JPH06150977A - Charging circuit - Google Patents

Charging circuit

Info

Publication number
JPH06150977A
JPH06150977A JP4299518A JP29951892A JPH06150977A JP H06150977 A JPH06150977 A JP H06150977A JP 4299518 A JP4299518 A JP 4299518A JP 29951892 A JP29951892 A JP 29951892A JP H06150977 A JPH06150977 A JP H06150977A
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
lithium secondary
battery
charging circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4299518A
Other languages
Japanese (ja)
Inventor
堅一 ▲高▼田
Kenichi Takada
Nobuharu Koshiba
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4299518A priority Critical patent/JPH06150977A/en
Publication of JPH06150977A publication Critical patent/JPH06150977A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a charging circuit excellent in safety and not charged to the battery voltage exceeding the withstand voltage after a charge is completed by improving the charging circuit, and connecting a Zener diode in parallel with a lithium secondary battery. CONSTITUTION:An AC power source AC is 200V, the resistance value of a resistor R is 15 kOMEGA, the withstand voltage of a rectifying diode Ds is 220V, the breakdown voltage Vo of a Zener diode ZD is about 3.5V. A lithium secondary battery B is a vanadium-lithium secondary battery using vanadium pentaoxide for a positive electrode and a lithium aluminum alloy for a negative electrode, the voltage is 3V, and the capacity is 20 mAh. The secondary battery B is mainly charged at 3 to 3.3V, and the voltage quickly rises after a charge is completed. When the voltage reaches near 3.5V in this charging circuit, a current flows in the Zener diode ZD, the current rarely flows in the lithium secondary battery B, and the battery voltage is stabilized near 3.5V.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充電可能なバックアッ
プ電源が用いられる機器、たとえばマイコン搭載機器な
どにおけるバックアップ電源の充電回路に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging circuit for a backup power source in a device using a rechargeable backup power source, such as a microcomputer-equipped device.

【0002】[0002]

【従来の技術】近年、マイコンを搭載した電子機器が急
増する傾向にあるが、電源オフ時など、大切なメモリー
が消去しないように種々のメモリーバックアップ電源が
用いられている。
2. Description of the Related Art In recent years, the number of electronic devices equipped with a microcomputer tends to increase rapidly, but various memory backup power supplies are used so that important memories are not erased when the power is turned off.

【0003】このメモリーバックアップ電源として、放
電のみ可能なリチウム一次電池や乾電池、充放電可能な
ニカド電池、リチウム二次電池、キャパシタなどがあ
る。
Examples of the memory backup power source include a lithium primary battery capable of discharging only, a dry battery, a chargeable / dischargeable nicad battery, a lithium secondary battery, a capacitor and the like.

【0004】このうち、リチウム二次電池はニカド電
池、キャパシタに比べて出力電圧が3V以上と高く、
2.5V以上の動作電圧が必要なメモリーICであれば
電池1個で対応でき、コストおよびスペースにメリット
が出せる。また、電池として自己放電が小さく長期信頼
性に優れており、最近、メモリーバックアップ用電源と
して注目を浴びている。
Of these, the lithium secondary battery has an output voltage of 3 V or more, which is higher than that of the NiCd battery and the capacitor.
A memory IC that requires an operating voltage of 2.5 V or higher can be handled with a single battery, resulting in cost and space advantages. Further, it has a small self-discharge as a battery and is excellent in long-term reliability, and has recently attracted attention as a power source for memory backup.

【0005】ここでニカド電池を交流電源から直接充電
する場合の従来の充電回路を図2に示す。
FIG. 2 shows a conventional charging circuit for directly charging a nickel-cadmium battery from an AC power source.

【0006】図2に示したように、従来の充電回路は、
二次電池Bと過電流防止用抵抗Rと整流用ダイオードD
Sを直列に接続した回路である。そして、充電方法をト
リクル充電とし、比較的大きな抵抗を使用して、充電完
了後には電池に流れ込む充電電流を制限している。
As shown in FIG. 2, the conventional charging circuit is
Secondary battery B, overcurrent prevention resistor R, rectifying diode D
It is a circuit in which S is connected in series. Then, the charging method is trickle charging, and a relatively large resistance is used to limit the charging current flowing into the battery after completion of charging.

【0007】また、この充電回路はニカド電池特有のも
のであり、充電完了後、常に充電電流が流れ続けるにも
かかわらず、電池電圧は一定値以上には上昇しない。
Further, this charging circuit is peculiar to the NiCd battery, and the battery voltage does not rise above a certain value even though the charging current continues to flow after the completion of charging.

【0008】これは、電池電圧が充電完了状態で一定値
以上になると、充電電流は、電池内部で正極から発生す
る酸素を負極で吸収する反応に使用されて消費されるた
めである。したがって、充電にともなう電池の劣化は少
なかった。
This is because, when the battery voltage reaches a certain value or more in the charging completed state, the charging current is used for the reaction of absorbing oxygen generated from the positive electrode inside the battery at the negative electrode and consumed. Therefore, the deterioration of the battery due to charging was small.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、リチウ
ム二次電池に対して上記と同様の充電を行った場合、充
電完了後、充電電流を制限しても電池電圧は上昇し続け
る。
However, when the lithium secondary battery is charged in the same manner as described above, the battery voltage continues to rise even after the charging is limited, even if the charging current is limited.

【0010】そして、電池電圧はリチウム二次電池の耐
電圧限界を超えるまで上昇し、電解液の分解や電池ケー
スの腐食などが生じて電池が劣化していた。
Then, the battery voltage rises until it exceeds the withstand voltage limit of the lithium secondary battery, and the battery is deteriorated due to decomposition of the electrolytic solution and corrosion of the battery case.

【0011】また、交流電源は、通常、100Vあるい
は200Vと電圧が高いため、過電流防止用抵抗が壊れ
た場合には、大電流が充電回路を流れ込んで電池が破裂
することがあった。
Further, the AC power supply usually has a high voltage of 100 V or 200 V. Therefore, when the overcurrent preventing resistor is broken, a large current may flow into the charging circuit and the battery may burst.

【0012】本発明は、このような課題を解決するもの
で、リチウム二次電池を適正な充電電圧により充電する
とともに、充電完了後には電池をその耐電圧を超えて充
電することのない安全性に優れた充電回路を提供するも
のである。
The present invention solves such a problem by ensuring that a lithium secondary battery is charged at an appropriate charging voltage and that the battery does not exceed its withstand voltage after completion of charging. It provides an excellent charging circuit.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の充電回路は、交流電源に、過電流防止用
抵抗と半波整流用ダイオードとリチウム二次電池との直
列回路を接続した充電回路において、前記リチウム二次
電池にツェナーダイオードを並列に接続し、ツェナーダ
イオードの降状電圧をリチウム二次電池の最大許容電圧
とほぼ一致するように設定したものである。
In order to solve the above-mentioned problems, the charging circuit of the present invention comprises an AC power supply and a series circuit of a resistance for overcurrent prevention, a diode for half-wave rectification and a lithium secondary battery. In the connected charging circuit, a Zener diode is connected in parallel to the lithium secondary battery, and the breakdown voltage of the Zener diode is set to substantially match the maximum allowable voltage of the lithium secondary battery.

【0014】[0014]

【作用】ツェナーダイオードのpn接合に逆バイアスを
かけた場合の電流電圧特性を図3に示す。図3に示した
ように、ツェナーダイオードには、降伏電圧V0までは
電流は流れないが電圧V0あたりから電流が急激に流れ
始める性質がある。
The current-voltage characteristic when the pn junction of the Zener diode is reverse biased is shown in FIG. As shown in FIG. 3, the Zener diode has a property that the current does not flow up to the breakdown voltage V 0 but the current suddenly starts from around the voltage V 0 .

【0015】そして、ツェナーダイオードとリチウム二
次電池を充電回路において並列に接続し、ツェナーダイ
オードの降伏電圧V0とリチウム二次電池の最大許容電
圧とをほぼ一致するように組み合わせる。
Then, the Zener diode and the lithium secondary battery are connected in parallel in the charging circuit and combined so that the breakdown voltage V 0 of the Zener diode and the maximum allowable voltage of the lithium secondary battery are substantially equal to each other.

【0016】このように構成した充電回路によってリチ
ウム二次電池を充電した場合、電池が充電される電圧領
域(電圧V0より低い電圧)では、ツェナーダイオード
には電流が流れないで、リチウム二次電池のみに電流が
流れて、電池は充電される。
When a lithium secondary battery is charged by the charging circuit configured as described above, no current flows through the Zener diode in the voltage region where the battery is charged (voltage lower than voltage V 0 ) and the lithium secondary battery is charged. Current flows only in the battery, and the battery is charged.

【0017】そして、リチウム二次電池の充電が完了し
て、電池電圧がV0付近まで上昇すると、前記ツェナー
ダイオードに急激に電流が流れ始めて、電池にはほとん
ど電流が流れなくなる。このようにして、充電完了後に
はリチウム二次電池の電圧を最大許容範囲内に制御する
ことができる。
When the charging of the lithium secondary battery is completed and the battery voltage rises to around V 0 , a current suddenly starts to flow in the Zener diode and almost no current flows in the battery. In this way, the voltage of the lithium secondary battery can be controlled within the maximum allowable range after completion of charging.

【0018】したがって、充電完了後にも電池に電流が
流れ続け、電池電圧が耐電圧限界以上に上昇して電解液
の分解等が起こることを防止することができ、リチウム
二次電池を安全に充電することができる。
Therefore, it is possible to prevent the current from continuing to flow in the battery even after the charging is completed, and the battery voltage is increased above the withstand voltage limit to cause decomposition of the electrolytic solution or the like, and the lithium secondary battery is safely charged. can do.

【0019】また、この回路において充電完了後、電池
に大きな抵抗負荷を与えて放電を行うとツェナーダイオ
ードに漏れ電流が流れて負荷に流れる電流が数10μA
と小さくなる。
Further, in this circuit, after charging is completed, when a large resistance load is applied to the battery for discharging, a leakage current flows through the Zener diode, and the current flowing through the load is several tens of μA.
Becomes smaller.

【0020】この負荷電流に対してツェナーダイオード
に流れる漏れ電流が、比較的大きい場合には、リチウム
二次電池とツェナーダイオードの間に逆電流防止用ダイ
オードを接続することにより前記漏れ電流を防止するこ
とができる。
When the leakage current flowing through the Zener diode with respect to this load current is relatively large, the leakage current is prevented by connecting a reverse current prevention diode between the lithium secondary battery and the Zener diode. be able to.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】(実施例1)図1に本発明の充電回路を示
す。
(Embodiment 1) FIG. 1 shows a charging circuit of the present invention.

【0023】図1(a)に示したように、本発明の充電
回路では、交流電源ACに、抵抗Rと整流用ダイオード
Sとリチウム二次電池Bとの直列回路を接続するとと
もに、ツェナーダイオードZDを前記リチウム二次電池
Bに並列に接続している。
As shown in FIG. 1 (a), in the charging circuit of the present invention, a series circuit of a resistor R, a rectifying diode D S and a lithium secondary battery B is connected to an AC power supply AC and a Zener is connected. The diode ZD is connected in parallel to the lithium secondary battery B.

【0024】ここで、交流電源ACは200V、抵抗R
は抵抗値が15kΩ、整流用ダイオードDSは耐電圧が
220V、ツェナーダイオードZDは降伏電圧V0が約
3.5Vである。
Here, the AC power supply AC is 200 V, and the resistance R
Has a resistance value of 15 kΩ, the rectifying diode D S has a withstand voltage of 220 V, and the Zener diode ZD has a breakdown voltage V 0 of about 3.5 V.

【0025】また、リチウム二次電池Bは、正極に五酸
化バナジウム、負極にリチウムアルミニウム合金を用い
たバナジウムリチウム二次電池とし、その公称仕様は電
圧3V、容量20mAhとした。
The lithium secondary battery B is a vanadium lithium secondary battery using vanadium pentoxide for the positive electrode and a lithium aluminum alloy for the negative electrode, and its nominal specifications are a voltage of 3 V and a capacity of 20 mAh.

【0026】そして、このリチウム二次電池を本発明の
充電回路により充電したときの様子を図4に示す。
FIG. 4 shows a state in which this lithium secondary battery is charged by the charging circuit of the present invention.

【0027】図4に示したように、リチウム二次電池の
充電は主に3V〜3.3Vの間で行われるが、充電完了
後電圧が急激に上昇した。しかし、電圧が3.5V付近
に達すると前記ツェナーダイオードZDに電流が流れる
ようになって、リチウム二次電池Bにはほとんど電流が
流れなくなり、電池電圧は3.5V付近で安定した。
As shown in FIG. 4, the lithium secondary battery was charged mainly between 3V and 3.3V, but the voltage rose sharply after the completion of charging. However, when the voltage reached around 3.5V, a current began to flow through the Zener diode ZD, almost no current flowed through the lithium secondary battery B, and the battery voltage became stable around 3.5V.

【0028】また、充電完了後、交流電源ACをオフ状
態にして、リチウム二次電池Bに抵抗値15kΩの抵抗
を接続し、電流200μA程度で放電した場合、電池の
平均放電電圧は約2.8Vで容量が20mAhとなっ
た。
After charging is completed, the AC power supply AC is turned off, a resistance of 15 kΩ is connected to the lithium secondary battery B, and the battery is discharged at a current of about 200 μA, the average discharge voltage of the battery is about 2. The capacity became 20 mAh at 8V.

【0029】このように、充電完了後にリチウム二次電
池の電池電圧が耐電圧限界を越えることなく、適正な充
電を行うことができた。
As described above, proper charging could be performed without the battery voltage of the lithium secondary battery exceeding the withstand voltage limit after the completion of charging.

【0030】(実施例2)実施例1に示した充電回路に
より、リチウム二次電池Bを充電した後、交流電源AC
をオフ状態にして抵抗値150kΩの抵抗を接続し、電
流20μA程度で放電した場合、放電容量は16.4m
Ahと低下した。
(Embodiment 2) After charging the lithium secondary battery B with the charging circuit shown in Embodiment 1, the AC power supply AC
When the resistor is turned off and a resistor with a resistance of 150 kΩ is connected and the battery is discharged at a current of about 20 μA, the discharge capacity is 16.4 m.
It decreased to Ah.

【0031】これは、ツェナーダイオードの漏れ電流
が、電圧3Vのとき約5μA流れたためである。このツ
ェナーダイオードの漏れ電流を防止するために、ツェナ
ーダイオードZDとリチウム二次電池Bとの間に逆電流
防止用ダイオードDを接続した。このときの充電回路を
図1(b)に示す。なお、ダイオードDはショットキー
バリヤー型で、電流数μA以下のときの電圧降下が約
0.1Vであった。
This is because the leakage current of the Zener diode flows by about 5 μA when the voltage is 3V. In order to prevent the leakage current of the Zener diode, a reverse current preventing diode D is connected between the Zener diode ZD and the lithium secondary battery B. The charging circuit at this time is shown in FIG. The diode D was a Schottky barrier type and had a voltage drop of about 0.1 V when the current was several μA or less.

【0032】この図1(b)で示した充電回路により、
リチウム二次電池Bを充電した場合、充電完了後、その
電池電圧は約3.4Vで安定した。
そして、この回路において、充電完了後、交流電源A
Cをオフ状態にして、リチウム二次電池Bに抵抗値15
0kΩの抵抗を接続し、電流20μA程度で放電した場
合、電池の平均放電電圧は約2.8Vで容量20mAh
となった。
By the charging circuit shown in FIG. 1 (b),
When the lithium secondary battery B was charged, the battery voltage was stable at about 3.4 V after the completion of charging.
In this circuit, after charging is completed, the AC power source A
With C turned off, the lithium secondary battery B has a resistance value of 15
When a resistor of 0 kΩ is connected and discharged at a current of about 20 μA, the average discharge voltage of the battery is about 2.8 V and the capacity is 20 mAh.
Became.

【0033】これにより、ツェナーダイオードに流れる
漏れ電流を防止することができた。 (実施例3)実施例1および2で示した充電回路におい
て、過電流防止用抵抗として抵抗R 1とR2を直接接続し
て用いた回路を図1(c)に示す。なお、抵抗R1とR2
の抵抗値はいずれも7.5kΩとした。
As a result, the current flows to the Zener diode.
It was possible to prevent leakage current. (Third Embodiment) In the charging circuit shown in the first and second embodiments.
As a resistance for overcurrent prevention, a resistor R 1And R2Connect directly
The circuit used is shown in FIG. The resistance R1And R2
The resistance value of each was 7.5 kΩ.

【0034】このように過電流防止用の抵抗Rを2個以
上直列に接続して用いると、仮に1個の抵抗が壊れた場
合でも交流電源から大電流が回路内に流れることを避け
ることができ、電池の破裂などの危険性を防止すること
ができる。
As described above, when two or more resistors R for preventing overcurrent are connected in series and used, even if one resistor is broken, it is possible to prevent a large current from flowing from the AC power supply into the circuit. Therefore, it is possible to prevent the risk of the battery bursting.

【0035】(比較例)図2に示したように、交流電源
ACと抵抗Rと整流用ダイオードDSとリチウム二次電
池Bとを直列に接続した充電回路により、リチウム二次
電池Bを充電した。この場合には、充電完了後電池電圧
が100V以上まで上昇し、電解液の分解が起こって、
電池は膨脹したり、破裂した。なお、本実施例ではリチ
ウム二次電池としてバナジウムリチウム二次電池を用い
たが、これ以外のリチウム二次電池、たとえばカーボン
リチウム二次電池、マンガンリチウム二次電池などであ
っても同様の効果が得られる。
Comparative Example As shown in FIG. 2, a lithium secondary battery B is charged by a charging circuit in which an AC power source AC, a resistor R, a rectifying diode D S and a lithium secondary battery B are connected in series. did. In this case, the battery voltage rises to 100 V or more after the completion of charging, the decomposition of the electrolytic solution occurs,
The battery swelled or burst. In this example, the vanadium lithium secondary battery was used as the lithium secondary battery, but the same effect can be obtained even with other lithium secondary batteries such as carbon lithium secondary battery and manganese lithium secondary battery. can get.

【0036】[0036]

【発明の効果】以上のように、本発明の充電回路では、
リチウム二次電池にツェナーダイオードを並列に接続
し、ツェナーダイオードの降伏電圧V0をリチウム二次
電池の最大許容電圧とほぼ一致するように設定したもの
であるので、リチウム二次電池の充電が完了した後、電
池電圧がV0付近まで上昇すると、前記ツェナーダイオ
ードに急激に電流が流れ始めて電池にはほとんど電流が
流れなくなる。
As described above, in the charging circuit of the present invention,
Since the Zener diode is connected in parallel to the lithium secondary battery and the breakdown voltage V 0 of the Zener diode is set to substantially match the maximum allowable voltage of the lithium secondary battery, charging of the lithium secondary battery is completed. After that, when the battery voltage rises to around V 0 , a current suddenly starts to flow in the Zener diode and almost no current flows in the battery.

【0037】したがって、充電完了後に電池に電流が流
れ続けても電池電圧が耐電圧限界を超えるまで上昇する
ことはなく、リチウム二次電池の膨脹や破裂を防止する
ことができ、リチウム二次電池に対して適正な充電を行
うことができる。
Therefore, even if the current continues to flow to the battery after the completion of charging, the battery voltage does not rise until it exceeds the withstand voltage limit, and it is possible to prevent the lithium secondary battery from expanding or bursting, and to prevent the lithium secondary battery from expanding. Can be properly charged.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の充電回路の第1の例を示す図 (b)同充電回路の第2の例を示す図 (c)同充電回路の第3の例を示す図FIG. 1A is a diagram showing a first example of the charging circuit of the present invention, FIG. 1B is a diagram showing a second example of the charging circuit, and FIG. 1C is a diagram showing a third example of the charging circuit.

【図2】従来の充電回路を示す図FIG. 2 is a diagram showing a conventional charging circuit.

【図3】ツェナーダイオードの電流電圧特性を示す図FIG. 3 is a diagram showing a current-voltage characteristic of a Zener diode.

【図4】本発明の充電回路を用いてリチウム二次電池を
充電した時の充電カーブと電池を放電した時の放電カー
ブを示す図
FIG. 4 is a diagram showing a charge curve when a lithium secondary battery is charged and a discharge curve when the battery is discharged using the charging circuit of the present invention.

【符号の説明】 AC 交流電源 B 二次電池 DS 整流用ダイオード ZD ツェナーダイオード D 逆電流防止用ダイオード R,R1,R2 抵抗[Explanation of symbols] AC AC power supply B Secondary battery D S Rectifying diode ZD Zener diode D Reverse current prevention diode R, R 1 , R 2 resistance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】過電流防止用抵抗と半波整流用ダイオード
とリチウム二次電池との直列回路を交流電源列に接続す
るとともに、前記リチウム二次電池にはツェナーダイオ
ードを並列に接続した充電回路。
1. A charging circuit in which a series circuit of an overcurrent prevention resistor, a half-wave rectification diode, and a lithium secondary battery is connected to an AC power supply line, and a Zener diode is connected in parallel to the lithium secondary battery. .
【請求項2】前記過電流防止用抵抗は2個以上の抵抗を
直列に接続した請求項1記載の充電回路。
2. The charging circuit according to claim 1, wherein two or more resistors are connected in series as the overcurrent preventing resistor.
【請求項3】前記リチウム二次電池とツェナーダイオー
ドの間に逆電流防止用ダイオードを接続した請求項1記
載の充電回路。
3. The charging circuit according to claim 1, wherein a reverse current preventing diode is connected between the lithium secondary battery and the Zener diode.
JP4299518A 1992-11-10 1992-11-10 Charging circuit Pending JPH06150977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4299518A JPH06150977A (en) 1992-11-10 1992-11-10 Charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4299518A JPH06150977A (en) 1992-11-10 1992-11-10 Charging circuit

Publications (1)

Publication Number Publication Date
JPH06150977A true JPH06150977A (en) 1994-05-31

Family

ID=17873631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4299518A Pending JPH06150977A (en) 1992-11-10 1992-11-10 Charging circuit

Country Status (1)

Country Link
JP (1) JPH06150977A (en)

Similar Documents

Publication Publication Date Title
JP3826929B2 (en) Battery pack
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2861879B2 (en) Battery pack
US8860372B2 (en) Multiple cell battery charger configured with a parallel topology
JP5242668B2 (en) Battery with integrated voltage converter having a bypass circuit
JP2872365B2 (en) Rechargeable power supply
US4970451A (en) Device for utilizing low voltage electric current sources
KR20060050510A (en) Secondary battery having constant-voltage device
JP2005130664A (en) Battery pack
US5767657A (en) Battery charger having a battery discharge prevention circuit
US11095133B2 (en) Simple battery and charger system
JPH06150977A (en) Charging circuit
JP3517708B2 (en) Power supply using solar cells
JP3642105B2 (en) Battery pack
JP3216595B2 (en) Rechargeable battery charger
JP3100248U (en) Secondary battery storage and power supply device and secondary battery pack using the same
JP2841470B2 (en) Charge / discharge circuit
JP3040946U (en) Charger for secondary battery
JP2584243Y2 (en) Solar cell application equipment
JPH0322837A (en) Charge/discharge circuit
JPH09215209A (en) Power unit using secondary battery pack
JP2675053B2 (en) Charge control circuit
JP2686659B2 (en) Battery charger
JPH02299173A (en) Charging/discharging circuit
JPH0322838A (en) Charge/discharge circuit