JPH05226138A - Mn-zn ferrite - Google Patents

Mn-zn ferrite

Info

Publication number
JPH05226138A
JPH05226138A JP4030894A JP3089492A JPH05226138A JP H05226138 A JPH05226138 A JP H05226138A JP 4030894 A JP4030894 A JP 4030894A JP 3089492 A JP3089492 A JP 3089492A JP H05226138 A JPH05226138 A JP H05226138A
Authority
JP
Japan
Prior art keywords
oxide
converted
loss
ferrite
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4030894A
Other languages
Japanese (ja)
Inventor
Hideaki Kohiki
英明 小日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4030894A priority Critical patent/JPH05226138A/en
Publication of JPH05226138A publication Critical patent/JPH05226138A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a low-loss Mn-Zn ferrite which can reduce power loss drastically by using specific Fe2O3, MnO, and ZnO as basic components and then adding calcium, germanium, and tantalum oxides to the basic components as by-products. CONSTITUTION:A raw material with basic components which are Fe2O3 51.5-54.5mol.%, MnO: 30-40mol.%, and ZnO: 6-18mol.% is mixed as a final composition and then tentative baking is performing within atmosphere. 0.02-0.20wt.% calcium oxide which is converted to CaO, 0.03-0.40wt.% germanium oxide which is converted to GeO2, and 0.01-0.10wt.% tantalum oxide which is converted to Ta2O5 are added and mixed to the tentatively baked powder as sub- components. Furthermore. 0.01-0.60wt.% titanium oxide which is converted to TiO2 or 0.005-0.040wt.% silicon oxide which is converted to SiO2 or both of these are added and mixed, thus obtaining Mn-Zn soft ferrite with an extremely small power loss under a high magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源用ト
ランス等の磁心の用途に供して好適な、電力損失の少な
いMn−Zn系フェライトに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Mn-Zn type ferrite having a small power loss, which is suitable for use in a magnetic core such as a transformer for a switching power supply.

【0002】[0002]

【従来の技術】Mn−Zn系酸化物磁性材料いわゆるM
n−Zn系フェライトは、各種通信機器、電源等の、コ
ア、トランス材として広く用いられているが、最近のO
A機器の普及により、約100kHzの高周波域で動作
するスイッチング電源のトランス材料としても使用され
ている。
2. Description of the Related Art Mn--Zn oxide magnetic material, so-called M
The n-Zn ferrite is widely used as a core and a transformer material for various communication devices, power supplies, etc.
With the spread of the A equipment, it is also used as a transformer material for a switching power supply that operates in a high frequency range of about 100 kHz.

【0003】かかるトランス材料として使用されるMn
−Zn系フェライトに要求される特性としては、高飽和
磁束密度、高透磁率及び低損失など種々の特性が挙げら
れるが、特に本発明で対象とするようなスイッチング電
源用トランスについては、高磁場下において低損失であ
ることがとりわけ重要とされる。このためMn−Zn系
フェライトにおいては、従来から種々の微量成分を添加
することによってその改善が試みられている。
Mn used as such a transformer material
Various characteristics such as a high saturation magnetic flux density, a high magnetic permeability and a low loss can be mentioned as the characteristics required for the -Zn ferrite, but especially for the switching power source transformer which is the object of the present invention, a high magnetic field is used. Below, low loss is particularly important. Therefore, it has been attempted to improve the Mn-Zn-based ferrite by adding various trace components.

【0004】例えば特開昭58−15037号公報で
は、Nb25 の添加により、また特開昭60−132
301号公報ではCaO,Nb25 ,SiO2 ,V2
5 ,Al23 ,CoO,CuO及びZrO2 等の添
加により、現在スイッチング周波数として標準的な10
0kHzにおける損失の改善を図っており、100kH
z,0.2Tにおける電力損失が300〜350mW/
cm3 程度のレベルまで実現されている。また、特開昭
63−255903号公報では、CaO,SiO 2 及び
GeO2 を添加しているが、電力損失は600〜700
mW/cm3 にとどまっている。
For example, in Japanese Patent Laid-Open No. 58-15037.
Is Nb2 OFive The addition of
No. 301 publication discloses CaO, Nb2 OFive , SiO2 , V2 
OFive , Al2 O3 , CoO, CuO and ZrO2 Etc.
In addition, the current standard switching frequency of 10
We are trying to improve the loss at 0 kHz,
Power loss at z, 0.2T is 300 to 350 mW /
cm3 It has been realized to a certain level. In addition,
In 63-255903, CaO, SiO 2 as well as
GeO2 Is added, but the power loss is 600-700
mW / cm3 Stays in.

【0005】[0005]

【発明が解決しようとする課題】本発明は、現在スイッ
チング電源周波数として標準的な100kHz,0.2
Tにおける電力損失300〜350mW/cm3 をさら
に改善し、スイッチング電源用トランスとして使用した
場合に損失を大幅に低減することができる低損失Mn−
Zn系フェライトを提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has a standard switching power supply frequency of 100 kHz, 0.2.
Low loss Mn- that can further improve the power loss of 300 to 350 mW / cm 3 at T and can significantly reduce the loss when used as a transformer for a switching power supply.
It is intended to provide a Zn-based ferrite.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、 Fe23 :51.5〜54.5mol% MnO: 30〜40mol% ZnO: 6〜18mol% を基本成分とし、この基本成分中に副成分としてカルシ
ウム、ゲルマニウムおよびタンタルの酸化物を、 酸化カルシウム: CaO換算0.02〜0.20重量
% 酸化ゲルマニウム:GeO2 換算0.03〜0.40重
量% 酸化タンタル: Ta25 換算0.01〜0.10
重量% 含有することを特徴とするMn−Zn系フェライトを提
供するもので、副成分として更にチタンの酸化物を チタン酸化物:TiO2 換算0.01〜0.60重量% 含有させることができ、更に、珪素の酸化物を 酸化珪素:SiO2 換算0.005〜0.040重量% 含有させることができる。
In order to solve the above-mentioned problems, the present invention uses, as a basic component, Fe 2 O 3 : 51.5 to 54.5 mol% MnO: 30 to 40 mol% ZnO: 6 to 18 mol%. In this basic component, oxides of calcium, germanium and tantalum are added as sub-components. Calcium oxide: 0.02 to 0.20% by weight in terms of CaO Germanium oxide: 0.03 to 0.40% by weight in terms of GeO 2 tantalum oxide : 0.01 to 0.10 in terms of Ta 2 O 5
The present invention provides a Mn-Zn-based ferrite characterized by being contained in an amount of 0.01% by weight, and can further contain an oxide of titanium as an auxiliary component in an amount of 0.01 to 0.60% by weight in terms of titanium oxide: TiO 2. Further, an oxide of silicon may be contained in an amount of 0.005 to 0.040% by weight in terms of silicon oxide: SiO 2 .

【0007】[0007]

【作用】まず、本発明において基本成分の割合をFe2
3 :51.5〜54.5mol%、MnO:30〜4
0mol%及びZnO:6〜18mol%の範囲に限定
した理由について説明する。スイッチング電源用トラン
スの動作温度は、通常60〜70℃であり、従ってこの
温度範囲で電力損失が低く、かつ室温から動作温度を超
える80〜120℃程度の温度域まで電力損失が負の温
度依存性をもつことが望ましい。この観点からFe2
3 ,MnO及びZnOの割合を検討した結果、上記の範
囲が得られたのである。
First, in the present invention, the ratio of the basic components is changed to Fe 2
O 3: 51.5~54.5mol%, MnO: 30~4
The reason for limiting the content to 0 mol% and ZnO: 6 to 18 mol% will be described. The operating temperature of the transformer for the switching power supply is usually 60 to 70 ° C., so that the power loss is low in this temperature range, and the power loss is negative temperature dependence from the room temperature to the temperature range of about 80 to 120 ° C. above the operating temperature. It is desirable to have sex. From this viewpoint, Fe 2 O
As a result of examining the proportions of 3 , MnO and ZnO, the above range was obtained.

【0008】本発明では、上記の基本成分中に、副成分
として酸化カルシウム、酸化ゲルマニウム及び酸化タン
タルを、更に酸化チタン又は酸化珪素、あるいはこの両
者を含有させたもので、これらの副成分の含有量の限定
理由は次のとおりである。酸化カルシウム:CaO換算
0.02〜0.20重量%酸化カルシウムは、酸化ゲル
マニウムとの共存下で効果的に粒界抵抗を高め、もって
低損失をもたらす有用成分であるが、含有量が0.02
重量%に満たないと粒界抵抗の向上効果に乏しく、一
方、0.20重量%を超えると逆に損失が大きくなるの
で、0.02〜0.20重量%の範囲で添加するものと
した。
In the present invention, calcium oxide, germanium oxide and tantalum oxide are added to the above-mentioned basic components as auxiliary components, and titanium oxide or silicon oxide or both are further added. The reasons for limiting the amount are as follows. Calcium oxide: 0.02 to 0.20 wt% in terms of CaO Calcium oxide is a useful component that effectively increases the grain boundary resistance in the coexistence with germanium oxide and thus brings about a low loss, but its content is 0. 02
If it is less than 0.2% by weight, the effect of improving the grain boundary resistance is poor, and if it exceeds 0.20% by weight, on the contrary, the loss becomes large. Therefore, it is added in the range of 0.02 to 0.20% by weight. ..

【0009】酸化ゲルマニウム:GeO2 換算0.03
〜0.40重量% 酸化ゲルマニウム(主にGeO2 )は、酸化カルシウム
との共存によって粒界の電気抵抗を高め、渦電流損の低
減に有効に寄与するが、含有量が0.03重量%に満た
ないとその添加効果に乏しく、一方、0.40重量%を
超えるとヒステリシス損の増大を招くので、0.03〜
0.40重量%の範囲に限定した。
Germanium oxide: GeO 2 conversion 0.03
˜0.40 wt% Germanium oxide (mainly GeO 2 ) increases the electrical resistance of the grain boundary by coexistence with calcium oxide and contributes effectively to the reduction of eddy current loss, but the content is 0.03 wt%. If it is less than 0.4% by weight, the effect of addition is poor, while if it exceeds 0.40% by weight, hysteresis loss increases, so 0.03 to
The range was limited to 0.40% by weight.

【0010】酸化タンタル:Ta25 換算0.01〜
0.10重量% 酸化タンタル(主にTa25 )は、高周波領域での損
失の低減に有効に寄与する。酸化タンタルの添加によっ
て損失が改善される理由はまだ明確に解明されたわけで
はないが、酸化カルシウム、酸化ゲルマニウムとの複合
含有によって形成される高抵抗の粒界相を変質させ、比
抵抗を増加させると共に、異質の相が粒界に存在するこ
とによる磁気的な悪影響を緩和する働きがあるためと考
えられる。しかし含有量が0.01重量%に満たないと
その効果に乏しく、一方、0.10重量%を超えて含有
されると逆に損失の増大を招くので、0.01〜0.1
0重量%の範囲で添加するものとした。
Tantalum oxide: 0.01 to Ta 2 O 5 equivalent
0.10 wt% tantalum oxide (mainly Ta 2 O 5 ) effectively contributes to reduction of loss in the high frequency region. The reason why the loss is improved by the addition of tantalum oxide has not been clarified yet, but it alters the high resistance grain boundary phase formed by the combined inclusion of calcium oxide and germanium oxide, and increases the specific resistance. At the same time, it is considered that it has a function of mitigating the adverse magnetic effect due to the existence of foreign phases at the grain boundaries. However, if the content is less than 0.01% by weight, the effect is poor. On the other hand, if the content is more than 0.10% by weight, the loss is increased.
It was added in the range of 0% by weight.

【0011】酸化チタン:TiO2 換算0.01〜0.
60重量% 酸化チタン(主にTiO2 )は、フェライトコア焼成時
の冷却過程での粒界の再酸化を促進してコアの比抵抗を
高め、高周波領域での損失を低減する効果があるが、含
有量が0.01重量%に満たないとその添加効果に乏し
く、一方、0.60重量%を超えると損失の増加を招く
ので、0.01〜0.60重量%の範囲で添加するもの
とした。
[0011] The titanium oxide: TiO 2 in terms of 0.01 to 0.
60 wt% titanium oxide (mainly TiO 2 ) has the effect of promoting reoxidation of grain boundaries in the cooling process during firing of the ferrite core, increasing the specific resistance of the core, and reducing loss in the high frequency region. If the content is less than 0.01% by weight, the addition effect is poor, while if it exceeds 0.60% by weight, loss is increased. Therefore, it is added in the range of 0.01 to 0.60% by weight. I decided.

【0012】酸化珪素:SiO2 換算0.005〜0.
040重量% 酸化珪素(主にSiO2 )は、酸化カルシウムとの共存
によって粒界抵抗を高め渦電流損の低減に寄与するが、
含有量が0.005重量%に満たないとその添加効果に
乏しく、一方、0.040重量%を超えると焼成時に異
常粒成長が発生し易く特性が不安定になるので、0.0
05〜0.040重量%の範囲に限定した。
Silicon oxide: converted to SiO 2 0.005 to 0.
040 wt% silicon oxide (mainly SiO 2 ) contributes to the reduction of eddy current loss by increasing the grain boundary resistance by coexistence with calcium oxide.
If the content is less than 0.005% by weight, the effect of addition is poor. On the other hand, if it exceeds 0.040% by weight, abnormal grain growth is likely to occur during firing, resulting in unstable properties.
It was limited to the range of 05 to 0.040% by weight.

【0013】以上述べたとおり、100kHzに及ぶ高
周波領域での損失の低減には、比抵抗を高めることが非
常に有効なわけであるが、本発明では、酸化ゲルマニウ
ム、酸化カルシウムの共存下で、酸化タンタル、さらに
は酸化チタン又は酸化珪素、あるいはこの両者を含有さ
せて、粒界に均一に分散させることにより、上記の目的
を達成したものである。
As described above, it is very effective to increase the specific resistance in order to reduce the loss in the high frequency range up to 100 kHz, but in the present invention, in the coexistence of germanium oxide and calcium oxide, The above object is achieved by containing tantalum oxide, titanium oxide, silicon oxide, or both of them and uniformly dispersing them in grain boundaries.

【0014】本発明のフェライトを製造するには、常法
に従って処理を施せば良い。すなわちフェライトの最終
組成として、例えば、酸化鉄をFe23 換算で51.
5〜54.5mol%、酸化マンガンをMnO換算で3
0〜40mol%、酸化亜鉛をZnO換算で6〜18m
ol%の割合で含有するように混合し、ついで副成分と
して酸化カルシウム(CaO換算)を0.02〜0.2
0重量%,酸化ゲルマニウム(GeO2 換算)を0.0
3〜0.40重量%及び酸化タンタル(Ta25
算)を0.01〜0.10重量%、さらには酸化チタン
(TiO 2 換算)を0.01〜0.60重量%又は酸化
珪素(SiO2 換算)を0.005〜0.040重量
%、あるいはこの両方をそれぞれ含有するように添加し
たものを原料とする。ただし副成分の添加時期は、後述
する仮焼の後であっても差し支えない。
The conventional method for producing the ferrite of the present invention is
The treatment should be performed according to. That is, the final ferrite
As the composition, for example, iron oxide may be Fe2 O3 Converted to 51.
5-54.5 mol%, manganese oxide is 3 in terms of MnO
0 to 40 mol%, zinc oxide 6 to 18 m in terms of ZnO
Mix so that it is contained in the proportion of ol%, and then add
And calcium oxide (calculated as CaO) 0.02-0.2
0% by weight, germanium oxide (GeO2 Conversion) to 0.0
3 to 0.40 wt% and tantalum oxide (Ta2 OFive Exchange
0.01 to 0.10% by weight, and further titanium oxide
(TiO 2 0.01 to 0.60% by weight or oxidation
Silicon (SiO2 (Converted) 0.005-0.040 weight
%, Or both to contain
Made from raw materials. However, the timing of addition of subcomponents will be described later.
There is no problem even after calcination.

【0015】この原料を800℃以上の温度で仮焼し、
ついで微粉砕後、1150℃以上の高温にて酸素濃度を
制御した窒素ガス中で焼成する。なおFe23 の原料
としては、Fe23 だけでなく、FeOやFe3
4、更には焼成によりFe23 に変わることのでき
る化合物、例えば水酸化鉄、しゅう酸鉄などを使用する
ことができる。またMnO原料としては、MnOのみな
らず、MnO2 ,Mn34 更には焼成によりMnOに
変わることのできる化合物、例えば炭酸マンガン、しゅ
う酸マンガンなどを使用することができる。さらにZn
O原料としては、ZnOのみに限らず、焼成によりZn
Oに変わることのできる化合物、例えば炭酸亜鉛、しゅ
う酸亜鉛などを使用することができる。
This material is calcined at a temperature of 800 ° C. or higher,
Then, after finely pulverized, it is fired in a nitrogen gas whose oxygen concentration is controlled at a high temperature of 1150 ° C. or higher. Note As a raw material of Fe 2 O 3, not only Fe 2 O 3, FeO and Fe 3
It is possible to use O 4 , and further, compounds capable of being converted into Fe 2 O 3 by firing, such as iron hydroxide and iron oxalate. As the MnO raw material, not only MnO, but also MnO 2 , Mn 3 O 4 , and compounds that can be converted to MnO by firing, such as manganese carbonate and manganese oxalate, can be used. Further Zn
The O raw material is not limited to ZnO, but Zn can be obtained by firing.
Compounds that can be converted to O, such as zinc carbonate and zinc oxalate, can be used.

【0016】Ca,Ge及びTa、更にはTiやSiの
酸化物の添加は、酸化物の形でもよく、製造工程中の加
熱により酸化物に変化する、金属、又は炭酸塩、しゅう
酸塩等の化合物によってもよい。
The Ca, Ge and Ta, and further the oxides of Ti and Si may be added in the form of oxides, which are changed into oxides by heating during the manufacturing process, or metals, carbonates, oxalates, etc. May be used.

【0017】[0017]

【実施例】【Example】

〔実施例1〕最終組成としてFe23 :53.5mo
l%、MnO:34.5mol%及びZnO:12mo
l%となる基本成分の原料を混合したのち、大気中にて
900℃、3時間の仮焼を施した。
[Example 1] Fe 2 O 3 : 53.5mo as the final composition
1%, MnO: 34.5 mol% and ZnO: 12mo
After mixing 1% of the raw materials of the basic components, calcination was performed in the atmosphere at 900 ° C. for 3 hours.

【0018】この仮焼粉に対し、表1に示す最終組成と
しての割合でCaO(CaCO3 として添加),GeO
2 及びTa25 を添加配合し、上記各原料を同時に湿
式ボールミルで粉砕・混合した。ついで混合粉にバイン
ダとしてPVA(ポリビニルアルコール)を添加し、造
粒した後、外径36mm、内径24mm、高さ12mm
のリング状に成形して、酸素分圧を制御した窒素雰囲気
中で1320℃、3時間の焼成を行った。
With respect to this calcined powder, CaO (added as CaCO 3 ) and GeO in a ratio as the final composition shown in Table 1 were used.
2 and Ta 2 O 5 were added and blended, and the above raw materials were simultaneously ground and mixed by a wet ball mill. Then, PVA (polyvinyl alcohol) was added as a binder to the mixed powder, and after granulation, the outer diameter was 36 mm, the inner diameter was 24 mm, and the height was 12 mm.
Was molded into a ring shape and baked at 1320 ° C. for 3 hours in a nitrogen atmosphere in which the oxygen partial pressure was controlled.

【0019】このようにして得られた焼結コアの直流比
抵抗を4端子法により測定した結果、及び周波数:10
0kHz、最大磁束密度:0.2T、温度:80℃にお
ける電力損失を交流BHループトレーサーにて測定した
結果を表1に示す。
The DC specific resistance of the thus obtained sintered core was measured by the 4-terminal method, and the frequency was 10
Table 1 shows the results of measuring the power loss at 0 kHz, maximum magnetic flux density: 0.2 T, temperature: 80 ° C. with an AC BH loop tracer.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように、本発明に従い、
副成分として酸化カルシウム、酸化ゲルマニウム及び酸
化タンタルを複合含有させたものは、いずれも300m
W/cm3 を下回る低い電力損失が達成されている。こ
れに対し、本発明の適正範囲から外れたものは、いずれ
も損失の改善効果は少く、甚しい場合には異常粒成長に
よって損失特性は逆に劣化している。
As is apparent from Table 1, according to the present invention,
Each of which contains calcium oxide, germanium oxide and tantalum oxide as an accessory component is 300 m
Low power losses below W / cm 3 have been achieved. On the other hand, in all cases out of the proper range of the present invention, the loss improving effect is small, and in extreme cases, the loss characteristics are deteriorated conversely due to abnormal grain growth.

【0022】〔実施例2〕最終組成としてFe23
52.7mol%、MnO:34.6mol%及びZn
O:12.7mol%となる基本成分の原料を混合した
のち、大気中にて900℃、3時間の仮焼を施した。こ
の仮焼粉に対し、表2に示す最終組成としての割合でC
aO(CaCO3 を使用),GeO2 ,Ta25 及び
TiO2 を添加配合し、上記各原料を同時に湿式ボール
ミルで粉砕・混合し、ついで混合粉について実施例1と
同様に実験した。
Example 2 Fe 2 O 3 as the final composition:
52.7 mol%, MnO: 34.6 mol% and Zn
After mixing the raw materials of the basic components of O: 12.7 mol%, calcination was performed in the atmosphere at 900 ° C. for 3 hours. With respect to this calcined powder, C in the ratio as the final composition shown in Table 2 is used.
aO (using CaCO 3 ), GeO 2 , Ta 2 O 5 and TiO 2 were added and blended, the above raw materials were simultaneously ground and mixed by a wet ball mill, and then the mixed powder was tested in the same manner as in Example 1.

【0023】試験結果を表2に併記する。The test results are also shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から明らかなように、本発明に従い、
副成分として酸化カルシウム,酸化ゲルマニウム及び酸
化タンタルに加え、更に酸化チタンを複合含有させたも
のは、更に直流比抵抗が高く、300mW/cm3 を下
回る低い電力損失が達成されている。これに対し、本発
明の適正範囲から外れたものは、いずれも損失改善効果
はなく、甚だしい場合には異常粒成長によって逆に劣化
している。
As is apparent from Table 2, according to the present invention,
In addition to calcium oxide, germanium oxide, and tantalum oxide as subcomponents, those containing a composite of titanium oxide have a higher direct current specific resistance and a low power loss of less than 300 mW / cm 3 . On the other hand, none of those outside the proper range of the present invention have a loss improving effect, and in extreme cases, they are conversely deteriorated due to abnormal grain growth.

【0026】〔実施例3〕最終組成としてFe23
53.5mol%、MnO:34.5mol%及びZn
O:12mol%となる基本成分の原料を混合したの
ち、大気中にて900℃、3時間の仮焼を施した。この
仮焼粉に対し、表3に示す最終組成としての割合でCa
O(CaCO3 として添加),GeO2 ,Ta25
びSiO2 を添加配合し、上記各原料を同時に湿式ボー
ルミルで粉砕・混合し、ついで混合粉について実施例1
と同様に実験した。
Example 3 Fe 2 O 3 as the final composition:
53.5 mol%, MnO: 34.5 mol% and Zn
O: 12 mol% of the raw materials of the basic components were mixed and then calcined in the atmosphere at 900 ° C. for 3 hours. With respect to this calcined powder, Ca in the ratio as the final composition shown in Table 3 is used.
O (added as CaCO 3 ), GeO 2 , Ta 2 O 5 and SiO 2 were added and blended, and the above raw materials were simultaneously pulverized and mixed by a wet ball mill, and then the mixed powder of Example 1
The same experiment was performed.

【0027】試験結果を表3に示す。The test results are shown in Table 3.

【0028】[0028]

【表3】 [Table 3]

【0029】表3から明らかなように、本発明に従い、
副成分として酸化カルシウム、酸化ゲルマニウム,酸化
タンタル及び酸化珪素を複合含有させたものは、いずれ
も300mW/cm3 を下回る低い電力損失が達成され
ている。これに対し、本発明の適正範囲から外れたもの
は、いずれも損失の改善効果は少く、甚しい場合には異
常粒成長によって損失特性は逆に劣化している。
As is apparent from Table 3, according to the present invention,
All of the compounds containing calcium oxide, germanium oxide, tantalum oxide and silicon oxide as sub-components have achieved low power loss of less than 300 mW / cm 3 . On the other hand, in all cases out of the proper range of the present invention, the loss improving effect is small, and in extreme cases, the loss characteristics are deteriorated conversely due to abnormal grain growth.

【0030】〔実施例4〕最終組成としてFe23
52.7mol%、MnO:34.6mol%及びZn
O:12.7mol%となる基本成分の原料を混合した
のち、大気中にて900℃、3時間の仮焼を施した。こ
の仮焼粉に対し、表4に示す最終組成としての割合でC
aO(CaCO3 を使用),GeO2 ,Ta25 ,T
iO2 及びSiO2 を添加配合し、上記各原料を同時に
湿式ボールミルで粉砕・混合し、ついで混合粉について
実施例1と同様に実験した。
Example 4 Fe 2 O 3 as the final composition:
52.7 mol%, MnO: 34.6 mol% and Zn
After mixing the raw materials of the basic components of O: 12.7 mol%, calcination was performed in the atmosphere at 900 ° C. for 3 hours. With respect to this calcined powder, C in the ratio as the final composition shown in Table 4 is used.
aO-(using CaCO 3), GeO 2, Ta 2 O 5, T
io 2 and SiO 2 were added and blended, the above raw materials were simultaneously pulverized and mixed by a wet ball mill, and then the mixed powder was tested in the same manner as in Example 1.

【0031】試験結果を表4に併記する。The test results are also shown in Table 4.

【0032】[0032]

【表4】 [Table 4]

【0033】表4から明らかなように、本発明に従い、
副成分として酸化カルシウム,酸化ゲルマニウム,酸化
タンタル及び酸化チタンに加え、更に酸化珪素を複合含
有させたものは、更に直流比抵抗が高く、300mW/
cm3 を下回る低い電力損失が達成されている。これに
対し、本発明の適正範囲から外れたものは、いずれも損
失改善効果はなく、甚だしい場合には異常粒成長によっ
て逆に劣化している。
As is apparent from Table 4, according to the present invention,
In addition to calcium oxide, germanium oxide, tantalum oxide, and titanium oxide as subcomponents, a compound further containing silicon oxide has a high DC specific resistance of 300 mW /
Low power losses of less than cm 3 have been achieved. On the other hand, none of those outside the proper range of the present invention have a loss improving effect, and in extreme cases, they are conversely deteriorated due to abnormal grain growth.

【0034】[0034]

【発明の効果】本発明によれば、スイッチング電源周波
数が100kHz程度の高周波電源用トランスのコア等
として、従来の材料と比較して高磁場下での電力損失が
格段に小さいMn−Zn系ソフトフェライトを得ること
ができる。
According to the present invention, as a core of a transformer for a high frequency power source having a switching power source frequency of about 100 kHz, an Mn-Zn type software having a significantly smaller power loss under a high magnetic field than conventional materials. Ferrite can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Fe23 :51.5〜54.5mol
% MnO: 30〜40mol% ZnO: 6〜18mol% を基本成分とし、この基本成分中に副成分としてカルシ
ウム、ゲルマニウム及びタンタルの酸化物を、 酸化カルシウム: CaO換算0.02〜0.20重量
% 酸化ゲルマニウム:GeO2 換算0.03〜0.40重
量% 酸化タンタル: Ta25 換算0.01〜0.10
重量% 含有することを特徴とするMn−Zn系フェライト。
1. Fe 2 O 3 : 51.5 to 54.5 mol
% MnO: 30 to 40 mol% ZnO: 6 to 18 mol% as a basic component, and oxides of calcium, germanium and tantalum as secondary components in this basic component, calcium oxide: 0.02 to 0.20 wt% in terms of CaO Germanium oxide: GeO 2 conversion 0.03 to 0.40 wt% Tantalum oxide: Ta 2 O 5 conversion 0.01 to 0.10.
A Mn-Zn-based ferrite, characterized in that the Mn-Zn-based ferrite is contained in an amount of 1 wt%.
【請求項2】 請求項1記載のMn−Zn系フェライト
が、副成分として更にチタンの酸化物を、 酸化チタン:TiO2 換算0.01〜0.60重量% 含有することを特徴とするMn−Zn系フェライト。
2. The Mn—Zn-based ferrite according to claim 1, further comprising a titanium oxide as an accessory component in an amount of 0.01 to 0.60 wt% in terms of titanium oxide: TiO 2. -Zn ferrite.
【請求項3】 請求項1又は2記載のMn−Zn系フェ
ライトが、副成分として更に珪素の酸化物を、 酸化珪素:SiO2 換算0.005〜0.040重量% 含有することを特徴とするMn−Zn系フェライト。
3. The Mn—Zn-based ferrite according to claim 1 or 2, further comprising an oxide of silicon as an accessory component in an amount of 0.005 to 0.040 wt% in terms of silicon oxide: SiO 2. Mn-Zn ferrite.
JP4030894A 1992-02-18 1992-02-18 Mn-zn ferrite Pending JPH05226138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4030894A JPH05226138A (en) 1992-02-18 1992-02-18 Mn-zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4030894A JPH05226138A (en) 1992-02-18 1992-02-18 Mn-zn ferrite

Publications (1)

Publication Number Publication Date
JPH05226138A true JPH05226138A (en) 1993-09-03

Family

ID=12316438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4030894A Pending JPH05226138A (en) 1992-02-18 1992-02-18 Mn-zn ferrite

Country Status (1)

Country Link
JP (1) JPH05226138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846448A (en) * 1994-04-27 1998-12-08 Tdk Corporation Ferrite and ferrite core for power supply
CN112661502A (en) * 2020-12-25 2021-04-16 横店集团东磁股份有限公司 High-frequency high-magnetic-field low-loss manganese-zinc ferrite material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846448A (en) * 1994-04-27 1998-12-08 Tdk Corporation Ferrite and ferrite core for power supply
CN112661502A (en) * 2020-12-25 2021-04-16 横店集团东磁股份有限公司 High-frequency high-magnetic-field low-loss manganese-zinc ferrite material and preparation method thereof
CN112661502B (en) * 2020-12-25 2022-03-25 横店集团东磁股份有限公司 High-frequency high-magnetic-field low-loss manganese-zinc ferrite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3968188B2 (en) Ferrite
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
JP2007112695A (en) METHOD FOR PRODUCING Mn FERRITE
JP3607203B2 (en) Manufacturing method of MnZn ferrite, MnZn ferrite, and ferrite core for power supply
JP3917216B2 (en) Low loss ferrite core material
US5368763A (en) Low power loss Mn-Zn ferrites
JP3597673B2 (en) Ferrite material
JPH05198416A (en) Mn-zn based ferrite
JPH07142222A (en) Low-loss mn-zn soft ferrite
JPH05226138A (en) Mn-zn ferrite
JP2892095B2 (en) Low loss Mn-Zn ferrite
JPH05267040A (en) Low-loss mn-zn ferrite
JPH05170527A (en) Mn-zn ferrite
JP3597665B2 (en) Mn-Ni ferrite material
JP3446082B2 (en) Mn-Zn ferrite and method for producing the same
JP3401298B2 (en) Low loss Mn-Zn soft ferrite
JP3499283B2 (en) High permeability oxide magnetic material
JPH10270231A (en) Mn-ni ferrite material
JP3238735B2 (en) Manganese-zinc ferrite
JP3366707B2 (en) Mn-Zn ferrite
JPH06151151A (en) Mn-zn type ferrite
JPH05234737A (en) Manganese-zinc ferrite
JP3597605B2 (en) High permeability oxide magnetic material
JP3157525B2 (en) Low loss Mn-Zn ferrite
JPH07142224A (en) Low-iron-loss mn-zn soft ferrite

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010731