Pressure detection device, 24: Flow rate detection device, 26: Control data creation device, 28: Movement / pressurization control device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/16 501 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G03F 7/16 501

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被処理ウエハの表面に吐出ノズルから流動
性絶縁材を加圧供給しつつ該吐出ノズルを前記表面に沿
って移動させることにより前記表面に前記流動性絶縁材
を塗布することを特徴とする加圧塗布方法。
1. A method for applying the fluid insulating material to the surface of a wafer to be processed by applying the fluid insulating material to the surface of the wafer under pressure while moving the ejection nozzle along the surface. Characteristic pressure application method.
【請求項2】被処理ウエハを保持するための保持手段
と、 この保持手段で保持された被処理ウエハの表面に吐出ノ
ズルを介して流動性絶縁材を加圧供給する供給手段であ
って、前記吐出ノズルの吐出口から前記表面に前記流動
性絶縁材を加圧供給しつつ前記吐出ノズルを前記表面に
沿って移動させることにより前記表面に前記流動性絶縁
材を塗布するものとを備えた加圧塗布装置。
2. A holding means for holding a wafer to be processed, and a supply means for pressurizing and supplying a fluid insulating material to the surface of the wafer to be processed held by the holding means via a discharge nozzle. Applying the fluid insulating material to the surface by moving the ejection nozzle along the surface while supplying the fluid insulating material to the surface from the ejection port of the ejection nozzle under pressure. Pressure coating device.
【請求項3】前記流動性絶縁材の流量、前記流動性絶縁
材の吐出圧力及び前記吐出口と前記表面との間の間隔の
うちの少なくとも1つのものを検出する検出手段と、 この検出手段の検出出力に応じて前記吐出ノズルの移動
及び加圧状態を制御する制御手段とを更に備えた請求項
2記載の加圧塗布装置。
3. A detecting means for detecting at least one of a flow rate of the fluid insulating material, a discharge pressure of the fluid insulating material, and a gap between the discharge port and the surface, and the detecting means. 3. The pressure application device according to claim 2, further comprising a control unit that controls the movement and pressurization state of the discharge nozzle in accordance with the detection output of the above.
【請求項4】前記流動性絶縁材の塗布中又は塗布後に塗
布膜に超音波振動を与える手段を更に備えた請求項2又
は3記載の加圧塗布装置。
4. The pressure application device according to claim 2, further comprising means for applying ultrasonic vibration to the applied film during or after applying the fluid insulating material.
JP32594892A 1992-11-11 1992-11-11 Method and device for high pressure supply Pending JPH06151296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32594892A JPH06151296A (en) 1992-11-11 1992-11-11 Method and device for high pressure supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32594892A JPH06151296A (en) 1992-11-11 1992-11-11 Method and device for high pressure supply

Publications (1)

Publication Number Publication Date
JPH06151296A true JPH06151296A (en) 1994-05-31

Family

ID=18182397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32594892A Pending JPH06151296A (en) 1992-11-11 1992-11-11 Method and device for high pressure supply

Country Status (1)

Country Link
JP (1) JPH06151296A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769946A (en) * 1995-03-29 1998-06-23 Tokyo Ohka Kogyo Co., Ltd. Coating nozzle and coating device having coating nozzle
US6117481A (en) * 1998-06-12 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Manufacturing method for electronic devices
KR100277823B1 (en) * 1994-11-29 2001-01-15 나카네 히사시 Application method
JP2008182257A (en) * 2008-03-05 2008-08-07 Dainippon Screen Mfg Co Ltd Developing device and a development method
JP2012061403A (en) * 2010-09-15 2012-03-29 Toshiba Corp Film forming apparatus, film forming method, and electronic device
JP2013133131A (en) * 2011-12-26 2013-07-08 Suntory Holdings Ltd Device for applying paste to label and label pasting apparatus
WO2017104745A1 (en) * 2015-12-15 2017-06-22 千住金属工業株式会社 Fluid discharging device and fluid discharging method
DE102016204228A1 (en) * 2016-03-15 2017-09-21 Osram Gmbh Dispensing device for glass dispensing

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100277823B1 (en) * 1994-11-29 2001-01-15 나카네 히사시 Application method
US6761930B2 (en) 1994-11-29 2004-07-13 Tokyo Ohka Kogyo Co., Ltd. Method of coating solution on substrate surface using a slit nozzle
US5769946A (en) * 1995-03-29 1998-06-23 Tokyo Ohka Kogyo Co., Ltd. Coating nozzle and coating device having coating nozzle
US5972426A (en) * 1995-03-29 1999-10-26 Tokyo Ohka Kogyo Co., Ltd. Method of coating substrate with coating nozzle
US6117481A (en) * 1998-06-12 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Manufacturing method for electronic devices
JP2008182257A (en) * 2008-03-05 2008-08-07 Dainippon Screen Mfg Co Ltd Developing device and a development method
JP2012061403A (en) * 2010-09-15 2012-03-29 Toshiba Corp Film forming apparatus, film forming method, and electronic device
US8677933B2 (en) 2010-09-15 2014-03-25 Kabushiki Kaisha Toshiba Film forming apparatus forming a coating film using spiral coating while adjusting sound wave projected onto the coating film
JP2013133131A (en) * 2011-12-26 2013-07-08 Suntory Holdings Ltd Device for applying paste to label and label pasting apparatus
WO2017104745A1 (en) * 2015-12-15 2017-06-22 千住金属工業株式会社 Fluid discharging device and fluid discharging method
US10932372B2 (en) 2015-12-15 2021-02-23 Senju Metal Industry Co., Ltd. Fluid discharge device
US11259415B2 (en) 2015-12-15 2022-02-22 Senju Metal Industry Co., Ltd. Method for discharging fluid
DE102016204228A1 (en) * 2016-03-15 2017-09-21 Osram Gmbh Dispensing device for glass dispensing
DE102016204228B4 (en) 2016-03-15 2023-03-02 Osram Gmbh Dispensing device for glass dispensing

Similar Documents

Publication Publication Date Title
JP3254574B2 (en) Method and apparatus for forming coating film
US4451507A (en) Automatic liquid dispensing apparatus for spinning surface of uniform thickness
US4822639A (en) Spin coating method and device
JP2798503B2 (en) Liquid coating method and coating device
US4590094A (en) Inverted apply using bubble dispense
JPH06151296A (en) Method and device for high pressure supply
US5455062A (en) Capillary device for lacquering or coating plates or disks
KR19990088393A (en) Coating apparatus and coating method
EP0677334A1 (en) Coating device and coating method
KR0157707B1 (en) Apparatus for coating substrate
JPH08213308A (en) Coating method
US5622747A (en) Method for dispensing a layer of photoresist on a wafer without spinning the wafer
JPH0416224B2 (en)
JP3722629B2 (en) Developer discharge nozzle and developer supply apparatus
JPH0780384A (en) Fluid coating device
JP2003093959A (en) Method and apparatus for applying coating liquid, and method for adjusting coating condition of apparatus
JPH09289161A (en) Treatment liquid coater
Singh et al. Flow condition in resist spray coating and patterning performance for three-dimensional photolithography over deep structures
JPH0839763A (en) Apparatus and method for supplying cream solder and screen printer
JP4116132B2 (en) Liquid coating apparatus and method for manufacturing coated body
JPH09320950A (en) Substrate treatment
JPH11319678A (en) Fluid coating device and fluid coating method
JPH08309253A (en) Method and apparatus for improving uniformity of liquid curtain of coating machine
JPS59100524A (en) Application of resist
JP3383093B2 (en) Applicator for coating liquid on substrate