JPH06151151A - Mn-zn type ferrite - Google Patents

Mn-zn type ferrite

Info

Publication number
JPH06151151A
JPH06151151A JP4297117A JP29711792A JPH06151151A JP H06151151 A JPH06151151 A JP H06151151A JP 4297117 A JP4297117 A JP 4297117A JP 29711792 A JP29711792 A JP 29711792A JP H06151151 A JPH06151151 A JP H06151151A
Authority
JP
Japan
Prior art keywords
oxide
terms
mol
zno
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4297117A
Other languages
Japanese (ja)
Other versions
JP3636729B2 (en
Inventor
Hideaki Kohiki
英明 小日置
Koji Ikeda
幸司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29711792A priority Critical patent/JP3636729B2/en
Publication of JPH06151151A publication Critical patent/JPH06151151A/en
Application granted granted Critical
Publication of JP3636729B2 publication Critical patent/JP3636729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide Mn-Zn type ferrite which allows less breakage such as cracks and notches due to automatic assembly and precision processes and excels in the frequency characteristics of initial permeability by permitting specific MnO, ZnO and Fe2O3 to be base ingredients and allowing specific calcium oxide and antimony oxide to be contained as the sub-ingredients. CONSTITUTION:The final composition of material is as follows : MnO: 20 to 30mol%, ZnO: 10 to 25mol% and Fe2O3: actual remain. Then, the material of the basic composition is mixed and calcinated in the atmosphere. The calcinated powder is permitted to contain 0.005 to 0.2wt.% of CaO (CaCO3 is used) and 0.005 to 0.2wt.% of Sb2O3 as the final composition. Then, 0.005 to 0.08wt.% of Nb2O5 and/or 0.005 to 0.008wt.% of Ta2O5 is added and the material is powdered by a wet type ball mill. Binder is added to the powdered material, the material is granulated, molded and baked in the nitrogen atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種通信機器の変成
器磁心や磁気ヘッドとしての用途に供して好適なMn−Zn
系フェライトに関し、特に焼結密度及び高周波領域にお
ける透磁率の周波数特性の向上を図ろうとするものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use as a transformer magnetic core or magnetic head for various communication devices.
With regard to the system ferrite, it is intended to improve the frequency characteristics of the sintered density and the magnetic permeability particularly in the high frequency region.

【0002】[0002]

【従来の技術】Mn−Zn系酸化物磁性材料いわゆるMn−Zn
系フェライトは、各種通信機器等の変成器磁心として、
またVTR等の磁気ヘッドとして広く用いられている。
近年、電子機器の小形化に伴い、部品の組立の自動化が
進んでいるが、フェライトは一般に硬くて脆いため、自
動組立において割れや欠けなどの破損の発生が問題とな
っている。また磁気ヘッドに使用される場合には、精密
な加工を施すために欠陥が極力少ないことの他、ヘッド
として長時間媒体と接触することから耐摩耗性が高いこ
とが要求される。上記のような弱点を克服するために
は、高密度でしかも緻密な焼結体が要求される。
2. Description of the Related Art Mn-Zn oxide magnetic materials, so-called Mn-Zn
Ferrites are used as transformer cores for various communication equipment.
It is also widely used as a magnetic head for VTRs and the like.
In recent years, with the miniaturization of electronic devices, automation of assembling parts has progressed, but since ferrite is generally hard and brittle, damage such as cracks and chips is a problem in automatic assembly. In addition, when used in a magnetic head, it is required that the number of defects is as small as possible in order to perform precision processing, and that the head is in contact with the medium for a long time and therefore has high wear resistance. In order to overcome the above-mentioned weak points, a dense and dense sintered body is required.

【0003】高密度のフェライト焼結体を得る方法とし
ては、減圧焼成法、ホットプレス法及びHIP法などの
焼結方法が開発されているが、かような方法は特別な減
圧装置や加圧装置等を必要とするため、工程の増大のみ
ならず、コストの上昇を招く。このため、これらの方法
は、精密加工が必要な磁気ヘッド等の製造には使用され
るものの、トランス材料等の製造には使用されていな
い。
As a method for obtaining a high density ferrite sintered body, a sintering method such as a reduced pressure firing method, a hot pressing method and a HIP method has been developed. Since a device or the like is required, not only the number of steps is increased, but also the cost is increased. Therefore, although these methods are used for manufacturing magnetic heads and the like that require precision processing, they are not used for manufacturing transformer materials and the like.

【0004】また、電子機器等のノイズフィルタ等に使
用される磁心の小形化のためには、高透磁率と共に低損
失が要求される。この目的達成のために、従来から、種
々の微量成分の添加による焼結密度及び透磁率の改善が
試みられている。例えば、特開昭51-53299号公報には、
In2O3, SnF2 及び Al2O3を含有させることが提案されて
いるが、この方法では、高密度焼結体を得ることができ
るものの、初透磁率の周波数特性を改善するまでには至
っていない。また特公昭51-49079号公報では、 Bi2O3
びCaO を複合含有させることにより、 100 kHzにおいて
6000〜8000と高透磁率を得ているが、焼結密度に関する
記述はない。
Further, in order to miniaturize a magnetic core used for a noise filter or the like of electronic equipment, high permeability and low loss are required. In order to achieve this object, it has been attempted to improve the sintered density and magnetic permeability by adding various trace components. For example, in JP-A-51-53299,
It has been proposed to contain In 2 O 3 , SnF 2 and Al 2 O 3 , but with this method, although a high density sintered body can be obtained, it is necessary to improve the frequency characteristics of initial permeability. Has not arrived. In addition, Japanese Patent Publication No. 51-49079 discloses that by including Bi 2 O 3 and CaO in combination, at 100 kHz.
It has a high magnetic permeability of 6000-8000, but there is no description about the sintered density.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、フェライトの製造に通常用
いられる常圧での焼成によって、安価に高密度化でき、
自動組立や精密加工の際に割れや欠けなどの破損が発生
しにくく、しかも 100 kHz〜1MHz の高周波領域におけ
る初透磁率の周波数特性に優れた、高密度でかつ高透磁
率のMn−Zn系フェライトを提案することを目的とする。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and it is possible to inexpensively densify by calcination under normal pressure which is usually used for producing ferrite,
High-density, high-permeability Mn-Zn system that does not easily break or break during automatic assembly or precision machining, and has excellent frequency characteristics of initial permeability in the high frequency range of 100 kHz to 1 MHz. The purpose is to propose ferrite.

【0006】[0006]

【課題を解決するための手段】この発明の目的は、以下
の構成になるMn−Zn系フェライトによって達成できる。 1.MnO :20〜30 mol% ZnO :10〜25 mol%及び Fe2O3:残部 を基本成分とし、副成分として 酸化カルシウム:CaO 換算で 0.005〜0.2 wt%及び 酸化アンチモン:Sb2O3 換算で 0.005〜0.2 wt% を含有することを特徴とするMn−Zn系フェライト(第1
発明)。
The object of the present invention can be achieved by an Mn-Zn type ferrite having the following constitution. 1. MnO: 20~30 mol% ZnO: 10~25 mol% and Fe 2 O 3: balance was used as a basic ingredient, calcium oxide as a secondary component: CaO translated at 0.005 to 0.2 wt% and antimony oxide: In Sb 2 O 3 in terms of Mn-Zn based ferrites characterized by containing 0.005-0.2 wt% (first
invention).

【0007】2.MnO :20〜30 mol% ZnO :10〜25 mol%及び Fe2O3:残部 を基本成分とし、副成分として 酸化カルシウム:CaO 換算で 0.005〜0.2 wt%及び 酸化アンチモン:Sb2O3 換算で 0.005〜0.2 wt% を含み、さらに、 酸化ニオブ:Nb2O5 換算で 0.005〜0.08wt%及び 酸化タンタル:Ta2O5 換算で 0.005〜0.1 wt% のうちから選んだ1種又は2種を含有することを特徴と
するMn−Zn系フェライト(第2発明)。
2. MnO: 20~30 mol% ZnO: 10~25 mol% and Fe 2 O 3: balance was used as a basic ingredient, calcium oxide as a secondary component: CaO translated at 0.005 to 0.2 wt% and antimony oxide: In Sb 2 O 3 in terms of In addition to 0.005 to 0.2 wt%, one or two selected from niobium oxide: 0.005 to 0.08 wt% in Nb 2 O 5 conversion and tantalum oxide: 0.005 to 0.1 wt% in Ta 2 O 5 conversion. An Mn-Zn-based ferrite characterized by containing (second invention).

【0008】3.MnO :20〜30 mol% ZnO :10〜25 mol%及び Fe2O3:残部 を基本成分とし、副成分として 酸化カルシウム:CaO 換算で 0.005〜0.2 wt%及び 酸化アンチモン:Sb2O3 換算で 0.005〜0.2 wt% を含み、さらに 酸化珪素:SiO2換算で 0.005〜0.02wt% を含有することを特徴とするMn−Zn系フェライト(第3
発明)。
3. MnO: 20~30 mol% ZnO: 10~25 mol% and Fe 2 O 3: balance was used as a basic ingredient, calcium oxide as a secondary component: CaO translated at 0.005 to 0.2 wt% and antimony oxide: In Sb 2 O 3 in terms of Mn-Zn system ferrite containing 0.005 to 0.2 wt% and further containing 0.005 to 0.02 wt% in terms of silicon oxide: SiO 2 (3rd
invention).

【0009】4.MnO :20〜30 mol% ZnO :10〜25 mol%及び Fe2O3:残部 を基本成分とし、副成分として 酸化カルシウム:CaO 換算で 0.005〜0.2 wt%及び 酸化アンチモン:Sb2O3 換算で 0.005〜0.2 wt% を含み、さらに、 酸化ニオブ:Nb2O5 換算で 0.005〜0.08wt%及び 酸化タンタル:Ta2O5 換算で 0.005〜0.1 wt% のうちから選んだ1種又は2種と、 酸化珪素:SiO2換算で 0.005〜0.02wt% とを含有することを特徴とするMn−Zn系フェライト(第
4発明)。
4. MnO: 20~30 mol% ZnO: 10~25 mol% and Fe 2 O 3: balance was used as a basic ingredient, calcium oxide as a secondary component: CaO translated at 0.005 to 0.2 wt% and antimony oxide: In Sb 2 O 3 in terms of In addition to 0.005 to 0.2 wt%, one or two selected from niobium oxide: 0.005 to 0.08 wt% in Nb 2 O 5 conversion and tantalum oxide: 0.005 to 0.1 wt% in Ta 2 O 5 conversion. Silicon oxide: 0.005 to 0.02 wt% in terms of SiO 2 is contained, and a Mn-Zn ferrite (fourth invention).

【0010】[0010]

【作用】まず、この発明において基本成分の組成範囲を
MnO:20〜30 mol%, ZnO:10〜25 mol%及び残部:Fe
2O3 に限定した理由について説明する。変成器磁心や磁
気ヘッドの動作温度は、通常、室温から80〜120 ℃であ
り、この温度範囲において初透磁率が正の温度依存性を
持つことが要求される。そこで、この観点から、Fe2O3,
MnO及びZnO の割合を検討した結果、上記の組成範囲が
得られたのである。
First, in the present invention, the composition range of the basic components is determined.
MnO: 20-30 mol%, ZnO: 10-25 mol% and balance: Fe
The reason for limiting to 2 O 3 will be explained. The operating temperature of the transformer core and the magnetic head is usually from room temperature to 80 to 120 ° C, and it is required that the initial permeability has a positive temperature dependence in this temperature range. Therefore, from this viewpoint, Fe 2 O 3 ,
As a result of examining the proportions of MnO and ZnO, the above composition range was obtained.

【0011】この発明では、上記の基本成分中に、副成
分として酸化カルシウム及び酸化アンチモンを含有させ
る。また、必要に応じて、酸化ニオブ及び酸化タンタル
のうちから選んだ1種又は2種、さらには酸化珪素を含
有させることができる。かような副成分の適正含有量は
次のとおりである。
In the present invention, calcium oxide and antimony oxide are contained as subcomponents in the above basic components. If necessary, one or two kinds selected from niobium oxide and tantalum oxide, and further silicon oxide can be contained. The proper content of such subcomponents is as follows.

【0012】酸化カルシウム:CaO 換算で 0.005〜0.2
wt% CaO は、粒界抵抗を効果的に高め、もって高周波帯域に
おける初透磁率の改善に寄与する有用成分であり、この
効果は後述するSiO2との共存下で一層大きい。しかしな
がら、含有量が 0.005wt%に満たないと粒界抵抗の向上
効果に乏しく、一方、0.2 wt%を超えると逆に焼結密度
及び初透磁率の低下を招くので、 0.005〜0.2 wt%の範
囲で添加するものとした。
Calcium oxide: 0.005 to 0.2 in terms of CaO
wt% CaO is a useful component that effectively increases the grain boundary resistance and contributes to the improvement of the initial magnetic permeability in the high frequency band, and this effect is even greater in the coexistence with SiO 2 described later. However, if the content is less than 0.005 wt%, the effect of improving the grain boundary resistance is poor. On the other hand, if it exceeds 0.2 wt%, on the contrary, the sintered density and the initial permeability decrease, so 0.005 to 0.2 wt% It was supposed to be added within the range.

【0013】酸化アンモチン:Sb2O3 換算で 0.005〜0.
2 wt% 酸化アンモチン(主にSb2O3 )は、CaO との共存下にお
いて、異常粒成長を発生させることなしに、焼結性を著
しく改善し、焼結密度を増大させ、もって飽和磁束密度
及び透磁率に好影響を与えるものと考えられる。しかし
ながら、含有量が 0.005wt%に満たないと焼結性の改善
効果に乏しく、一方0.2 wt%を超えて含有されると高周
波帯域における初透磁率の低下を招くので、 0.005〜0.
2 wt%の範囲に限定した。
Oxidized ammotine: 0.005 to 0 in terms of Sb 2 O 3 .
2 wt% oxidized ammotin (mainly Sb 2 O 3 ), in the coexistence with CaO, significantly improved the sinterability and increased the sintered density without causing abnormal grain growth, and thus saturated flux It is considered to have a favorable effect on the density and magnetic permeability. However, if the content is less than 0.005 wt%, the effect of improving the sinterability is poor, while if it exceeds 0.2 wt%, the initial permeability in the high frequency band decreases, so 0.005 to 0.
It was limited to the range of 2 wt%.

【0014】酸化ニオブ:Nb2O5 換算で 0.005〜0.08wt
% 酸化ニオブ(主にNb2O5 )は、 Sb2O3の焼結性向上の効
果を損なうことなく、高周波領域での初透磁率及び損失
の改善に寄与する。この酸化ニオブの添加によって初透
磁率及び損失が改善される理由は、まだ解明されたわけ
ではないけれども、CaO 及びSb2O3 の複合含有によって
形成される高抵抗の粒界相を変質させ、電気抵抗を増加
させると共に、異質の相が粒界に存在することによる磁
気的な悪影響を緩和する働きがあるためと考えられる。
この効果は、後述するTa2O5 との共存下で一層大きい。
しかしながら含有量が 0.005wt%に満たないとその効果
に乏しく、一方0.08wt%を超えて含有されると焼結時に
異常粒成長を起こし易くなるので、0.005 〜0.08wt%の
範囲に限定した。
Niobium oxide: 0.005 to 0.08 wt in terms of Nb 2 O 5
% Niobium oxide (mainly Nb 2 O 5 ) contributes to the improvement of initial permeability and loss in the high frequency region without impairing the effect of improving the sinterability of Sb 2 O 3 . The reason why the addition of niobium oxide improves the initial permeability and loss has not been clarified yet, but it alters the high-resistance grain boundary phase formed by the combined inclusion of CaO and Sb 2 O 3 , and It is considered that this is because the resistance is increased and the magnetic adverse effect due to the existence of foreign phases at the grain boundaries is mitigated.
This effect is greater in the coexistence with Ta 2 O 5 described later.
However, if the content is less than 0.005 wt%, its effect is poor, while if it exceeds 0.08 wt%, abnormal grain growth tends to occur during sintering, so the range was limited to 0.005 to 0.08 wt%.

【0015】酸化タンタル:Ta2O5 換算で 0.005〜0.1
wt% 酸化タンタル(主にTa2O5 )は、CaO, Sb2O3との共存下
で、高周波領域での初透磁率及び損失の改善に寄与す
る。また、 Ta2O5は Sb2O3程ではないものの、焼結密度
を増加させる効果がある。この酸化タンタルの添加によ
って損失が改善される理由は、まだ明確に解明されたわ
けではないが、酸化ニオブと同様な粒界の性質を改善す
る効果によるものと考えられる。この効果は、 Nb2O5
の共存下で一層大きい。しかしながら含有量が 0.005wt
%に満たないとその効果に乏しく、一方 0.1wt%を超え
て含有されると焼結時に異常粒成長を起こし易くなるの
で、0.005 〜0.1 wt%の範囲に限定した。
Tantalum oxide: 0.005 to 0.1 in terms of Ta 2 O 5
wt% tantalum oxide (mainly Ta 2 O 5 ) contributes to the improvement of initial permeability and loss in the high frequency region in the presence of CaO and Sb 2 O 3 . Further, Ta 2 O 5 has an effect of increasing the sintered density, though not so much as Sb 2 O 3 . Although the reason why the loss is improved by the addition of tantalum oxide has not been clarified yet, it is considered to be due to the effect of improving the properties of the grain boundary similar to niobium oxide. This effect is even greater in the coexistence with Nb 2 O 5 . However, the content is 0.005wt
%, The effect is poor. On the other hand, if the content exceeds 0.1 wt%, abnormal grain growth is likely to occur during sintering, so the range is limited to 0.005 to 0.1 wt%.

【0016】酸化珪素:SiO2換算で 0.005〜0.02wt% SiO2は、 CaOとの共存によって粒界の比抵抗を高め、渦
電流の低減に有効に寄与するが、含有量が 0.005wt%未
満ではその添加効果に乏しく、一方0.02wt%を超えると
焼成時に異常粒成長が発生し易く、特性が不安定になる
ので、 0.005〜0.02wt%の範囲に限定した。
[0016] Silicon oxide: 0.005~0.02wt% SiO 2 in terms of SiO 2 increases the specific resistance of the grain boundary by the coexistence with CaO, contributes effectively to reduction of eddy currents, content is less than 0.005 wt% However, if the content exceeds 0.02 wt%, abnormal grain growth tends to occur during firing and the characteristics become unstable, so the range was limited to 0.005 to 0.02 wt%.

【0017】以上述べたとおり、この発明は、副成分と
して酸化カルシウム及び酸化アンチモンを含有させ、さ
らに必要に応じて、酸化ニオブ及び酸化タンタルのうち
から選んだ1種又は2種、またさらには酸化珪素等を含
有させて、粒界に均一分散させることにより、所期した
目的を達成したものである。
As described above, according to the present invention, calcium oxide and antimony oxide are contained as auxiliary components, and if necessary, one or two selected from niobium oxide and tantalum oxide, or further oxidized. By incorporating silicon or the like and uniformly dispersing it in the grain boundaries, the intended purpose is achieved.

【0018】この発明のフェライトを製造するには、常
法に従って処理を施せば良い。すなわち、フェライトの
最終組成として、例えば酸化マンガンを MnO換算で20〜
30 mol%、酸化亜鉛を ZnO換算で10〜25 mol%、残部を
酸化鉄で含有するように混合し、ついで副成分として酸
化カルシウム(CaO 換算)を 0.005〜0.2 wt%及び酸化
アンチモン(Sb2O3 換算)を 0.005〜0.2 wt%、さらに
必要に応じて、酸化ニオブ(Nb2O5 換算)を 0.005〜0.
08wt%、酸化タンタル(Ta2O5 換算)を0.005 〜0.1 wt
%、酸化珪素(SiO2換算)を 0.005〜0.02wt%の範囲で
適宜含有するように添加したものを原料とする。ただ
し、副成分の添加時期は、後述する仮焼の後であっても
差し支えない。この原料を 800℃以上の温度で仮焼し、
ついで微粉砕後、1150℃以上の高温にて酸素濃度を制御
した窒素ガス中で焼成する。
In order to produce the ferrite of the present invention, it may be treated according to a conventional method. In other words, as the final composition of ferrite, for example, manganese oxide is
30 mol%, zinc oxide 10 to 25 mol% in terms of ZnO, and the balance to contain iron oxide in the balance, and then 0.005 to 0.2 wt% calcium oxide (as CaO) and antimony oxide (Sb 2 O 3 basis) of 0.005 to 0.2 wt%, if necessary, a niobium oxide (Nb 2 O 5 equivalent) from 0.005 to 0.
08wt%, tantalum oxide (Ta 2 O 5 equivalent) 0.005-0.1 wt
%, Silicon oxide (converted to SiO 2 ) are added so as to be contained appropriately in the range of 0.005 to 0.02 wt%. However, the subcomponents may be added even after the calcination described below. This material is calcined at a temperature of 800 ° C or higher,
Then, after finely pulverizing, it is fired in a nitrogen gas whose oxygen concentration is controlled at a high temperature of 1150 ° C. or higher.

【0019】なお、酸化鉄の原料としては、 Fe2O3だけ
でなく、 FeOやFe3O4 、さらには焼成によってFe2O3
変わることのできる化合物、例えば水酸化鉄、しゅう酸
鉄などを使用することができる。また酸化マンガン原料
としては, MnOのみならず、Mn02,Mn3O4 、さらには焼
成によって MnOに変わることのできる化合物、例えば炭
酸マンガン、しゅう酸マンガンなどを使用することがで
きる。さらに、酸化亜鉛原料としては、ZnO だけに限ら
ず、焼成によって ZnOに変わることのできる化合物、例
えば炭酸亜鉛、しゅう酸亜鉛などを使用することができ
る。
Not only Fe 2 O 3 but also FeO, Fe 3 O 4 , and compounds that can be converted into Fe 2 O 3 by firing, such as iron hydroxide and iron oxalate, are used as raw materials for iron oxide. Etc. can be used. As the manganese oxide raw material, not only MnO, but also Mn0 2 , Mn 3 O 4 , and compounds that can be converted into MnO by firing, such as manganese carbonate and manganese oxalate, can be used. Furthermore, the zinc oxide raw material is not limited to ZnO, and compounds that can be converted to ZnO by firing, such as zinc carbonate and zinc oxalate, can be used.

【0020】Ca及びSb,さらにはNb,Ta,Si等の酸化物
の添加は、酸化物の形そのままであっても、また製造工
程中の加熱により酸化物に変化する、金属又は炭酸塩し
ゅう酸塩等の化合物などであっても、いずれでも良い。
The addition of Ca and Sb, and further oxides of Nb, Ta, Si, etc., is a metal or carbonate salt which can be converted into an oxide by the heating in the manufacturing process even if the oxide form is unchanged. A compound such as an acid salt or the like may be used.

【0021】[0021]

【実施例】最終組成として、 MnO:26.0 mol%, ZnO:
20.0 mol%, Fe2O3:54.0 mol%となる基本組成の原料
を混合した後、大気中にて 900℃,3時間の仮焼を施し
た。この仮焼粉に対し、表1に示す最終組成としての割
合で、CaO (CaCO3を使用),Sb2O3 、さらにはNb2O5, Ta2
O5及びSiO2等を添加配合し、同時に湿式ボールミルで粉
砕した。ついで粉砕粉にバインダーとしてPVAを添加
し、造粒した後、外径:24mm, 内径:18mm,高さ:6mm
のリング状に成形した。この成形体を、酸素濃度を制御
した窒素雰囲気中で1340℃, 4時間焼成した。
[Example] As the final composition, MnO: 26.0 mol%, ZnO:
After mixing raw materials having a basic composition of 20.0 mol% and Fe 2 O 3 : 54.0 mol%, calcination was performed in the air at 900 ° C. for 3 hours. With respect to this calcined powder, CaO (using CaCO 3 ), Sb 2 O 3 , and further Nb 2 O 5 , Ta 2 in the ratio as the final composition shown in Table 1
O 5 and SiO 2 and the like were added and blended, and simultaneously pulverized by a wet ball mill. Then, add PVA as a binder to the pulverized powder and granulate it, then outer diameter: 24 mm, inner diameter: 18 mm, height: 6 mm
Was molded into a ring shape. The compact was fired at 1340 ° C. for 4 hours in a nitrogen atmosphere with controlled oxygen concentration.

【0022】かくして得られた焼結コアの密度をアルキ
メデス法により測定した。また、周波数:100 kHz 及び
500 kHzで,室温における初透磁率をインピーダンスア
ナライザーにて測定した。測定結果を表1に併記する。
なお焼結密度は、理論密度:5.1 g/cm3 に対する百分率
で示した。
The density of the thus obtained sintered core was measured by the Archimedes method. Also, frequency: 100 kHz and
The initial permeability at room temperature was measured with an impedance analyzer at 500 kHz. The measurement results are also shown in Table 1.
The sintered density is shown as a percentage with respect to the theoretical density: 5.1 g / cm 3 .

【0023】[0023]

【表1】 [Table 1]

【0024】同表より明らかなように、この発明に従
い、副成分として、酸化カルシウム及び酸化アンチモ
ン、さらには酸化ニオブ、酸化タンタル及び/又は酸化
珪素を複合含有させたものはいずれも、焼結密度は理論
密度の98.5%以上であり、しかも500 kHz の高周波帯域
における透磁率の低下は極めて小さいものであった。
As is apparent from the table, according to the present invention, any of those containing calcium oxide and antimony oxide, and further niobium oxide, tantalum oxide and / or silicon oxide as a subcomponent, has a sintered density. Was more than 98.5% of the theoretical density, and the decrease in permeability in the high frequency band of 500 kHz was extremely small.

【0025】[0025]

【発明の効果】かくしてこの発明によれば、通常の常圧
での焼成方法によって、自動組立や精密加工の際に割れ
や欠けなどの破損が発生しにくく、しかも 100 kHz〜1
MHz の高周波領域における初透磁率の周波数特性が従来
の材料と比較して格段に良好な高密度でかつ高透磁率の
Mn−Zn系フェライトを安価に得ることができる。
As described above, according to the present invention, by the normal atmospheric pressure firing method, breakage such as cracks and chips is unlikely to occur during automatic assembly and precision processing, and 100 kHz to 1
Compared with conventional materials, the frequency characteristics of initial permeability in the high frequency region of MHz are much better than those of conventional materials.
Mn-Zn ferrite can be obtained at low cost.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】MnO :20〜30 mol% ZnO :10〜25 mol%及び Fe2O3:残部 を基本成分とし、副成分として 酸化カルシウム:CaO 換算で 0.005〜0.2 wt%及び 酸化アンチモン:Sb2O3 換算で 0.005〜0.2 wt% を含有することを特徴とするMn−Zn系フェライト。1. A MnO: 20~30 mol% ZnO: 10~25 mol% and Fe 2 O 3: balance was used as a basic ingredient, calcium oxide as a secondary component: CaO translated at 0.005 to 0.2 wt% and antimony oxide: Sb An Mn-Zn system ferrite containing 0.005 to 0.2 wt% in terms of 2 O 3 . 【請求項2】MnO :20〜30 mol% ZnO :10〜25 mol%及び Fe2O3:残部 を基本成分とし、副成分として 酸化カルシウム:CaO 換算で 0.005〜0.2 wt%及び 酸化アンチモン:Sb2O3 換算で 0.005〜0.2 wt% を含み、さらに、 酸化ニオブ:Nb2O5 換算で 0.005〜0.08wt%及び 酸化タンタル:Ta2O5 換算で 0.005〜0.1 wt% のうちから選んだ1種又は2種を含有することを特徴と
するMn−Zn系フェライト。
Wherein MnO: 20~30 mol% ZnO: 10~25 mol% and Fe 2 O 3: balance was used as a basic ingredient, calcium oxide as a secondary component: CaO translated at 0.005 to 0.2 wt% and antimony oxide: Sb Included 0.005 to 0.2 wt% in terms of 2 O 3 , and further selected from niobium oxide: 0.005 to 0.08 wt% in terms of Nb 2 O 5 and tantalum oxide: 0.005 to 0.1 wt% in terms of Ta 2 O 5 1 Mn-Zn ferrite containing one or two kinds.
【請求項3】MnO :20〜30 mol% ZnO :10〜25 mol%及び Fe2O3:残部 を基本成分とし、副成分として 酸化カルシウム:CaO 換算で 0.005〜0.2 wt%及び 酸化アンチモン:Sb2O3 換算で 0.005〜0.2 wt% を含み、さらに 酸化珪素:SiO2換算で 0.005〜0.02wt% を含有することを特徴とするMn−Zn系フェライト。Wherein MnO: 20~30 mol% ZnO: 10~25 mol% and Fe 2 O 3: balance was used as a basic ingredient, calcium oxide as a secondary component: CaO translated at 0.005 to 0.2 wt% and antimony oxide: Sb 2 O 3 comprises 0.005 to 0.2 wt% in terms of further silicon oxide: Mn-Zn ferrite, characterized in that it contains 0.005~0.02Wt% in terms of SiO 2. 【請求項4】MnO :20〜30 mol% ZnO :10〜25 mol%及び Fe2O3:残部 を基本成分とし、副成分として 酸化カルシウム:CaO 換算で 0.005〜0.2 wt%及び 酸化アンチモン:Sb2O3 換算で 0.005〜0.2 wt% を含み、さらに、 酸化ニオブ:Nb2O5 換算で 0.005〜0.08wt%及び 酸化タンタル:Ta2O5 換算で 0.005〜0.1 wt% のうちから選んだ1種又は2種と、 酸化珪素:SiO2換算で 0.005〜0.02wt% とを含有することを特徴とするMn−Zn系フェライト。4. MnO: 20~30 mol% ZnO: 10~25 mol% and Fe 2 O 3: balance was used as a basic ingredient, calcium oxide as a secondary component: CaO translated at 0.005 to 0.2 wt% and antimony oxide: Sb Included 0.005 to 0.2 wt% in terms of 2 O 3 , and further selected from niobium oxide: 0.005 to 0.08 wt% in terms of Nb 2 O 5 and tantalum oxide: 0.005 to 0.1 wt% in terms of Ta 2 O 5 1 species or two and, silicon oxide: Mn-Zn ferrite, characterized by containing a 0.005~0.02Wt% in terms of SiO 2.
JP29711792A 1992-11-06 1992-11-06 Mn-Zn ferrite Expired - Fee Related JP3636729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29711792A JP3636729B2 (en) 1992-11-06 1992-11-06 Mn-Zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29711792A JP3636729B2 (en) 1992-11-06 1992-11-06 Mn-Zn ferrite

Publications (2)

Publication Number Publication Date
JPH06151151A true JPH06151151A (en) 1994-05-31
JP3636729B2 JP3636729B2 (en) 2005-04-06

Family

ID=17842435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29711792A Expired - Fee Related JP3636729B2 (en) 1992-11-06 1992-11-06 Mn-Zn ferrite

Country Status (1)

Country Link
JP (1) JP3636729B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773619B2 (en) 2001-07-17 2004-08-10 Tdk Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
CN102311260A (en) * 2011-08-08 2012-01-11 中国地质大学(北京) Novel MnZn-doped ferrite material and preparation method thereof
CN107117954A (en) * 2017-04-27 2017-09-01 横店集团东磁股份有限公司 A kind of preparation method of high-performance permanent-magnet ferrite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773619B2 (en) 2001-07-17 2004-08-10 Tdk Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
CN102311260A (en) * 2011-08-08 2012-01-11 中国地质大学(北京) Novel MnZn-doped ferrite material and preparation method thereof
CN107117954A (en) * 2017-04-27 2017-09-01 横店集团东磁股份有限公司 A kind of preparation method of high-performance permanent-magnet ferrite

Also Published As

Publication number Publication date
JP3636729B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
CN101684044B (en) Mnznli system ferrite
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
JP3584439B2 (en) Mn-Zn ferrite and method for producing the same
JP3607203B2 (en) Manufacturing method of MnZn ferrite, MnZn ferrite, and ferrite core for power supply
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP2006347848A (en) Low loss ferrite material for power source
JP2004247370A (en) MnZn FERRITE
JPH0744098B2 (en) Low loss Mn-Zn ferrite
JPH06151151A (en) Mn-zn type ferrite
JPH05198416A (en) Mn-zn based ferrite
JPH07142222A (en) Low-loss mn-zn soft ferrite
JP3446082B2 (en) Mn-Zn ferrite and method for producing the same
JP2004247371A (en) MnZn FERRITE
JP3611871B2 (en) Mn-Zn ferrite
JPH0677040A (en) Mn-zn ferrite
JP3467329B2 (en) Manufacturing method of sintered core and sintered core
WO2023182133A1 (en) MnZn-BASED FERRITE
JP3366707B2 (en) Mn-Zn ferrite
JP3617070B2 (en) Low loss ferrite manufacturing method
JP3611873B2 (en) Mn-Zn based ferrite with less power loss in the frequency region of about 100 kHz and method for producing the same
JPH05226138A (en) Mn-zn ferrite
JP3499283B2 (en) High permeability oxide magnetic material
JP2627676B2 (en) Manufacturing method of oxide magnetic material
JPH05170527A (en) Mn-zn ferrite
JP3597605B2 (en) High permeability oxide magnetic material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees