JP3372054B2 - High-speed reclosable grounding device - Google Patents

High-speed reclosable grounding device

Info

Publication number
JP3372054B2
JP3372054B2 JP17870292A JP17870292A JP3372054B2 JP 3372054 B2 JP3372054 B2 JP 3372054B2 JP 17870292 A JP17870292 A JP 17870292A JP 17870292 A JP17870292 A JP 17870292A JP 3372054 B2 JP3372054 B2 JP 3372054B2
Authority
JP
Japan
Prior art keywords
speed
phase
ground fault
grounding device
reclosable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17870292A
Other languages
Japanese (ja)
Other versions
JPH0620566A (en
Inventor
岳志 横田
郁夫 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17870292A priority Critical patent/JP3372054B2/en
Publication of JPH0620566A publication Critical patent/JPH0620566A/en
Application granted granted Critical
Publication of JP3372054B2 publication Critical patent/JP3372054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)
  • Circuit Breakers (AREA)
  • Gas-Insulated Switchgears (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電力用高電圧送電線に
おいて、送電線路の碍子連アークホーン間に生じる逆フ
ラッシオーバー(逆閃絡)によって1線地絡事故が発生
した場合、その送電線路を高速で再閉路するために使用
される高速再閉路接地装置に関するもので、特に、前記
地絡事故が発生した相と同一回線の他相にて前記地絡事
故と時差を持って後追い地絡事故が発生する場合でも、
遮断器の再閉路による再送電を可能にする高速再閉路接
地装置に係る。 【0002】 【従来の技術】送電線に雷が落ちると、送電線に吊られ
た碍子連のアークホーンに逆フラッシオーバーが発生す
る。送電線に生じる事故の大半は、この逆フラッシオー
バーを原因とする1線地絡事故である。地絡事故による
故障を解消するためには、故障区間を無電圧として、事
故原因である逆フラッシオーバーを消弧してしまえば良
い。具体的には、故障を起こした送電線の両端にある送
電線路用の遮断器に再閉路動作を行わせることが有効で
ある。再閉路動作とは、一旦開極して、故障区間を無電
圧とし、逆フラッシオーバーを消弧した後、再度投入す
ることである。この様な再閉路動作を行うことにより、
停電に至ることなく、再送電を行うことができる。再閉
路の代表的な方式としては単相再閉路方式がある。この
単相再閉路方式は、電力の変動が少なく、過渡安定度に
優れているため広く使われている。 【0003】ところが、近年では電力需要の増大に伴っ
て、高電圧送電線として1100kVなどUHV系送電
線が用いられている。このUHV系送電線にて単相再閉
路を行う場合には、従来の500kV系統の場合に比較
して、同一回線の他相や併架された他回線から受ける静
電電磁誘導が大きい。このような他相からの静電電磁誘
導が大きいと、碍子連アークホーンの逆フラッシオーバ
ーが発生した時、たとえ故障区間両端の遮断器を開極状
態にしたにせよ、逆フラッシオーバーを消弧することが
難しくなる。そこで、UHV系のような高電圧送電線で
は、逆フラッシオーバーを消弧するために、高電圧送電
線の各相に高速再閉路接地装置が設置されている。すな
わち、事故発生箇所をその両端の遮断器によって送電線
路から切り離した後、この高速再閉路接地装置を遮断器
の開閉動作と協調して高速投入することにより、碍子連
アークホーンに持続する電磁誘導電流アークを消弧し、
且つ即座に開極動作を行って誘導電流を遮断して、遮断
器の再閉路による再送電を可能にしている。 【0004】以下、この高速再閉路接地装置を採用した
保護システムを、図面を参照して具体的に説明する。図
3はこのシステムの構成を示す説明図である。図におい
て、1はブッシング、3はUHV系の鉄塔である。2は
高電圧用の送電線であり、上相、中相、下相の3線を有
し、ブッシング1と鉄塔3又は鉄塔3同士の間に張り渡
されている。各鉄塔3にはアークホーン3aを備えた碍
子連3bが設けられ、この碍子連3bによって送電線2
が鉄塔3に吊り下げられている。送電線2の一定区間の
両端には、遮断器GCBと高速再閉路接地装置HSES
が設けられている。なお、4は雷雲、5は雷である。こ
のシステムにおいて、3線の送電線2のある1線に雷雲
4から雷5が落ちると、その送電線2を吊り下げている
碍子連3bのアークホーン3aに逆フラッシオーバー3
cが発生し、送電線2からこの逆フラッシオーバー3c
を介して鉄塔3へ地絡事故電流が流れ、地絡事故が生じ
る。 【0005】この逆フラッシオーバー3cにより1線地
絡事故が起きた場合の遮断器GCB及び高速再閉路接地
装置HSESの動作順序を、図4の動作シーケンス図に
沿って説明する。すなわち、地絡事故発生前は、遮断器
GCBは投入状態、高速再閉路接地装置HSESは開極
状態である。送電線2に地絡事故が発生すると、送電線
保護リレー時間であるT1時間経過後、まず遮断器GC
Bが開極動作を行う。しかし、事故送電線2には、他相
からの静電電磁誘導により誘導電流が流れ、それによっ
てアークホーン3a間には依然として逆フラッシオーバ
ー3cが持続している。そこで、遮断器GCBが開極し
た状態で、高速再閉路接地装置HSESを強制的に高速
で投入動作を行い、アークホーン3a部分で接地されて
いる誘導電流を高速再閉路接地装置HSES側に導くこ
とにより、アークホーン3aの逆フラッシオーバーを消
弧する。高速再閉路接地装置は、θ時間投入状態を続け
て逆フラッシオーバーを消弧した後、開極状態に戻って
誘導電流を遮断し、最後に遮断器が投入動作を行い送電
を再開する。 【0006】続いて、図5を参照して、地絡事故電流及
び高速再閉路接地装置HSESに流れる電流について説
明する。前記の通り、送電線2は上相、中相、下相を有
しており、各相には所定の負荷電流が流れているが、前
記の地絡事故が送電線2の中相にて発生したと仮定す
る。送電線2の中相において、図中T01が地絡事故発
生時、T02が遮断器GCBの開極動作開始時で、送電
線2の中相にT01〜T02間だけ事故電流が流れてい
る。ところが、送電線2の中相は他の健全相である上相
及び下相や、併架された他の回線から静電電磁誘導を受
けるため、遮断器が開極した状態では、そのアークホー
ンには誘導電流に起因する逆フラッシオーバーが依然と
して生じているため、逆フラッシオーバーの消弧のため
に高速再閉路接地装置を投入する。すると、高速再閉路
接地装置には、図5に示すように、その投入時点T03
以降、最初は直流成分の含まれた地絡事故電流と電磁誘
導電流とが重畳され電流零点よりも変移した電流が流
れ、その後地絡事故電流が接地されるにつれて電磁誘導
電流成分が多くなり、電流零点を通る交流電流が流れる
ことになる。そこで、高速再閉路接地装置によって、こ
の誘導電流を遮断する場合には、電流零点になるタイミ
ングを捕らえて開極動作を行う。 【0007】しかし、このような電磁誘導電流は、図6
に示すように、2000Aにも達するものであり、その
電流遮断時には、図7に示すように、電気回路の過渡現
象分と故障送電線が他線から受ける静電誘導電圧が重畳
した過渡回復電圧とが印加される。このような比較的大
きな電流と、比較的大きな上昇率及び高い波高値の過渡
回復電圧条件の遮断は、単にSF6 ガス中で棒状の接触
子を開閉するだけの並切り形の接地開閉器では遮断する
ことができず、遮断器と同様にパッファ形の消弧室を有
する高速再閉路接地装置が必要となる。 【0008】図8は、前記のような高速再閉路接地装置
として従来から知られている装置の具体的構成を示すも
のである。この高速再閉路接地装置は、絶縁ガスを充填
した接地タンク19内に収納されており、タンク19の
中心部に送電線側に接続された導体11が設けられ、そ
の一部に固定電極12が設けられている。タンク19に
おける固定電極12に対向した部分には、可動電極13
が固定電極12に向かって接離可能に支持されている。
この固定電極12は、その基部において、図示しない操
作装置に連結されいる。可動電極13の先端側には、可
動電極13と同心円状に消弧ガス案内用のノズル14が
設けられている。このノズル14は、可動電極13の外
周に同心円状に配置されたパッファシリンダ18の先端
に固定されている。このパッファシリンダ18の基部が
可動電極13の操作装置に連結され、可動電極13と共
に固定電極側に向かって往復動する。可動電極13とパ
ッファシリンダ18との間の空間がパッファ室16にな
っており、その先端側は前記ノズル14の連通してい
る。パッファ室16の基端側(ノズル14と反対側)に
は、固定されたパッファピストン17が設けられてい
る。このパッファピストン17は、可動電極13及びパ
ッファシリンダ18の対してスライド自在に組み込まれ
ている。 【0009】このような構成を有する従来の高速再閉路
接地装置を、図8のような開極状態とする場合には、図
示しない操作装置を駆動して、可動電極13及びパッフ
ァシリンダ18をタンク19側(図中下方)に移動さ
せ、固定電極12と可動電極13とを開離させる。する
と、移動するパッファシリンダ18と固定されているパ
ッファピストン17との間のパッファ室16の容積が縮
小し、パッファ室16内部の絶縁ガスが消弧ガス21と
なってノズル14から吹き出され、固定電極12と可動
電極13との間のアークを消弧する。この場合の可動電
極13のストローク20とパッファ室16内のパッファ
圧力ΔPとの関係を示すと、図9の通りである。すなわ
ち、可動電極13の開極ストロークのほぼ1/2の行程
においてパッファ圧力は最大値に達し、開極完了に伴い
圧力は低下している。 【0010】 【発明が解決しようとする課題】ところで、前記のよう
な高速再閉路接地装置による電流遮断時において、送電
線の隣接する他の相、例えば図5の上相で時間T04に
おいて、直流電流成分が多い後追い故障が発生すると、
中相の送電線には、上相の事故電流による電磁誘導で生
じた直流電流成分の多い誘導電流が流れ、図5のA部分
に示すように、中相の高速再閉路接地装置には電流零点
を形成しない零ミス電流が流れることになる。この零ミ
ス電流を遮断することは、通常の交流電流の零点遮断に
比較すると格段に困難であり、従来の高速再閉路接地装
置の能力を超えたものである。その結果、後追い故障の
発生タイミングがちょうど中相の高速再閉路接地装置の
開極タイミングと重なり、合せて後追い故障電流分に直
流電流分が多く含まれている場合には、再閉路が実現さ
れず、高電圧の電力送電に対し由々しい問題が発生する
ことになる。 【0011】この点を、図8の高速再閉路接地装置の動
作に従って具体的に述べると、次の通りである。まず、
図8の装置では、可動側接触子13が開極動作を止める
までの間、パッファシリンダ18内の絶縁性消弧ガスを
固定側と可動側の両接触子12,13間に発生している
アークに吹き付けることにより、アークの消弧と電流遮
断及び電流後の耐極間電圧責務を処理している。ところ
が、前記高速再閉路接地装置に求められる開極時の過渡
回復電圧性能を考えると、図7の波形に示すように商用
周波の1/2のサイクルで過渡回復電圧ピークを得るた
め、開極スピードは遮断器並の速度が必要となり、前記
図9の開極開始からストロークエンドに達するまでの時
間tが短く、ΔPが一定値以上にある実質のガス流れ吹
き付け時間は2サイクル程度が限界である。 【0012】一方、高速再閉路接地装置開極動作直後
で、まだ高速再閉路接地装置が電流遮断を完了する前に
前述のように隣接相で後追い故障が発生すると、図5の
A部に示すような電流零点を形成しない誘導電流(約数
千A)が4サイクル程度流れる条件が発生する。この場
合、交流電流の消弧メカニズム上、電流零点を形成しな
いアークの消弧が難しいことから、このタイミングで後
追い故障誘導電流を受けた高速再閉路接地装置はストロ
ーク終端まで開極動作を終了しても極間にアークを形成
し続けることになる。そして、その後、電流零点が復帰
したアーク電流となっても、2サイクル程度であるパッ
ファ室からのガス流の吹き付け時間はすでに経過してい
るため、消弧不能状態のままとなる。 【0013】本発明は以上のような従来技術の有する問
題点を解消するために提案されたもので、その目的とす
るところは、1線地絡事故発生後に他相で後追い地絡事
故が発生しそれが前記事故発生相の接地装置の開極途中
であっても、前記事故発生相における誘導電流の遮断を
確実に行うことができ、その後の遮断器の高速再閉路を
可能とした高速再閉路接地装置を提供することにある。 【0014】 【課題を解決するための手段】前記目的を達成するため
に、本発明は、遮断器を結ぶ高電圧送電線の各相に設置
されており、前記送電線に設けられた碍子連のアークホ
ーンにおける逆フラッシオーバーによる1線地絡事故に
対して、前記送電線の両端にある遮断器を開極した状態
で高速で投入動作を行い、前記逆フラッシオーバーの消
弧後に開極動作を行う高速再閉路接地装置において、前
記地絡事故が発生した相と同一回線の他相にて前記地絡
事故と時差を持って後追い地絡事故が発生したことを検
知する送電線保護リレーと、前記高速再閉路接地装置に
開極指令が出力された以降開極動作を行っている最中
に、前記送電線保護リレーが前記後追い地絡事故を検出
した際、該開極動作完了後直ちに投入動作を連続して行
うように即座に投入指令を発し、続けて他相における地
絡事故がこの他相の遮断器の開極により除去された後に
開極動作を行うように開極指令を発する制御ユニットと
を設けたことを特徴とする。 【0015】 【作用】以上のような構成を有する本発明においては、
地絡事故発生相の高速再閉路接地装置に開極指令を出し
た時点から一定の時差内に、静電電磁誘導の影響が大き
い同一回線の他相にて後追い地絡事故が発生した場合、
その後追い故障発生相の地絡故障検出保護リレーが地絡
検出信号を発する。この検出信号を基に、開極動作中の
地絡事故発生相の高速再閉路接地装置に投入指令を発
し、前記高速再閉路接地装置に開極指令が出力された以
降開極動作を行っている最中に、前記送電線保護リレー
が前記後追い地絡事故を検出した際、該開極動作完了後
直ちに投入動作を連続して行うように即座に投入指令を
発する。その後、他相の後追い故障が解消され、零点ミ
ス電流が消滅したタイミングを見図らって再度続けて高
速再閉路接地装置が開極動作を行い、地絡事故発生相の
誘導電流をその電流零点にて遮断する。 【0016】 【実施例】以下、本発明による高速再閉路接地装置の一
実施例を図1及び図2を参照して具体的に説明する。な
お、図3に示した従来技術と同一の部分に関しては同一
符号を付し、説明は省略する。 【0017】(1)実施例の構成 図1(A)は本実施例を含むシステムの構成図である。
この図1(A)に示すように、同一回線を構成する各相
の送電線2の両端には、従来技術と同様に遮断器GCB
と高速再閉路接地装置HSESがそれぞれ設けられてい
る。各相の高速再閉路接地装置HSESは、それぞれそ
の動作制御ユニット10に接続され、このユニット10
からの投入指令及び開極指令に基づいて開閉し、アーク
ホーン3aに生じる逆フラッシオーバー3cの消弧及び
誘導電流の遮断を行う。この高速再閉路接地装置の動作
制御ユニット10は、各相の地絡事故検出用の送電線保
護リレーRyに接続されている。この保護リレーRy
は、それが設けられた相の地絡事故を検出し、その検出
信号を前記動作制御ユニット10に送出するものであ
る。この地絡事故の検出手段としては、従来公知の検出
手段を適宜使用できるが、本実施例では、各相の遮断器
GCBに近接して変流器CTを設け、この変流器CTに
よって送電線2の電流を監視することにより地絡事故を
検出する。 【0018】動作制御ユニット10の構成は、図1
(B)に拡大して示す通りである。この動作制御ユニッ
ト10は、地絡事故発生相の高速再閉路接地装置HSE
Sの開極指令の入力部10aと、同一回線の他相の保護
リレーRyから入力された後追い地絡事故検出信号の検
出部10bとを備えている。この後追い地絡事故検出信
号の検出部10bは、一例としてその動作保持時間を1
〜5サイクルの間で設定変更が可能な時限保持タイマー
6に接続され、この時限保持タイマー6と前記開極指令
の入力部10aとがアンド回路7に接続されている。ア
ンド回路7は、投入指令と開極指令の2つの出力部8,
9を有しており、このうち開極指令の出力部9は、一例
としてその時限後動作時間を1サイクルから1秒の間で
設定変更が可能な時限後動作タイマー10cを介して、
動作制御ユニット10外部の高速再閉路接地装置に接続
されている。また、前記開極指令の入力部10aは、前
記アンド回路7や時限後動作タイマー10cを介するこ
となく、直接開極指令の出力部9に接続されている。 【0019】ここで、動作制御ユニット10の投入及び
開極の2つの出力部8,9は、投入指令が優先する投入
フリー機能となるように設定されている。すなわち、高
速再閉路接地装置の開極動作途中及び動作完了直後で、
先に出されている開極指令が復帰する以前(開極完了の
信号が動作制御ユニットに戻される以前)に投入指令を
受けると、高速再閉路接地装置はその投入指令により投
入される。しかし、そのままでは、先の未復帰の開極指
令により、一旦投入された高速再閉路接地装置が再度開
極を開始するポンピング状態となる。本実施例では、こ
れを防止するために、投入指令を優先して、未復帰の開
極指令は一度復帰してからでないと受付けないように、
動作制御ユニット10を構成している。 【0020】(2)実施例の作用 前記のような構成を有する本実施例では、図2に示すよ
うに、ある相で1線地絡事故が発生すると、その相の送
電線2では、遮断器GCBが開極し、電流を遮断する。
その後一定のタイミングで、高速再閉路接地装置HSE
Sが投入され、アークホーン3aの逆フラッシオーバー
3cを消弧する。投入された高速再閉路接地装置には、
一定の時間θ´経過後に開極指令が出される。この開極
指令は、動作制御ユニット10にその入力部10aから
入力され、出力部9から高速再閉路接地装置に出力され
てその開極動作を開始させると同時に、時限保持タイマ
ー6に対して動作保持時間のカウント開始の指令を与え
る。この状態で、特に他相で後追い地絡が発生しなけれ
ば、高速再閉路接地装置の開極は成功し、誘導電流の遮
断が行われ、引き続いて遮断器GCBが投入されて送電
線の再閉路がなされる。 【0021】ところが、開極途中において高速再閉路接
地装置の動作相以外の相で後追い地絡事故が発生する
と、その影響で零点ミス電流が発生し、前記のような開
極動作では誘導電流の遮断は不可能になる恐れがある。
そこで、本実施例では、他相の後追い地絡事故を送電線
保護リレーRyにて検出すると、その他相の地絡事故検
出指令が、既に動作している相の高速再閉路接地装置の
動作制御ユニット10に導かれる。この他相地絡事故検
出指令が、高速再閉路接地装置の開極直後、すなわち前
記時限保持タイマー6の動作保持時間内に入った場合、
時限保持タイマー6を介してこの他相地絡事故検出指令
がアンド回路7に入力される。 【0022】そして、この他相地絡事故検出指令と、既
に動作制御ユニット10に入力されている開極指令との
アンド条件が成立する場合のみ、即時投入指令がその出
力部8から高速再閉路接地装置に出される。その結果、
図2に示すように、前記開極指令で開極された高速再閉
路接地装置は、直ちに再投入される。この投入指令の復
帰は、時限後動作タイマー10cに対する図2のθ時間
のカウント開始指令となり、このθ時間経過後に再度高
速再閉路接地装置に開極指令が出される。この時点で
は、既に他相の後追い地絡事故が他相の遮断器及び高速
再閉路接地装置の作用により解消され、例えば4サイク
ル程度継続する零点ミス電流も解消しているので、再び
開極動作を行うパッファ室からの消弧ガス流により電流
零点を利用して事故相の誘導電流を遮断することができ
る。 【0023】 【発明の効果】以上述べたように、本発明によれば、他
相での後追い地絡事故が発生した場合に、一旦開極した
高速再閉路接地装置を即時投入して、一定の時間経過後
に再度開極することにより、他相の後追い地絡事故によ
る静電、電磁誘導によって動作相に誘導させる電流零点
を形成しない誘導電流を確実に遮断することが可能とな
り、後追い地絡事故時においても高速再閉路が可能な高
速再閉路接地装置を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-voltage power transmission line, in which a single line is formed by a reverse flashover generated between arc horns on a power transmission line. The present invention relates to a high-speed reclosable grounding device used to reclose a transmission line at a high speed when a ground fault occurs, particularly, in the other phase of the same line as the phase in which the ground fault occurred. Even if a trailing ground fault occurs with a time difference from the ground fault,
The present invention relates to a high-speed reclosable grounding device capable of retransmitting power by reclosing a circuit breaker. 2. Description of the Related Art When lightning strikes a transmission line, a reverse flashover occurs in an arc horn of a series of insulators suspended on the transmission line. Most of the accidents that occur in transmission lines are single-line ground faults caused by this reverse flashover. In order to eliminate the fault due to the ground fault, it is only necessary to set the fault section to no voltage and extinguish the reverse flashover which is the cause of the fault. Specifically, it is effective to cause the circuit breakers for the transmission line at both ends of the failed transmission line to perform the reclosing operation. The reclosing operation is to open the pole once, set the fault section to no voltage, extinguish the reverse flashover, and then turn it on again. By performing such a reclosing operation,
Retransmission can be performed without a power failure. As a typical method of reclosing, there is a single-phase reclosing method. This single-phase reclosing method is widely used because of its small power fluctuation and excellent transient stability. However, in recent years, with the increase in power demand, UHV transmission lines such as 1100 kV have been used as high-voltage transmission lines. When a single-phase reclosing is performed on this UHV transmission line, electrostatic electromagnetic induction received from another phase of the same line or another line that is paralleled is larger than in the case of the conventional 500 kV system. If such electromagnetic induction from other phases is large, the reverse flashover is extinguished when a reverse flashover of the arc horn occurs, even if the circuit breakers at both ends of the fault section are opened. It becomes difficult to do. Therefore, in a high-voltage transmission line such as a UHV system, a high-speed reclosing grounding device is installed in each phase of the high-voltage transmission line to extinguish the reverse flashover. In other words, after the location where the accident occurred is cut off from the transmission line by the circuit breakers at both ends, this high-speed reclosing grounding device is turned on at high speed in coordination with the opening and closing operation of the circuit breaker, so that the electromagnetic induction sustained by the insulator-connected arc horn can be maintained. Extinguishes the current arc,
In addition, the opening operation is immediately performed to cut off the induced current, thereby enabling the power transmission by re-closing the circuit breaker. [0004] A protection system employing this high-speed reclosing and grounding device will be specifically described with reference to the drawings. FIG. 3 is an explanatory diagram showing the configuration of this system. In the figure, 1 is a bushing and 3 is a UHV-type steel tower. Reference numeral 2 denotes a high-voltage transmission line, which has three lines of an upper phase, a middle phase, and a lower phase, and is stretched between the bushing 1 and the tower 3 or between the towers 3. Each tower 3 is provided with an insulator string 3b having an arc horn 3a.
Is suspended from the steel tower 3. A circuit breaker GCB and a high-speed reclosable grounding device HSES are provided at both ends of a certain section of the transmission line 2.
Is provided. In addition, 4 is a thundercloud and 5 is lightning. In this system, when a lightning strike 5 falls from a thundercloud 4 on a certain line of a three-line power transmission line 2, a reverse flashover 3 is applied to an arc horn 3a of an insulator string 3b suspending the transmission line 2.
c occurs, and this reverse flashover 3c
, A ground fault current flows to the tower 3 to cause a ground fault. The operation sequence of the circuit breaker GCB and the high-speed reclosing grounding device HSES when a one-line ground fault occurs due to the reverse flashover 3c will be described with reference to the operation sequence diagram of FIG. That is, before the occurrence of the ground fault, the circuit breaker GCB is in the closed state, and the high-speed reclosable grounding device HSES is in the open state. When a ground fault occurs in the transmission line 2, after the transmission line protection relay time T1 has elapsed, first, the circuit breaker GC
B performs the opening operation. However, an induced current flows through the accident transmission line 2 due to electrostatic electromagnetic induction from another phase, whereby the reverse flashover 3c is still maintained between the arc horns 3a. Therefore, with the circuit breaker GCB opened, the high-speed reclosable grounding device HSES is forcibly turned on at a high speed, and the induced current grounded at the arc horn 3a is guided to the high-speed reclosable grounding device HSES. This extinguishes the reverse flashover of the arc horn 3a. The high-speed reclosable grounding device continues the closed state for θ hours, extinguishes the reverse flashover, returns to the open state, cuts off the induced current, and finally the breaker performs the closing operation to restart power transmission. Next, a ground fault current and a current flowing through the high-speed reclosable grounding device HSES will be described with reference to FIG. As described above, the transmission line 2 has an upper phase, a middle phase, and a lower phase, and a predetermined load current flows in each phase. Assume that it has occurred. In the middle phase of the transmission line 2, T01 in the figure indicates the occurrence of a ground fault, T02 indicates the start of the opening operation of the circuit breaker GCB, and an accident current flows through the middle phase of the transmission line 2 only between T01 and T02. However, since the middle phase of the transmission line 2 receives electrostatic and electromagnetic induction from the upper and lower phases, which are other sound phases, and other parallel lines, the arc horn is opened when the circuit breaker is opened. In this case, the reverse flashover caused by the induced current is still occurring, and the high-speed reclosing grounding device is turned on to extinguish the reverse flashover. Then, as shown in FIG.
Thereafter, at first, the ground fault current containing the DC component and the electromagnetic induction current are superimposed, and a current shifted from the current zero point flows.After that, as the ground fault current is grounded, the electromagnetic induction current component increases, An alternating current passing through the current zero point flows. Therefore, when the induced current is cut off by the high-speed reclosing grounding device, the opening operation is performed by capturing the timing at which the current becomes zero. However, such an electromagnetically induced current is
As shown in FIG. 7, when the current is interrupted, as shown in FIG. 7, a transient recovery voltage in which the transient phenomenon of the electric circuit and the electrostatic induction voltage received from the other line by the faulty transmission line are superimposed as shown in FIG. Is applied. Such a relatively large current and the interruption of the transient recovery voltage condition of a relatively large rising rate and a high peak value are interrupted by a parallel-type grounding switch which merely opens and closes a rod-shaped contact in SF6 gas. A high-speed reclosable grounding device having a puffer-type arc-extinguishing chamber like a circuit breaker is required. FIG. 8 shows a specific configuration of a device conventionally known as a high-speed reclosing ground device as described above. This high-speed reclosable grounding device is housed in a grounding tank 19 filled with an insulating gas, and a conductor 11 connected to the transmission line side is provided at the center of the tank 19, and a fixed electrode 12 is partially provided on the conductor 11. Is provided. A movable electrode 13 is provided on a portion of the tank 19 facing the fixed electrode 12.
Are supported so as to be able to approach and separate from the fixed electrode 12.
The fixed electrode 12 is connected at its base to an operating device (not shown). A nozzle 14 for guiding an arc-extinguishing gas is provided concentrically with the movable electrode 13 on the tip side of the movable electrode 13. The nozzle 14 is fixed to a tip of a puffer cylinder 18 which is arranged concentrically on the outer periphery of the movable electrode 13. The base of the puffer cylinder 18 is connected to the operation device of the movable electrode 13 and reciprocates with the movable electrode 13 toward the fixed electrode. A space between the movable electrode 13 and the puffer cylinder 18 is a puffer chamber 16, and the tip side thereof communicates with the nozzle 14. A fixed puffer piston 17 is provided on the base end side of the puffer chamber 16 (the side opposite to the nozzle 14). The puffer piston 17 is slidably incorporated into the movable electrode 13 and the puffer cylinder 18. When the conventional high-speed reclosable grounding apparatus having such a configuration is brought into the open state as shown in FIG. 8, an operating device (not shown) is driven to move the movable electrode 13 and the puffer cylinder 18 to the tank. The movable electrode 13 is separated from the fixed electrode 12 by moving the fixed electrode 12 to the 19 side (downward in the figure). Then, the volume of the puffer chamber 16 between the moving puffer cylinder 18 and the fixed puffer piston 17 is reduced, and the insulating gas inside the puffer chamber 16 becomes the arc-extinguishing gas 21 and is blown out from the nozzle 14 to be fixed. The arc between the electrode 12 and the movable electrode 13 is extinguished. FIG. 9 shows the relationship between the stroke 20 of the movable electrode 13 and the puffer pressure ΔP in the puffer chamber 16 in this case. That is, the puffer pressure reaches the maximum value in a stroke approximately half of the opening stroke of the movable electrode 13, and the pressure decreases with the completion of the opening. [0010] By the way, at the time of current interruption by the above-mentioned high-speed reclosing grounding device, at the time T04 in another phase adjacent to the transmission line, for example, the upper phase in FIG. If a follow-up failure occurs with a large current component,
An induction current having a large DC current component generated by electromagnetic induction due to an upper-phase fault current flows through the medium-phase transmission line, and as shown in part A of FIG. A zero miss current that does not form a zero will flow. It is much more difficult to cut off this zero-miss current than to cut off the zero point of ordinary alternating current, and it exceeds the capability of the conventional high-speed reclosable grounding device. As a result, when the follow-up failure occurs exactly at the opening timing of the medium-phase high-speed reclosing grounding device, and when the follow-up failure current includes a large amount of DC current, reclosing is realized. Therefore, a severe problem occurs in the transmission of high-voltage power. [0011] This point will be specifically described below according to the operation of the high-speed reclosable grounding apparatus of FIG. First,
8, the insulating arc-extinguishing gas in the puffer cylinder 18 is generated between the fixed-side and movable-side contacts 12 and 13 until the movable-side contact 13 stops the opening operation. By spraying the arc, the arc is extinguished, the current is interrupted, and the voltage tolerance between poles after the current is processed. However, considering the transient recovery voltage performance at the time of opening required for the high-speed reclosing grounding device, the transient recovery voltage peak is obtained in a half cycle of the commercial frequency as shown in the waveform of FIG. The speed is equivalent to the speed of a circuit breaker, the time t from the start of opening of the electrode to the end of the stroke in FIG. 9 is short, and the actual gas flow blowing time when ΔP is a certain value or more is limited to about two cycles. is there. On the other hand, if a follow-up failure occurs in the adjacent phase as described above immediately after the opening operation of the high-speed reclosable grounding device and before the high-speed reclosable grounding device completes the current interruption, as shown in part A of FIG. A condition occurs in which an induced current (about several thousand A) that does not form a current zero point flows for about four cycles. In this case, the arc extinguishing mechanism of the alternating current makes it difficult to extinguish an arc that does not form a current zero point.Therefore, the high-speed reclosable grounding device that has received the follow-up failure induced current at this timing ends the opening operation until the end of the stroke. Even so, an arc is continuously formed between the poles. Then, even after the current zero returns to the restored arc current, the arc extinguishing state remains in the arc extinguishing state because the gas flow blowing time from the puffer chamber, which is about two cycles, has already elapsed. The present invention has been proposed in order to solve the above-mentioned problems of the prior art. The purpose of the present invention is to generate a back-to-back ground fault in another phase after a single-line ground fault occurs. However, even during the opening of the grounding device in the accident occurrence phase, the induction current in the accident occurrence phase can be reliably shut off, and the high-speed re-closing of the circuit breaker can be performed thereafter. An object of the present invention is to provide a closed-circuit grounding device. [0014] In order to achieve the above object, the present invention is provided in each phase of a high voltage transmission line connecting a circuit breaker, and an insulator link provided on the transmission line is provided. In response to a single-line ground fault caused by reverse flashover in the arc horn, the closing operation at the both ends of the transmission line is opened at a high speed, and the opening operation is performed after the reverse flashover is extinguished. A high-speed reclosable grounding device, a transmission line protection relay that detects that a back-to-back ground fault has occurred with a time difference from the ground fault in the other phase of the same circuit as the phase in which the ground fault has occurred, and The high-speed reclosable grounding device
During the opening operation after the opening command is output , when the transmission line protection relay detects the trailing ground fault, the closing operation is performed immediately after the opening operation is completed. And a control unit that issues an opening command immediately so that the grounding fault in the other phase is removed by the opening of the circuit breaker of the other phase and then the opening operation is performed. It is characterized by. In the present invention having the above configuration,
If a back-to-ground fault occurs in another phase of the same line where the influence of electrostatic electromagnetic induction is large within a certain time difference from the time when the opening command is issued to the high-speed
Thereafter, the ground fault detection protection relay of the phase in which the follow-up fault occurs generates a ground fault detection signal. On the basis of this detection signal, a closing command is issued to the high-speed reclosable grounding device in the ground fault occurrence phase during the opening operation, and the opening command is output to the high-speed reclosable grounding device.
During the opening / closing operation, the transmission line protection relay
Detects the back-to-ground fault, after the opening operation is completed.
Immediately issue a throw command so that the throw operation is performed continuously.
Emit. Subsequently, the high-speed reclosing grounding device performs the opening operation again, taking into account the timing at which the trailing fault of the other phase has been eliminated and the zero-point miss current has disappeared. To shut off. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the high-speed reclosing and grounding apparatus according to the present invention will be specifically described below with reference to FIGS. The same parts as those of the prior art shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted. (1) Configuration of Embodiment FIG. 1A is a configuration diagram of a system including this embodiment.
As shown in FIG. 1A, the circuit breaker GCB is provided at both ends of the transmission line 2 of each phase constituting the same line as in the prior art.
And a high-speed reclosable grounding device HSES. The high-speed reclosable grounding device HSES of each phase is connected to its operation control unit 10, and this unit 10
It opens and closes on the basis of a closing command and an opening command from the controller, and extinguishes the arc of the reverse flashover 3c generated in the arc horn 3a and cuts off the induced current. The operation control unit 10 of the high-speed reclosable grounding device is connected to a transmission line protection relay Ry for detecting a ground fault in each phase. This protection relay Ry
Is to detect a ground fault in the phase in which it is provided, and send a detection signal to the operation control unit 10. Conventionally known detecting means can be appropriately used as the ground fault detecting means. In the present embodiment, a current transformer CT is provided in the vicinity of the circuit breaker GCB of each phase, and the current is transmitted by the current transformer CT. The ground fault is detected by monitoring the current of the electric wire 2. The structure of the operation control unit 10 is shown in FIG.
(B) is an enlarged view. The operation control unit 10 includes a high-speed reclosing grounding device HSE in the ground fault occurrence phase.
An input unit 10a for an S opening command and a detection unit 10b for detecting a trailing ground fault detection signal input from a protection relay Ry of another phase of the same line. After this, the detection unit 10b of the trailing ground fault detection signal sets the operation holding time to 1 as an example.
Timed timer that can be changed between 5 and 5 cycles
The timer 6 and the input unit 10 a for the opening command are connected to an AND circuit 7. The AND circuit 7 has two output units 8, a closing command and an opening command,
9 of which the output unit 9 of the opening command is an example.
The operation time after the time limit is between 1 cycle and 1 second
Via the post-timer operation timer 10c that can change the setting,
The operation control unit 10 is connected to a high speed reclosable grounding device outside the operation control unit 10. The opening command input unit 10a is directly connected to the opening command output unit 9 without going through the AND circuit 7 or the timed operation timer 10c. Here, the two output units 8 and 9 for the closing and opening of the operation control unit 10 are set to have a closing free function in which the closing command has priority. That is, during and immediately after the opening operation of the high-speed reclosable grounding device,
If a closing command is received before the previously issued opening command is restored (before the opening completion signal is returned to the operation control unit), the high-speed reclosable grounding device is turned on by the closing command. However, if it is left as it is, the high-speed reclosable grounding device once input is brought into a pumping state in which the opening is started again by the previously unopened opening command. In the present embodiment, in order to prevent this, priority is given to the closing command, so that the unreturned opening command is not accepted unless it is restored once,
The operation control unit 10 is configured. (2) Operation of the embodiment In this embodiment having the above-mentioned configuration, as shown in FIG. 2, when a single-line ground fault occurs in a certain phase, the transmission line 2 in that phase is cut off. The device GCB opens and cuts off the current.
Then, at a certain timing, the high-speed reclosable grounding device HSE
S is input to extinguish the reverse flashover 3c of the arc horn 3a. The high-speed reclosable grounding device
An opening command is issued after a lapse of a predetermined time θ ′. This opening command is input to the operation control unit 10 from the input unit 10a, and is output from the output unit 9 to the high-speed reclosing grounding device to start the opening operation, and at the same time, the operation of the time limit holding timer 6 is performed. A command to start holding time counting is given. In this state, especially if a trailing ground fault does not occur in another phase, the opening of the high-speed reclosable grounding device is successful, the induced current is cut off, and the circuit breaker GCB is subsequently turned on to re-establish the transmission line. A cycle is made. However, if a back-to-ground fault occurs in a phase other than the operating phase of the high-speed reclosable grounding device during opening, a zero-point miss current is generated due to the influence, and in the opening operation as described above, an induced current of the induced current is reduced. Blocking may not be possible.
Therefore, in the present embodiment, when a trailing ground fault accident of another phase is detected by the transmission line protection relay Ry , the ground fault detection command of the other phase is used to control the operation of the high-speed reclosable grounding device of the already operating phase. It is led to the unit 10. When the other-phase ground fault detection command is entered immediately after the opening of the high-speed reclosing grounding device, that is, within the operation holding time of the time limit holding timer 6,
The other-phase ground fault detection command is input to the AND circuit 7 via the time limit timer 6. Only when the AND condition between the other-phase ground fault detection command and the opening command already input to the operation control unit 10 is satisfied, the immediate closing command is output from the output section 8 of the high-speed reclosing circuit. It is sent to a grounding device. as a result,
As shown in FIG. 2, the high-speed reclosable grounding device that has been opened according to the opening command is immediately turned on again. The return of the closing command becomes a count start command for the time period θ in FIG. 2 to the post-time operation timer 10c, and after the elapse of the time period θ, the opening command is again issued to the high-speed reclose circuit grounding device. At this point, the back-to-ground fault accident of the other phase has already been eliminated by the action of the circuit breaker and the high-speed reclosing grounding device of the other phase, and for example, the zero-point miss current that continues for about four cycles has been eliminated. The induced current in the accident phase can be cut off by utilizing the current zero point by the arc-extinguishing gas flow from the puffer chamber for performing the following. As described above, according to the present invention, when a back-to-back ground fault occurs in another phase, a high-speed reclosing grounding device that has been opened once is immediately turned on to be fixed. After the time elapses, it is possible to reliably cut off the induced current that does not form a current zero point induced in the operating phase by electrostatic or electromagnetic induction due to a trailing ground fault accident of another phase. A high-speed reclosable grounding device capable of high-speed reclosing even in an accident can be provided.

【図面の簡単な説明】 【図1】本発明の高速再閉路接地装置の一実施例を示す
システム構成図で、(A)はその全体を、(B)は高速
再閉路接地装置の動作制御ユニット部を示す。 【図2】図1の実施例における動作シーケンス図。 【図3】従来の高速再閉路接地装置の一例を示すシステ
ム構成図。 【図4】従来の高速再閉路接地装置の動作シーケンス
図。 【図5】高速再閉路接地装置と各相に流れる電流の変化
を示す特性図。 【図6】高速再閉路接地装置の動作相への他相からの静
電誘導電流及び電磁誘導電流の特性を示す波形図。 【図7】高速再閉路接地装置の開極時の過渡回復電圧波
形図。 【図8】従来のパッファ形高速再閉路接地装置における
電極部分の開極状態を示す断面図。 【図9】図8の高速再閉路接地装置におけるパッファ室
圧力と動作ストロークの関係を示すグラフ。 【符号の説明】 GCB…遮断器 HSES…高速再閉路接地装置 CT…変流器 Ry…送電線保護リレー 1…ブッシング 2…送電線 3…鉄塔 6…時限保持タイマー 7…アンド回路 8…投入指令出力部 9…開極指令出力部 10…高速再閉路接地装置の動作制御ユニット 10a…開極指令入力部 10b…他相後追い地絡事故検出指令入力部 10c…時限後保持タイマー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system configuration diagram showing one embodiment of a high-speed reclosable grounding device according to the present invention, wherein (A) shows the entirety thereof, and (B) shows operation control of the high-speed reclosable grounding device. 3 shows a unit section. FIG. 2 is an operation sequence diagram in the embodiment of FIG. FIG. 3 is a system configuration diagram showing an example of a conventional high-speed reclosing ground device. FIG. 4 is an operation sequence diagram of a conventional high-speed reclosing ground device. FIG. 5 is a characteristic diagram showing a change in a current flowing in each phase of the high-speed reclosable grounding device. FIG. 6 is a waveform diagram showing characteristics of an electrostatic induction current and an electromagnetic induction current from another phase to an operation phase of the high-speed reclosable grounding device. FIG. 7 is a transient recovery voltage waveform diagram when the high-speed reclosable grounding device is opened. FIG. 8 is a cross-sectional view showing an open state of an electrode portion in a conventional puffer-type high-speed reclosable grounding device. FIG. 9 is a graph showing a relationship between a puffer chamber pressure and an operation stroke in the high-speed reclosing and closing circuit shown in FIG. 8; [Description of Signs] GCB: Circuit breaker HSES: High-speed reclosable grounding device CT: Current transformer Ry: Transmission line protection relay 1: Bushing 2: Transmission line 3: Steel tower 6: Time limit holding timer 7: AND circuit 8: Input command Output unit 9 Opening command output unit 10 Operation control unit 10a for high-speed reclosable grounding device Opening command input unit 10b Other phase trailing ground fault detection command input unit 10c Timed after hold timer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−199653(JP,A) 特開 昭55−92530(JP,A) 特開 昭61−139206(JP,A) 実開 昭61−51632(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01H 33/70 - 33/99 H02B 13/20,13/075 H02H 1/00 - 3/07 H02H 7/22 - 7/30 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-199653 (JP, A) JP-A-55-92530 (JP, A) JP-A-61-139206 (JP, A) 51632 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) H01H 33/70-33/99 H02B 13 / 20,13 / 075 H02H 1/00-3/07 H02H 7/22 -7/30

Claims (1)

(57)【特許請求の範囲】 【請求項1】 遮断器を結ぶ高電圧送電線の各相に設置
されており、前記送電線に設けられた碍子連のアークホ
ーンにおける逆フラッシオーバーによる1線地絡事故に
対して、前記送電線の両端にある遮断器を開極した状態
で高速で投入動作を行い、前記逆フラッシオーバーの消
弧後に開極動作を行う高速再閉路接地装置において、 前記地絡事故が発生した相と同一回線の他相にて前記地
絡事故と時差を持って後追い地絡事故が発生したことを
検知する送電線保護リレーと、 前記高速再閉路接地装置に開極指令が出力された以降開
極動作を行っている最中に、前記送電線保護リレーが前
記後追い地絡事故を検出した際、該開極動作完了後直ち
に投入動作を連続して行うように即座に投入指令を発
し、続けて他相における地絡事故がこの他相の遮断器の
開極により除去された後に開極動作を行うように開極指
令を発する制御ユニットとを設けたことを特徴とする高
速再開路接地装置。
(57) [Claim 1] A single line is installed in each phase of a high-voltage transmission line connecting a circuit breaker, and a reverse flashover is performed on an arc horn of a series of insulators provided on the transmission line. For a ground fault, a high-speed reclosable grounding device that performs a closing operation at a high speed in a state in which circuit breakers at both ends of the transmission line are opened, and performs an opening operation after extinguishing the reverse flashover, A transmission line protection relay that detects that a back-to-back ground fault has occurred with a time difference from the ground fault in another phase of the same circuit as the phase in which the ground fault occurred, and an opening in the high-speed reclosable grounding device. Open after command is output
While the pole operation is being performed, when the power line protection relay detects the trailing ground fault, it immediately issues a closing command to immediately perform the closing operation immediately after the completion of the opening operation. ground fault in the other phase Te of the circuit breaker of the other phases
And a control unit for issuing an opening command so as to perform an opening operation after being removed by opening .
JP17870292A 1992-07-06 1992-07-06 High-speed reclosable grounding device Expired - Fee Related JP3372054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17870292A JP3372054B2 (en) 1992-07-06 1992-07-06 High-speed reclosable grounding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17870292A JP3372054B2 (en) 1992-07-06 1992-07-06 High-speed reclosable grounding device

Publications (2)

Publication Number Publication Date
JPH0620566A JPH0620566A (en) 1994-01-28
JP3372054B2 true JP3372054B2 (en) 2003-01-27

Family

ID=16053066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17870292A Expired - Fee Related JP3372054B2 (en) 1992-07-06 1992-07-06 High-speed reclosable grounding device

Country Status (1)

Country Link
JP (1) JP3372054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762573A (en) * 2014-02-18 2014-04-30 国家电网公司 Self-adaptive zero-sequence current protecting method for electric transmission line

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606108B2 (en) * 2010-03-17 2014-10-15 株式会社東芝 Transmission line protection relay device
CN107026432B (en) 2017-05-26 2019-07-19 南京南瑞继保电气有限公司 A kind of method and apparatus inhibiting influence of the compensator to route distance protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762573A (en) * 2014-02-18 2014-04-30 国家电网公司 Self-adaptive zero-sequence current protecting method for electric transmission line

Also Published As

Publication number Publication date
JPH0620566A (en) 1994-01-28

Similar Documents

Publication Publication Date Title
US10937613B2 (en) Triggered gap switching device
JP2000215768A (en) Vacuum switchgear
JPH06310000A (en) Grounding switch
EP1973133A2 (en) Circuit breaker using arc contact
JP3372054B2 (en) High-speed reclosable grounding device
CN206524622U (en) A kind of fast arc extinction device
JP3372055B2 (en) High-speed reclosable grounding device
JP3432236B2 (en) High-speed reclosable grounding device
JPH0636659A (en) High speed reclosing grounding device
JP3337749B2 (en) High-speed reclosable earthing switch
JP3369224B2 (en) High-speed reclosable earthing switch
JP3369228B2 (en) High-speed reclosable earthing switch
RU2755021C1 (en) Generator hybrid switch
JPH0620567A (en) High-speed reclosing grounding device
JPH06124627A (en) High speed re-closing path earthed switch
JPH03257727A (en) Trip control device for buffer type gas-blast circuit-breaker
US20230111124A1 (en) High-voltage triggered pulsecloser with critical reclosing time estimation
Kumar et al. Performance Evaluation of Circuit Breakers under Asymmetrical Fault Condition (Test Duty T100a)
JP2003109481A (en) High-speed grounding switch
JPH07105800A (en) High speed reclosing and grounding switch
JP3292783B2 (en) DC circuit breaker
JPH06150790A (en) High speed re-closing earth switch device
WO2023134854A1 (en) Dc-current breaker switch
JPH0520984A (en) Resistance interrupting type circuit breaker
JP2000125461A (en) Voltage-varying system and its control method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees