JPH06150789A - High speed re-closing earth switch device - Google Patents

High speed re-closing earth switch device

Info

Publication number
JPH06150789A
JPH06150789A JP4302662A JP30266292A JPH06150789A JP H06150789 A JPH06150789 A JP H06150789A JP 4302662 A JP4302662 A JP 4302662A JP 30266292 A JP30266292 A JP 30266292A JP H06150789 A JPH06150789 A JP H06150789A
Authority
JP
Japan
Prior art keywords
arc
current
puffer
movable
fixed contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4302662A
Other languages
Japanese (ja)
Other versions
JP3369228B2 (en
Inventor
Toshiyuki Saida
敏之 才田
Takashi Yokota
岳志 横田
Ikuo Miwa
郁夫 三輪
Hitoshi Mizoguchi
均 溝口
Hisatoshi Ikeda
久利 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30266292A priority Critical patent/JP3369228B2/en
Publication of JPH06150789A publication Critical patent/JPH06150789A/en
Application granted granted Critical
Publication of JP3369228B2 publication Critical patent/JP3369228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Circuit Breakers (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To break certainly the induction current which does not form any current zero point by protruding an arc electrode from a stationary contacting piece which is in direct coupling with a main circuit conductor, and sending a gas in a puffer chamber blowing to the tip of a movable contacting piece. CONSTITUTION:When pole opening proceeds, an arc 20 moves toward an arc electrode 21 positioned nearer geometrically than a stationary contacting piece 13, and part of the current flows to the arc electrode 21. Arcs 24 are generated between it 21 and a movable contacting piece 17, and finally all current substantially transfers to the arc electrode 21. The current path follows from a conductor 8, to a resistor 22, the arc electrode 21, arcs 24, the movable contacting piece 17, and a grounding terminal part. Thus generates the condition that the resistor 22 is automatically inserted in a breaking current circuit serially. The gas compressed in a puffer chamber 25 is passed through an exhaust hole 26 and released from the tip of the movable contacting piece 17 to blow to the arcs 24. As the separating distance of the two contacting pieces 13, 17 has become sufficiently large, the arcs 24 go out certainly and the breaking is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力用高電圧送電線に
おいて、送電線路の碍子連アークホーンの逆フラッシオ
ーバ(逆閃絡)によって発生する地絡故障を線路用遮断
器によって除去した後アークホーン部に持続する電磁誘
導電流アークを遮断器の開閉動作と協調した高速閉極動
作によって消弧し、かつ、即時の開極動作により誘導電
流を遮断して、遮断器の再閉路による再送電を可能にす
る高速再閉路接地開閉器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-voltage power transmission line for electric power after eliminating a ground fault caused by a reverse flashover of an insulator arc arc horn of a transmission line by a line circuit breaker. The electromagnetic induction current arc that persists in the arc horn is extinguished by the high-speed closing operation that cooperates with the switching operation of the circuit breaker, and the induced current is interrupted by the immediate opening operation, and the circuit is reclosed by reclosing the circuit breaker. The present invention relates to a high-speed reclosing ground switch that enables power transmission.

【0002】[0002]

【従来の技術】最近の電力需要の急激な増大に伴い、現
在の500kVクラスの送電系統に代えて、さらに高電
圧の1100kVクラスの送電系統の実用化が図られて
いる。このような1100kVクラスのUHV系送電線
で鉄塔碍子連アークホーンの閃絡による単相地絡故障に
対し単相再閉路を行った場合には、500kVクラスの
送電線よりも他相からの電磁誘導電流がはるかに大きく
なることが予想される。そして、両端の変電所の線路用
遮断器(GCB)が開路した後も、同送電線回路の他相
からの電磁誘導電流が大きいため、前記地絡故障相の鉄
塔碍子連のアークホーンのアークが消弧されず、送電を
再開できないという問題が生じることが予想される。こ
のような問題を回避するために、線路用遮断器(GC
B)を再閉路する際に、高速再閉路接地開閉器(HSE
S)を高速で強制閉極してアークホーンの逆閃絡アーク
を消弧し、その後直ちに開極して遮断器の再閉路を可能
にするシステムの実現が要望されている。
2. Description of the Related Art With the recent rapid increase in power demand, a higher voltage 1100 kV class power transmission system is being put into practical use in place of the current 500 kV class power transmission system. In such a 1100 kV class UHV system transmission line, when a single phase reclosing is performed for a single phase ground fault due to a flashover of a tower-insulator-series arc horn, electromagnetic waves from other phases are generated rather than a 500 kV class transmission line. It is expected that the induced current will be much higher. Even after the circuit breakers (GCBs) of the substations at both ends are opened, the electromagnetic induction current from the other phase of the transmission line circuit is large, so that the arc of the arc horn of the tower-insulator series of the ground fault phase is large. It is expected that there will be a problem that the power will not be extinguished and power transmission cannot be resumed. In order to avoid such a problem, a line breaker (GC
When reclosing B), the high-speed reclosing ground switch (HSE
It is demanded to realize a system in which S) is forcibly closed at high speed to extinguish the reverse flash arc of the arc horn, and then immediately opened to reclose the circuit breaker.

【0003】以上のような1100kVクラスの送電線
において予想されるアークホーンの逆閃絡アークを消弧
するためのシステムについて、図4乃至図10を参照し
て具体的に説明する。まず、図4は、前述したように高
速再閉路接地開閉器(HSES)を利用して高電圧送電
系統における碍子連の逆閃絡アークを消弧し、線路用遮
断器(GCB)の再閉路を可能にするシステムを示す概
念図である。この図4において、図中1は、変電所開閉
装置入口のブッシング、2は送電線、3は鉄塔、4は雷
雲、5は雷放電アークであり、3aはアークホーン、3
bは碍子連、3cはアークホーン3aに生じた逆閃絡ア
ークである。また、図5は、図4のシステム構成要素の
動作順序を示す動作シーケンス図である。
A system for extinguishing a reverse flashover arc of an arc horn expected in a power transmission line of the above 1100 kV class will be specifically described with reference to FIGS. 4 to 10. First, as shown in FIG. 4, the high-speed reclosing earthing switch (HSES) is used to extinguish the reverse flashover arc of the insulator series in the high voltage transmission system to reclose the line breaker (GCB). It is a conceptual diagram which shows the system which enables. In FIG. 4, 1 is a bushing at the entrance of the switchgear of the substation, 2 is a transmission line, 3 is a steel tower, 4 is a thundercloud, 5 is a lightning discharge arc, 3a is an arc horn, and 3a is an arc horn.
Reference numeral b is a series of insulators and reference numeral 3c is a reverse flash arc generated in the arc horn 3a. Further, FIG. 5 is an operation sequence diagram showing an operation order of the system components of FIG.

【0004】ここで、図4において、UHV系鉄塔群の
中で、落雷などによって送電線中相のアークホーン3a
に逆閃絡アーク3aが生じた際に、線路用遮断器(GC
B)と高速再閉路接地開閉器(HSES)による再閉路
動作を図5に示すシーケンス図に沿って実施する場合を
想定する。この場合、故障線路は、同回線の健全相およ
び併架他回線からの電磁誘導を受けるため、送電線両端
の変電所に設置された高速再閉路接地開閉器(HSE
S)を閉極した後、高速再閉路接地開閉器(HSES)
には、図6に示すような電磁誘導電流が流れる。この電
流を高速再閉路接地開閉器(HSES)で遮断するため
に、高速再閉路接地開閉器(HSES)の開極により、
故障送電線を接地状態から解放すると、高速再閉路接地
開閉器(HSES)の接触子間には、図7に示すよう
に、電気回路の過渡現象分と故障送電線が他回線から受
ける静電誘導電圧が重畳した過渡回復電圧が印加され
る。これらの図6および図7に示すような、比較的大き
な電流と比較的大きな上昇率、高い波高値の過渡回復電
圧という過酷な条件の遮断は、単にSF6 ガス中で棒状
接触子を開閉する並切り形の接地開閉器では達成でき
ず、遮断器と同様にパッファ形の消弧室を有することが
必要となる。
Here, in FIG. 4, in the UHV system tower group, the arc horn 3a of the middle phase of the transmission line due to a lightning strike or the like.
When a reverse flashover arc 3a occurs in the
It is assumed that the reclosing operation by B) and the high speed reclosing earthing switch (HSES) is performed according to the sequence diagram shown in FIG. In this case, the faulty line receives electromagnetic induction from the sound phase of the same line and from other lines connected in parallel, so the high-speed reclosed earthing switch (HSE) installed at the substations at both ends of the transmission line.
After closing S), high-speed re-closed earthing switch (HSES)
An electromagnetic induction current flows as shown in FIG. In order to cut off this current with the high-speed reclosed earthing switch (HSES), by opening the high-speed reclosing earthing switch (HSES),
When the faulty power transmission line is released from the grounded state, as shown in FIG. 7, between the contacts of the high-speed re-closing earthing switch (HSES), the transient phenomenon of the electric circuit and the static electricity received by the faulty power transmission line from other lines are received. A transient recovery voltage on which the induced voltage is superimposed is applied. As shown in FIG. 6 and FIG. 7, interruption of severe conditions such as relatively large current, relatively large rate of rise, and transient recovery voltage of high peak value simply opens and closes the rod-shaped contactor in SF 6 gas. This cannot be achieved with a parallel cut type grounding switch, and it is necessary to have a puffer type arc extinguishing chamber as with a circuit breaker.

【0005】図8は、従来のパッファ形消弧室を備えた
高速再閉路接地開閉器の一例における構成の概略を示す
構成図である。図8において、6は接地容器であり、そ
の内部に、パッファ形消弧室7と導体8が収納されてい
る。9はパッファ形消弧室7の可動部を開閉駆動するた
めの操作装置であり、10はパッファ形消弧室7の可動
部と操作装置9の間に設けられ、開極長さを変換するリ
ンク部である。11a,11bは絶縁スペーサであり、
導体8を接地容器6内に固定する。また、12は、接地
容器6とパッファ形消弧室7との間に接続された接地端
子部であり、接地開閉器の閉極時には、この接地端子部
12に、パッファ形消弧室7を介して導体8が接続さ
れ、接地されるように構成されている。
FIG. 8 is a block diagram showing the outline of the configuration of an example of a high-speed reclosing grounding switch equipped with a conventional puffer type arc extinguishing chamber. In FIG. 8, reference numeral 6 denotes a grounding container, in which a puffer arc-extinguishing chamber 7 and a conductor 8 are housed. Reference numeral 9 denotes an operating device for driving the movable part of the puffer arc extinguishing chamber 7 to open and close, and 10 is provided between the movable part of the puffer arc extinguishing chamber 7 and the operating device 9 to convert the opening contact length. This is the link section. 11a and 11b are insulating spacers,
The conductor 8 is fixed in the ground container 6. Reference numeral 12 is a ground terminal portion connected between the ground container 6 and the puffer arc-extinguishing chamber 7, and the puffer arc-extinguishing chamber 7 is connected to the ground terminal portion 12 when the ground switch is closed. The conductor 8 is connected to the ground via the conductor 8 and is grounded.

【0006】図9は、図8のパッファ形消弧室の詳細構
造とその開極動作終了時の状態を示す構成図である。こ
こで、Aは固定接触子部であり、前記導体8に直結され
た固定接触子13とその周囲に配置されたシールド14
aによって構成されている。また、Bは可動接触子部で
あり、前記操作装置9に連結される筒状の操作ロッド1
5と、その周囲に取り付けられたパッファシリンダ1
6、パッファシリンダ16の先端部の内外に取り付けら
れた可動接触子17と絶縁ノズル18、パッファシリン
ダ16の外周に取り付けられたシールド14bによって
構成される一体構造の可動部を備えている。そして、こ
の可動部のパッファシリンダ16内には、接地容器6に
対して固定位置に支持された固定部であるパッファピス
トン19が挿入され、可動部と相対的に移動するように
構成されている。
FIG. 9 is a structural diagram showing a detailed structure of the puffer type arc extinguishing chamber of FIG. 8 and a state at the end of the contact opening operation. Here, A is a fixed contactor portion, which is a fixed contactor 13 directly connected to the conductor 8 and a shield 14 disposed around the fixed contactor 13.
It is composed of a. Further, B is a movable contact portion, which is a cylindrical operation rod 1 connected to the operation device 9.
5 and a puffer cylinder 1 attached to the periphery thereof
6, the movable contactor 17 mounted on the inside and outside of the tip of the puffer cylinder 16, the insulating nozzle 18, and the shield 14b mounted on the outer periphery of the puffer cylinder 16 have an integral structure. Then, a puffer piston 19 which is a fixed portion supported at a fixed position with respect to the ground container 6 is inserted into the puffer cylinder 16 of the movable portion, and is configured to move relatively to the movable portion. .

【0007】この図9において、開極動作時には、パッ
ファシリンダ16内のガスが圧縮され、ノズル部に点線
矢印で示すような2方向のガス流が生じ、固定接触子1
3と可動接触子17間に生じるアークが消弧される。ま
た、開極動作終了後は、シールド14a,14bの効果
により、固定接触子部Aと可動接触子部Bの間の絶縁が
確保される。
In FIG. 9, during the opening operation, the gas in the puffer cylinder 16 is compressed, and a gas flow in two directions as indicated by a dotted arrow is generated in the nozzle portion, and the fixed contact 1
The arc generated between 3 and the movable contact 17 is extinguished. After the contact opening operation is completed, the insulation between the fixed contact portion A and the movable contact portion B is secured by the effect of the shields 14a and 14b.

【0008】図10は、図8の高速再閉路接地開閉器の
開極動作時のストローク(開極移動特性)とパッファシ
リンダ内圧力上昇の特性を示す特性図である。この図に
おいて、x0 は開極位置である。開極位置からの開離距
離(L1 ,L2 )が十分に大きい場合に、図6と図7に
示したような電流と回復電圧の条件を遮断可能な開極初
期の圧力上昇値をΔp1aとし、同じ条件を遮断可能な開
極終期の圧力上昇値をΔp1bとする。ガス遮断器に使用
されていることでわかるように、パッファ形消弧室の遮
断性能は優秀であるため、図6に示したような2000
A〜3000Aのレベルの電磁誘導電流の消弧は比較的
容易であり、この図10に示すように、比較的低い圧力
上昇Δp1a ,Δp1bで消弧できる。
FIG. 10 is a characteristic diagram showing the stroke (opening movement characteristic) and the characteristic of the pressure increase in the puffer cylinder during the opening operation of the high-speed reclosing grounding switch of FIG. In this figure, x 0 is the opening position. When the separation distance (L 1 , L 2 ) from the opening position is sufficiently large, the pressure increase value at the initial opening stage that can interrupt the conditions of current and recovery voltage as shown in FIGS. 6 and 7 is set. Let Δp 1a, and let Δp 1b be the pressure rise value at the end of opening that can interrupt the same conditions. As can be seen from the fact that it is used in a gas circuit breaker, the puffer-type arc-extinguishing chamber has an excellent shut-off performance, so that the 2000
It is relatively easy to extinguish the electromagnetic induction current of the level of A to 3000 A, and as shown in FIG. 10, it can be extinguished with a relatively low pressure increase Δp 1a and Δp 1b .

【0009】しかしながら、この接地開閉器には、大き
な電磁誘導電流だけでなく、図7に示したような高い過
渡回復電圧が印加されるため、開離距離が十分に大きく
ないと、遮断は成功しない。すなわち、図10におい
て、圧力上昇値Δp1aが得られる位置x1 での開離距離
1 は、遮断するために十分な大きさではなく、開離距
離がL2 になって初めて遮断可能になる。したがって、
この図10において、開極位置x0 から開離距離L2
得られる位置x2 に至るまでの時間が、遮断できる最短
アーク時間Tamin であり、開極位置x0 から開極終期
の圧力上昇値Δp1bが得られるまでの時間が、最長アー
ク時間Tamax である。そして、この最短アーク時間T
min と最長アーク時間Tamax との時間差が、遮断可
能なアーク時間幅Twとなる。この遮断可能アーク時間
幅Twは、遮断電流の半波の時間以上であれば十分であ
る。ただし、遮断器に比べて高速再閉路接地開閉器の遮
断は容易であり、遮断可能な圧力上昇値は比較的低いた
め、遮断可能アーク時間幅Twを20〜30ms程度に
広くすることは可能である。
However, not only a large electromagnetic induction current but also a high transient recovery voltage as shown in FIG. 7 is applied to this grounding switch, so that the breaking is successful unless the opening distance is sufficiently large. do not do. That is, in FIG. 10, the separation distance L 1 at the position x 1 at which the pressure increase value Δp 1a is obtained is not large enough to be blocked, and can be blocked only when the separation distance becomes L 2. Become. Therefore,
In FIG. 10, the time from the opening position x 0 up to the position x 2 which is separable distance L 2 is obtained, the shortest arcing time Ta min capable of blocking, pressure opening end from the opening position x 0 The time until the rise value Δp 1b is obtained is the maximum arc time Ta max . And this shortest arc time T
The time difference between a min and the longest arc time Ta max becomes the arc time width Tw that can be interrupted. It is sufficient that the breakable arc time width Tw is equal to or longer than the half-wave time of the breaking current. However, since the high-speed reclosing grounding switch is easier to shut off than the circuit breaker, and the pressure rise value at which it can be shut off is relatively low, it is possible to widen the breakable arc time width Tw to about 20 to 30 ms. is there.

【0010】[0010]

【発明が解決しようとする課題】ところで、図5に示し
たようなシーケンスで再閉路動作を実施している際に、
図11の電流波形図に示すように、地絡事故発生相であ
る中相以外の2相のうちの1相(この例では上相)で時
差をもって地絡事故(後追い故障)が発生し、この後追
い故障のタイミングが高速再閉路接地開閉器の開極タイ
ミングと重なり、併せて後追い故障事故電流に直流成分
が多く含まれている場合には、電磁誘導による高速再閉
路接地開閉器の通過電流は、図11のA部に示すよう
に、数サイクルの間電流零点を形成しない波形となる。
通常、開閉器での交流電流の遮断は電流零点で達成され
るが、図10に示したような従来の高速再閉路接地開閉
器の遮断可能な吹き付け圧力が保持される時間幅(遮断
可能アーク時間幅Tw)は、このような電流零点を形成
しない波形の持続時間よりも短く、遮断可能アーク時間
幅Tw内に、電流零点が再び形成されることはない。し
たがって、従来の高速再閉路接地開閉器でこのような電
流を遮断することはできない。
By the way, when the reclosing operation is carried out in the sequence shown in FIG.
As shown in the current waveform diagram of FIG. 11, a ground fault accident (follow-up failure) occurs with a time difference in one of the two phases (upper phase in this example) other than the middle phase which is the ground fault accident occurrence phase, If the timing of this follow-up failure overlaps with the opening timing of the high-speed re-closed earthing switch, and if the follow-up failure accident current contains many DC components, the current passing through the high-speed re-closed earthing switch due to electromagnetic induction Has a waveform that does not form a current zero point for several cycles, as shown in part A of FIG.
Normally, the interruption of the alternating current in the switch is achieved at the current zero point, but the time width (breakable arc) at which the breakable blowing pressure of the conventional high-speed reclosing grounding switch as shown in FIG. 10 is maintained. The time width Tw) is shorter than the duration of the waveform that does not form such a current zero point, and the current zero point is not formed again within the breakable arc time width Tw. Therefore, such a current cannot be interrupted by the conventional high speed reclosing grounding switch.

【0011】本発明は、上述のような従来の高速再閉路
接地開閉器の問題を解決するために提案されたものであ
り、その目的は、高電圧送電線において、数サイクルの
間電流零点を形成しない誘導電流を確実に遮断可能な高
性能の高速再閉路接地開閉器を提供することである。
The present invention has been proposed in order to solve the problem of the conventional high-speed reclosed earthing switch as described above, and an object thereof is to set a current zero point for several cycles in a high-voltage transmission line. It is an object of the present invention to provide a high-performance high-speed reclosing grounding switch that can reliably cut off an induced current that does not form.

【0012】[0012]

【課題を解決するための手段】本発明による高速再閉路
接地開閉器は、消弧性ガスを封入してなる密閉容器内の
主回路導体に設けた固定接触子部と、この固定接触子部
と接離する可動接触子部と、この可動接触子部と前記密
閉容器に電気的に接続された接地端子部とを有するパッ
ファ形消弧室を備えた高速再閉路接地開閉器において、
次のような特徴を有するものである。
A high-speed reclosing grounding switch according to the present invention comprises a fixed contact portion provided on a main circuit conductor in a hermetically sealed container containing an arc extinguishing gas, and the fixed contact portion. In a high-speed reclosed earthing switch equipped with a puffer-shaped arc-extinguishing chamber having a movable contactor portion that comes into contact with and separates from the movable contactor portion, and a grounding terminal portion electrically connected to the movable contactor portion,
It has the following features.

【0013】すなわち、前記固定接触子部は、前記主回
路導体に直結された固定接触子と、この固定接触子の周
囲を取り囲みかつその先端が固定接触子よりも突出する
ように配置されたアーク電極と、前記主回路導体とアー
ク電極とを電気的に接続する抵抗体を有し、前記可動接
触子部は、前記固定接触子と接離する可動接触子と、こ
の可動接触子の外周を覆うパッファシリンダとパッファ
ピストンによって形成されたパッファ室と、このパッフ
ァ室内のガスを前記可動接触子の先端部に吹き付けるガ
ス流路を有することを特徴としている。この場合、ガス
流路は、一般的に、パッファ室内と可動接触子内とを連
通するように構成される。
That is, the fixed contact portion is provided with a fixed contact directly connected to the main circuit conductor, and an arc arranged so as to surround the fixed contact and the tip of the fixed contact protrudes beyond the fixed contact. An electrode, a resistor electrically connecting the main circuit conductor and the arc electrode, and the movable contactor portion includes a movable contactor that contacts and separates from the fixed contactor, and an outer periphery of the movable contactor. It is characterized in that it has a puffer chamber formed by a puffer cylinder and a puffer piston for covering, and a gas flow passage for blowing the gas in the puffer chamber to the tip of the movable contact. In this case, the gas flow path is generally configured to connect the puffer chamber and the movable contact.

【0014】[0014]

【作用】以上のように構成された本発明の作用は次の通
りである。すなわち、まず、パッファ形消弧室の開極動
作を開始すると、固定接触子と可動接触子との間にアー
クが発生する。この場合、固定接触子は、主回路導体に
直結されているため、開極動作初期においては、抵抗体
は遮断回路に挿入されていない。そして、開極動作後期
において、可動接触子の先端部が固定接触子から十分に
離れると、アークは、固定接触子よりも突出するように
配置されたアーク電極に移行する。このアーク電極は、
抵抗体を介して主回路導体に接続されているため、アー
クがアーク電極に移行した時点で、抵抗体が遮断回路に
挿入される。この結果、抵抗体によって、遮断電流の直
流成分を速やかに減衰させることができる。このよう
に、本発明においては、電流を遮断する瞬間にのみこの
遮断回路に直列に抵抗体を挿入し、遮断電流の直流成分
を速やかに減衰させることができる。
The operation of the present invention constructed as described above is as follows. That is, first, when the opening operation of the puffer type arc extinguishing chamber is started, an arc is generated between the fixed contact and the movable contact. In this case, since the fixed contact is directly connected to the main circuit conductor, the resistor is not inserted in the breaking circuit in the initial opening operation. Then, in the latter half of the opening operation, when the tip of the movable contact is sufficiently separated from the fixed contact, the arc moves to the arc electrode arranged so as to project from the fixed contact. This arc electrode is
Since it is connected to the main circuit conductor via the resistor, the resistor is inserted into the breaking circuit when the arc moves to the arc electrode. As a result, the DC component of the breaking current can be quickly attenuated by the resistor. As described above, in the present invention, the resistor can be inserted in series with the breaking circuit only at the moment of breaking the current, and the DC component of the breaking current can be quickly attenuated.

【0015】したがって、送電線の1相で地絡事故が発
生して遮断器が開極し、続いて、逆フラッシオーバ(逆
閃絡)の消弧のために高速再閉路接地開閉器を投入した
後に、隣接する他相あるいは併架された他の回線で、地
絡事故相の高速再閉路接地開閉器の開極タイミングと重
なる後追い故障事故が発生し、この後追い故障事故電流
に直流電流成分が多く含まれ、地絡事故相の高速再閉路
接地開閉器に数サイクルの間電流零点を形成しない零ミ
ス電流が流れた場合でも、この直流成分を十分速やかに
減衰させ、高速再閉路接地開閉器の遮断可能な吹き付け
圧力が保持される時間幅(遮断可能アーク時間幅)内に
電流零点を再び形成できるため、地絡事故相の電流を確
実に遮断できる。
Therefore, a ground fault occurs in one phase of the transmission line, the circuit breaker opens, and then a high-speed reclosing ground switch is turned on to extinguish the reverse flashover (reverse flashover). After that, in the adjacent other phase or in the other line that was put together, a follow-up failure accident that overlaps with the opening timing of the high-speed re-closed grounding switch in the ground fault phase occurs, and the DC current component is added to this post-failure failure current. Is included in the high-speed reclosed earthing switch in the ground fault accident phase, even if a zero-miss current that does not form a current zero point flows for several cycles, this DC component is attenuated promptly and the high-speed reclosing earthing switch opens and closes. Since the current zero point can be formed again within the time width (interruptible arc time width) in which the breakable spray pressure of the vessel is maintained, the current in the ground fault phase can be reliably interrupted.

【0016】[0016]

【実施例】以下には、本発明による高速再閉路接地開閉
器の一実施例について、図1および図2を参照して具体
的に説明する。まず、図1は、高速再閉路接地開閉器の
構成の概略を示す構成図である。この図1において、6
は接地容器であり、その内部に、パッファ形消弧室7と
導体8が収納されている。9はパッファ形消弧室7の可
動部を開閉駆動するための操作装置であり、10はパッ
ファ形消弧室7の可動部と操作装置9の間に設けられ、
開極長さを変換するリンク部である。11a,11bは
絶縁スペーサであり、導体8を接地容器6内に固定す
る。また、12は、接地容器6とパッファ形消弧室7と
の間に接続された接地端子部であり、接地開閉器の閉極
時には、この接地端子部12に、パッファ形消弧室7を
介して導体8が接続され、接地されるように構成されて
いる。以上の構成については、前述した図8の従来例と
同様であるが、本実施例においては、パッファ形消弧室
7の構成に次のような特徴がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the high speed reclosing grounding switch according to the present invention will be specifically described below with reference to FIGS. First, FIG. 1 is a configuration diagram showing an outline of a configuration of a high-speed reclosing grounding switch. In FIG. 1, 6
Is a grounding container, in which the puffer arc-extinguishing chamber 7 and the conductor 8 are housed. Reference numeral 9 is an operating device for opening and closing the movable part of the puffer arc extinguishing chamber 7, and 10 is provided between the movable part of the puffer arc extinguishing chamber 7 and the operating device 9.
It is a link part for converting the opening length. Insulating spacers 11a and 11b fix the conductor 8 in the ground container 6. Reference numeral 12 is a ground terminal portion connected between the ground container 6 and the puffer arc-extinguishing chamber 7, and the puffer arc-extinguishing chamber 7 is connected to the ground terminal portion 12 when the ground switch is closed. The conductor 8 is connected to the ground via the conductor 8 and is grounded. The above configuration is the same as that of the conventional example of FIG. 8 described above, but in this example, the configuration of the puffer arc extinguishing chamber 7 has the following features.

【0017】図2は、パッファ形消弧室7の詳細構造と
その開極途中状態を示す構成図である。ここで、Aは固
定接触子部であり、固定接触子13、シールド14a、
アーク電極21、および抵抗体22によって構成されて
いる。すなわち、固定接触子13は、前記導体8に直結
され、アーク電極21は、固定接触子13を取り囲みか
つその先端が固定接触子13よりも突出するように配置
されている。そして、抵抗体22は、アーク電極21と
導体8とを電気的に接続するように配置されている。
FIG. 2 is a structural diagram showing the detailed structure of the puffer type arc-extinguishing chamber 7 and the state in which the electrodes are open. Here, A is a fixed contactor portion, and the fixed contactor 13, the shield 14a,
It is composed of an arc electrode 21 and a resistor 22. That is, the fixed contactor 13 is directly connected to the conductor 8, and the arc electrode 21 is arranged so as to surround the fixed contactor 13 and project its tip from the fixed contactor 13. The resistor 22 is arranged so as to electrically connect the arc electrode 21 and the conductor 8.

【0018】また、Bは可動接触子部であり、前記操作
装置9に連結される筒状の操作ロッド15と、その周囲
に取り付けられたパッファシリンダ16、パッファシリ
ンダ16の先端部の内外に取り付けられた可動接触子1
7とシールド14b、パッファシリンダ16の外周に取
り付けられたシールド14cによって構成される一体構
造の可動部を備えている。そして、この可動部のパッフ
ァシリンダ16内には、接地容器6に対して固定位置に
支持された固定部であるパッファピストン19が挿入さ
れ、可動部と相対的に移動するように構成されている。
Reference numeral B denotes a movable contactor, which is attached to the inside and outside of the cylindrical operation rod 15 connected to the operation device 9, the puffer cylinder 16 attached to the periphery thereof, and the tip end of the puffer cylinder 16. Movable contactor 1
7 and the shield 14b, and a shield 14c attached to the outer periphery of the puffer cylinder 16 has a movable portion having an integral structure. Then, a puffer piston 19 which is a fixed portion supported at a fixed position with respect to the ground container 6 is inserted into the puffer cylinder 16 of the movable portion, and is configured to move relatively to the movable portion. .

【0019】さらに、図2において、20,24は開極
動作初期と開極動作後期のアーク、23は投入状態の可
動接触子17の位置である。また、25はパッファシリ
ンダ16とパッファピストン19によって形成されたパ
ッファ室を示しており、このパッファ室25は、操作ロ
ッド15の先端部に設けられた排気孔26を介して可動
接触子17の内部と連通されており、これによって、パ
ッファ室25から可動接触子17の内部を通ってその先
端部に至るガス流路が形成されている。
Further, in FIG. 2, 20 and 24 are arcs in the initial opening operation and the latter half of the opening operation, and 23 is the position of the movable contactor 17 in the closed state. Further, reference numeral 25 denotes a puffer chamber formed by the puffer cylinder 16 and the puffer piston 19, and the puffer chamber 25 is provided inside the movable contactor 17 through an exhaust hole 26 provided at the tip of the operating rod 15. A gas flow path is formed from the puffer chamber 25 to the tip of the movable contact 17 through the inside of the movable contact 17.

【0020】以上のような構成を有する本実施例の作用
は次の通りである。すなわち、投入状態においては、可
動接触子17が、23として示すように、固定接触子1
3内に挿入され、両者は電気的接続状態にある。この場
合、通電電流は、導体8から固定接触子13と可動接触
子17を介して図1に示す接地端子部12に達してい
る。そして、このような投入状態から、電流遮断時に高
速再閉路接地開閉器が開極して、可動接触子17が、投
入状態の位置23から図中実線で示す位置にまで達した
場合を想定する。すなわち、可動接触子17が、固定接
触子13から抜けた瞬間から、両接触子13,17間に
アーク20が点弧し始め、両接触子13,17間の距離
が大きくなるにつれ、アーク20の長さが延びる。この
時の通電経路は、固定接触子13と可動接触子17との
間にアーク20が存在する以外は、前述した投入状態に
おける通電経路と同様である。
The operation of this embodiment having the above construction is as follows. That is, in the closed state, the movable contact 17 has the fixed contact 1 as shown by 23.
It is inserted in the inside of the 3 and both are in the electrical connection state. In this case, the energization current reaches the ground terminal portion 12 shown in FIG. 1 from the conductor 8 via the fixed contact 13 and the movable contact 17. Then, from such a closed state, it is assumed that the high-speed re-closed grounding switch is opened when the current is cut off, and the movable contactor 17 reaches from the closed state 23 to the position indicated by the solid line in the figure. . That is, from the moment the movable contact 17 comes out of the fixed contact 13, the arc 20 starts to ignite between the two contacts 13 and 17, and as the distance between the two contacts 13 and 17 increases, the arc 20 increases. The length of. The energization path at this time is the same as the energization path in the above-mentioned closed state except that the arc 20 exists between the fixed contact 13 and the movable contact 17.

【0021】しかしながら、さらに開極が進むと、アー
ク20は、固定接触子13よりも幾何学的に近い位置に
あるアーク電極21側に移動し、電流の一部がアーク電
極21に流れるようになり、アーク電極21と可動接触
子17の間にアーク24が発生し、最終的にほぼ全ての
電流がアーク電極21に転流する。この場合、電流経路
は、導体8から抵抗体22を経由し、さらに、アーク電
極21、アーク24を介して、可動接触子17から図1
に示す接地端子部12に達する。したがって、この時点
で、遮断電流回路に自動的に抵抗体22が直列に挿入さ
れたことになる。図3は、このようにして遮断電流回路
に挿入される抵抗体の抵抗値と、遮断電流の零点が復帰
するまでの時間との関係を示すグラフである。この図3
から、抵抗値を適切に選択することにより、遮断電流に
含まれる直流電流成分を速やかに減衰させることができ
るため、パッファ形消弧室による遮断可能な吹き付け圧
力が保持されている間に電流零点に復帰できることがわ
かる。
However, when the contact is further opened, the arc 20 moves to the side of the arc electrode 21 that is geometrically closer to the fixed contact 13, so that part of the current flows to the arc electrode 21. Then, an arc 24 is generated between the arc electrode 21 and the movable contact 17, and finally almost all the current is commutated to the arc electrode 21. In this case, the current path is from the conductor 8 to the resistor 22, and further to the movable contactor 17 from the movable electrode 17 through the arc electrode 21 and the arc 24.
The ground terminal portion 12 shown in FIG. Therefore, at this point, the resistor 22 is automatically inserted in series in the breaking current circuit. FIG. 3 is a graph showing the relationship between the resistance value of the resistor thus inserted in the breaking current circuit and the time until the zero point of the breaking current returns. This Figure 3
Therefore, by appropriately selecting the resistance value, the DC current component contained in the breaking current can be quickly attenuated.Therefore, the current zero point can be maintained while the breaking pressure by the puffer arc extinguishing chamber is maintained. You can see that you can return to.

【0022】そして、パッファ室25内で圧縮されたガ
スは、図中矢印に示すように、パッファ室25から排気
孔26を通って、可動接触子17先端からアーク24に
吹き付けられる。この時、両接触子13,17間の開離
距離も、遮断可能な程度に十分大きくなっている。した
がって、アーク24は確実に消滅し、遮断が完了する。
Then, the gas compressed in the puffer chamber 25 is blown from the tip of the movable contact 17 to the arc 24 through the exhaust hole 26 from the puffer chamber 25 as shown by the arrow in the figure. At this time, the separation distance between the contacts 13 and 17 is also large enough to be able to be blocked. Therefore, the arc 24 is surely extinguished, and the interruption is completed.

【0023】このように、本実施例においては、電流を
遮断する瞬間にのみこの遮断回路に直列に抵抗体22を
挿入し、遮断電流の直流成分を速やかに減衰させること
ができる。したがって、送電線の1相で地絡事故が発生
して遮断器が開極し、続いて、逆フラッシオーバ(逆閃
絡)の消弧のために高速再閉路接地開閉器を投入した後
に、隣接する他相あるいは併架された他の回線で、地絡
事故相の高速再閉路接地開閉器の開極タイミングと重な
る後追い故障事故が発生し、この後追い故障事故電流に
直流電流成分が多く含まれ、地絡事故相の高速再閉路接
地開閉器に数サイクルの間電流零点を形成しない零ミス
電流が流れた場合でも、この直流成分を十分速やかに減
衰させ、高速再閉路接地開閉器の遮断可能な吹き付け圧
力が保持される時間幅(遮断可能アーク時間幅)内に電
流零点を再び形成できるため、地絡事故相の誘導電流を
確実に遮断できる。
As described above, in the present embodiment, the resistor 22 is inserted in series in this breaking circuit only at the moment of breaking the current, and the DC component of the breaking current can be quickly attenuated. Therefore, after a ground fault occurs in one phase of the power transmission line, the circuit breaker opens, and then the high-speed reclosing ground switch is turned on to extinguish the reverse flashover (reverse flashover). In the adjacent other phase or in the other line connected together, a follow-up failure accident that overlaps with the opening timing of the high speed re-closed earthing switch in the ground fault accident phase occurs, and this follow-up failure accident current contains many DC current components. Therefore, even if a zero-miss current that does not form a current zero is applied to the high-speed reclosed earthing switch in the ground fault phase for several cycles, this DC component is attenuated quickly enough to shut off the high-speed reclosing earthing switch. Since the current zero point can be formed again within the time width in which the possible spray pressure is maintained (interruptible arc time width), the induced current in the ground fault phase can be reliably interrupted.

【0024】以上のことを総括すれば、本実施例におい
ては、遮断電流の直流成分を速やかに減衰させることが
でき、遮断電流の電流零点は、パッファ形消弧室の遮断
可能な吹き付け圧力が保持される時間幅内に復帰するた
め、地絡事故相の誘導電流を確実に遮断できる。したが
って、比較的大きな電流と比較的大きな上昇率、高い波
高値の過渡回復電圧という過酷な条件の遮断を確実に達
成することができるため、将来実用化が予定されている
1100kVクラスのUHV系送電線用として好適な、
高性能の高速再閉路接地開閉器を提供することができ
る。
In summary, in the present embodiment, the DC component of the breaking current can be quickly attenuated, and the current zero point of the breaking current is the blowing pressure capable of breaking the puffer arc-extinguishing chamber. Since the restoration is made within the maintained time width, the induced current in the ground fault phase can be cut off without fail. Therefore, it is possible to surely achieve the interruption of the severe conditions of the relatively large current, the relatively large rate of increase, and the transient recovery voltage of the high peak value, so that the UHV system transmission of the 1100 kV class, which is expected to be put to practical use in the future, can be achieved. Suitable for electric wire,
It is possible to provide a high-performance high-speed reclosing grounding switch.

【0025】なお、本発明は前記実施例に限定されるも
のではなく、パッファ形消弧室の具体的な細部の構成は
適宜選択可能であり、例えば、固定接触子やアーク電
極、可動接触子などの具体的な構成は適宜選択可能であ
る。また、パッファ形消弧室の操作機構の具体的な構成
なども自由に選択可能である。
The present invention is not limited to the above-mentioned embodiment, and the specific detailed structure of the puffer type arc extinguishing chamber can be selected as appropriate. For example, a fixed contactor, an arc electrode, or a movable contactor. Specific configurations such as can be appropriately selected. Further, the specific configuration of the operation mechanism of the puffer arc extinguishing chamber can be freely selected.

【0026】[0026]

【発明の効果】以上述べたように、本発明においては、
パッファ形消弧室の固定接触子の周囲に、この固定接触
子よりも突出するアーク電極と、主回路導体とアーク電
極とを電気的に接続する抵抗体とを設けることにより、
高電圧送電線において、数サイクルの間電流零点を形成
しない誘導電流を確実に遮断可能な高性能の高速再閉路
接地開閉器を提供することができる。
As described above, according to the present invention,
Around the fixed contact of the puffer type arc extinguishing chamber, by providing an arc electrode protruding from the fixed contact, and a resistor electrically connecting the main circuit conductor and the arc electrode,
It is possible to provide a high-performance high-speed reclosing grounding switch capable of reliably interrupting an induced current that does not form a current zero point for several cycles in a high-voltage transmission line.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による高速再閉路接地開閉器の一実施例
の構成の概略を示す構成図。
FIG. 1 is a configuration diagram showing a schematic configuration of an embodiment of a high-speed reclosing grounding switch according to the present invention.

【図2】図1の高速再閉路接地開閉器のパッファ形消弧
室の詳細構造とその開極途中状態を示す構成図。
FIG. 2 is a configuration diagram showing a detailed structure of a puffer-type arc-extinguishing chamber of the high-speed reclosing grounding switch of FIG.

【図3】図1の高速再閉路接地開閉器の開極動作後期に
遮断電流回路に挿入される抵抗体の抵抗値と、遮断電流
の零点が復帰するまでの時間との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the resistance value of a resistor inserted in the breaking current circuit in the latter half of the opening operation of the high-speed re-closing earthing switch of FIG. 1 and the time until the zero point of the breaking current returns.

【図4】高速再閉路接地開閉器を利用して高電圧送電系
統における碍子連の逆閃絡アークを消弧するシステムを
示す概念図。
FIG. 4 is a conceptual diagram showing a system for extinguishing a reverse flashover arc of an insulator series in a high-voltage transmission system by using a high-speed reclosing earthing switch.

【図5】図4のシステム構成要素の動作順序を示す動作
シーケンス図。
5 is an operation sequence diagram showing an operation sequence of the system components of FIG.

【図6】高速再閉路接地開閉器の動作相への他相からの
電磁誘導電流および静電誘導電流を示す電流波形図。
FIG. 6 is a current waveform diagram showing an electromagnetically induced current and an electrostatically induced current from the other phase to the operating phase of the high-speed reclosing grounding switch.

【図7】高速再閉路接地開閉器の開極時の過渡回復電圧
を示す電圧波形図。
FIG. 7 is a voltage waveform diagram showing a transient recovery voltage when the high-speed reclosing grounding switch is opened.

【図8】従来の高速再閉路接地開閉器の一例における構
成の概略を示す構成図。
FIG. 8 is a configuration diagram showing a schematic configuration of an example of a conventional high-speed reclosing grounding switch.

【図9】図8の高速再閉路接地開閉器のパッファ形消弧
室の詳細構造とその開極動作終了時の状態を示す構成
図。
9 is a configuration diagram showing a detailed structure of a puffer-type arc-extinguishing chamber of the high-speed reclosing grounding switch shown in FIG. 8 and a state at the end of the contact opening operation.

【図10】図8の高速再閉路接地開閉器の開極動作時の
ストローク(開極移動特性)とパッファシリンダ内圧力
上昇の特性を示す特性図。
10 is a characteristic diagram showing a stroke (opening movement characteristic) and a characteristic of a pressure increase in the puffer cylinder during the opening operation of the high-speed re-closed circuit grounding switch of FIG.

【図11】高電圧送電線において零ミス電流が発生して
いる状態を示す電流波形図。
FIG. 11 is a current waveform diagram showing a state in which a zero-miss current is generated in the high-voltage power transmission line.

【符号の説明】[Explanation of symbols]

1…ブッシング 2…送電線 3…鉄塔 4…雷雲 5…雷放電アーク 6…接地容器 7…パッファ形消弧室 8…導体 9…操作装置 10…リンク部 11a,11b…絶縁スペーサ 12…接地端子部 13…固定接触子 14a〜14c…シールド 15…操作ロッド 16…パッファシリンダ 17…可動接触子 18…絶縁ノズル 19…パッファピストン 20,24…アーク 21…アーク電極 22…抵抗体 23…投入状態の可動接触子の位置 25…パッファ室 26…排気孔 DESCRIPTION OF SYMBOLS 1 ... Bushing 2 ... Power transmission line 3 ... Tower 4 ... Thundercloud 5 ... Lightning discharge arc 6 ... Grounding vessel 7 ... Puffer type arc extinguishing chamber 8 ... Conductor 9 ... Operating device 10 ... Link part 11a, 11b ... Insulation spacer 12 ... Grounding terminal Part 13 ... Fixed contactor 14a-14c ... Shield 15 ... Operation rod 16 ... Puffer cylinder 17 ... Movable contactor 18 ... Insulation nozzle 19 ... Puffer piston 20, 24 ... Arc 21 ... Arc electrode 22 ... Resistor 23 ... Position of movable contact 25 ... Puffer chamber 26 ... Exhaust hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 溝口 均 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 池田 久利 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hitoshi Mizoguchi 2-1, Ukishima-cho, Kawasaki-ku, Kanagawa Prefecture No. 1 stock company Toshiba Hamakawasaki factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 消弧性ガスを封入してなる密閉容器内の
主回路導体に設けた固定接触子部と、この固定接触子部
と接離する可動接触子部と、この可動接触子部と前記密
閉容器に電気的に接続された接地端子部とを有するパッ
ファ形消弧室を備えた高速再閉路接地開閉器において、 前記固定接触子部は、前記主回路導体に直結された固定
接触子と、この固定接触子の周囲を取り囲みかつその先
端が固定接触子よりも突出するように配置されたアーク
電極と、前記主回路導体とアーク電極とを電気的に接続
する抵抗体を有し、 前記可動接触子部は、前記固定接触子と接離する可動接
触子と、この可動接触子の外周を覆うパッファシリンダ
とパッファピストンによって形成されたパッファ室と、
このパッファ室内のガスを前記可動接触子の先端部に吹
き付けるガス流路を有することを特徴とする高速再閉路
接地開閉器。
1. A fixed contact portion provided on a main circuit conductor in an airtight container in which an arc extinguishing gas is sealed, a movable contact portion contacting and separated from the fixed contact portion, and the movable contact portion. In a high-speed reclosed earthing switch equipped with a puffer-type arc-extinguishing chamber having a grounding terminal portion electrically connected to the closed container, the fixed contact portion is a fixed contact directly connected to the main circuit conductor. A child, an arc electrode that surrounds the fixed contact and is arranged so that its tip projects from the fixed contact, and a resistor that electrically connects the main circuit conductor and the arc electrode. The movable contact section includes a movable contact that comes in contact with and separates from the fixed contact, and a puffer chamber formed by a puffer cylinder and a puffer piston that covers the outer periphery of the movable contact.
A high-speed reclosing grounding switch having a gas flow path for blowing the gas in the puffer chamber to the tip of the movable contactor.
JP30266292A 1992-11-12 1992-11-12 High-speed reclosable earthing switch Expired - Fee Related JP3369228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30266292A JP3369228B2 (en) 1992-11-12 1992-11-12 High-speed reclosable earthing switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30266292A JP3369228B2 (en) 1992-11-12 1992-11-12 High-speed reclosable earthing switch

Publications (2)

Publication Number Publication Date
JPH06150789A true JPH06150789A (en) 1994-05-31
JP3369228B2 JP3369228B2 (en) 2003-01-20

Family

ID=17911684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30266292A Expired - Fee Related JP3369228B2 (en) 1992-11-12 1992-11-12 High-speed reclosable earthing switch

Country Status (1)

Country Link
JP (1) JP3369228B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110634704A (en) * 2019-09-06 2019-12-31 平高集团有限公司 Quick earthing switch
CN112951643A (en) * 2019-12-11 2021-06-11 Abb瑞士股份有限公司 Three-position isolating switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110634704A (en) * 2019-09-06 2019-12-31 平高集团有限公司 Quick earthing switch
CN112951643A (en) * 2019-12-11 2021-06-11 Abb瑞士股份有限公司 Three-position isolating switch

Also Published As

Publication number Publication date
JP3369228B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US4550356A (en) Circuit breaker
JP3589061B2 (en) Vacuum switchgear and method for opening and closing vacuum switchgear
JPH06310000A (en) Grounding switch
JP3369228B2 (en) High-speed reclosable earthing switch
JP3337749B2 (en) High-speed reclosable earthing switch
EP2249363A1 (en) Arrangement, substation, operating method and use of a grounding switch for protecting an electrical circuit against short-line faults
JP3372054B2 (en) High-speed reclosable grounding device
JP3372055B2 (en) High-speed reclosable grounding device
JP3369224B2 (en) High-speed reclosable earthing switch
JP3432236B2 (en) High-speed reclosable grounding device
JPH06150790A (en) High speed re-closing earth switch device
US20240170240A1 (en) Alternative gas current pause circuit interrupter
JP2003109481A (en) High-speed grounding switch
JPH06124627A (en) High speed re-closing path earthed switch
JP3695214B2 (en) Insulated switchgear
RU2148281C1 (en) Arc-control device of self-compression gas-filled high-voltage switch
JPH07105800A (en) High speed reclosing and grounding switch
JPH0636659A (en) High speed reclosing grounding device
JPH08321234A (en) High speed grounding switch
JP3175704B2 (en) Insulated switchgear
JPH0520984A (en) Resistance interrupting type circuit breaker
JP2523478B2 (en) Puffer type gas breaker
JP2918074B2 (en) Gas circuit breaker
JPH0620567A (en) High-speed reclosing grounding device
CN111489913A (en) Circuit breaker with nonlinear opening and closing resistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees