JPH0615017B2 - Carbon monoxide removing apparatus and control method thereof - Google Patents

Carbon monoxide removing apparatus and control method thereof

Info

Publication number
JPH0615017B2
JPH0615017B2 JP63300582A JP30058288A JPH0615017B2 JP H0615017 B2 JPH0615017 B2 JP H0615017B2 JP 63300582 A JP63300582 A JP 63300582A JP 30058288 A JP30058288 A JP 30058288A JP H0615017 B2 JPH0615017 B2 JP H0615017B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
concentration
atmosphere
air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63300582A
Other languages
Japanese (ja)
Other versions
JPH02149318A (en
Inventor
修 喜多
尚澄 石津
寛 津嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP63300582A priority Critical patent/JPH0615017B2/en
Publication of JPH02149318A publication Critical patent/JPH02149318A/en
Publication of JPH0615017B2 publication Critical patent/JPH0615017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一酸化炭素の除去に係り、特に大気中に一酸化
炭素を触媒反応により除去する装置及びその制御方法に
関するものである。
Description: TECHNICAL FIELD The present invention relates to removal of carbon monoxide, and more particularly to an apparatus for removing carbon monoxide in the atmosphere by a catalytic reaction and a control method thereof.

〔従来の技術〕[Conventional technology]

従来の大気中の一酸化炭素を触媒反応により除去する装
置の例を第3図に示す。大気中の成分としては、窒素,
酸素,アルゴン,二酸化炭素,水分が含まれている。そ
の他の微量不純物として、一酸化炭素,炭化水素,硫化
物,塩化物,ダスト等が含まれており、特に沸点が窒素
に近いため空気分離装置で分離が難しい一酸化炭素につ
いては、空気分離装置に送入する前に除去しておく必要
があった。
FIG. 3 shows an example of a conventional apparatus for removing carbon monoxide in the atmosphere by a catalytic reaction. The components in the atmosphere are nitrogen,
It contains oxygen, argon, carbon dioxide, and water. Other trace impurities include carbon monoxide, hydrocarbons, sulfides, chlorides, dust, etc. Especially for carbon monoxide which is difficult to separate with an air separator because its boiling point is close to nitrogen, an air separator It had to be removed before being sent to.

第3図において、空気吸込口1より吸込した空気は、空
気圧縮機2で通常5〜8kg/cm2Gに昇圧され、80〜
100℃の温度となり、管3を経由して、一酸化炭素除
去装置5に導入される。本装置内に触媒が充填されてお
り、一酸化炭素は空気中の酸素と反応して二酸化炭素に
転化される。このように化学反応により、一酸化炭素を
除去された空気は出口管6を経由して次工程に送気され
る。しかしながら、従来のこのような方法では、大気中
に含まれる、炭化水素特に重質の油類や、硫化物、塩化
物により触媒が序々に被毒され、その結果一酸化炭素の
反応率が低下することから、長期の連続運転ができず、
はなはだしい場合には数か月で装置としての機能が発揮
できないという欠点があった。なお、この種の装置とし
て関連するものには例えば特開昭55−152517号
公報が挙げられる。
In FIG. 3, the air sucked from the air suction port 1 is normally pressurized by the air compressor 2 to 5 to 8 kg / cm 2 G,
It reaches a temperature of 100 ° C. and is introduced into the carbon monoxide removing device 5 via the pipe 3. A catalyst is filled in this device, and carbon monoxide reacts with oxygen in the air to be converted into carbon dioxide. The air from which carbon monoxide has been removed by the chemical reaction is sent to the next step via the outlet pipe 6. However, in such a conventional method, the catalyst is gradually poisoned by hydrocarbons, particularly heavy oils, sulfides, and chlorides contained in the atmosphere, and as a result, the reaction rate of carbon monoxide decreases. Therefore, long-term continuous operation is not possible,
In the worst case, there was a drawback that it could not function as a device within a few months. As a device related to this type, there is, for example, Japanese Patent Application Laid-Open No. 55-152517.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術は装置の長期連続運転について配慮がなさ
れておらず、常に空気圧縮機の全量を一酸化炭素除去装
置に導入するため、大気中の触媒被毒物質により装置の
長期連続運転ができない欠点があった。
The above-mentioned prior art does not consider the long-term continuous operation of the apparatus, and since the entire amount of the air compressor is always introduced into the carbon monoxide removing apparatus, the apparatus cannot be continuously operated for a long term due to the catalyst poisoning substances in the atmosphere. was there.

本発明の目的は、装置の制御を改善することにより装置
の連続運転時間を改善できる一酸化炭素除去装置及びそ
の制御方法を提供することにある。
It is an object of the present invention to provide a carbon monoxide removing apparatus and a control method therefor capable of improving continuous operation time of the apparatus by improving control of the apparatus.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、大気中の一酸化炭素濃度を
年間を通じて計測した結果、夏場には濃度が低く、冬場
に濃度が高い計測事実と、1日のうち朝の通勤時間帯の
夕労の退勤時間帯に濃度が高く、その他の時間は濃度が
低い計測事実が判明した。これは夏場には大気が安定し
ていて一酸化炭素農度の拡散状態が良好なことが考えら
れ、冬場には大気の逆転層が生じやすく拡散状態が悪く
なるため季節により濃度が増減するものと推定された。
また一日により濃度が増減する現象は自動車の往来と関
わりがあることが推定された。
In order to achieve the above purpose, the atmospheric carbon monoxide concentration was measured throughout the year. As a result, the concentration was low in the summer and high in the winter, and the evening commuting hours in the morning. It was found that the concentration was high during the time when employees were leaving the office and low during other hours. This is because the atmosphere is stable in summer and the diffusion of carbon monoxide is good. In winter, the inversion layer of the atmosphere is apt to occur and the diffusion is poor, so the concentration varies depending on the season. Was estimated.
Moreover, it was estimated that the phenomenon that the concentration increases and decreases depending on the day is related to the traffic of cars.

このような計測事実に基づき、大気中の一酸化炭素濃度
が上昇すると一酸化炭素除去装置の入口弁を開として、
装置への通気量を増大させ、逆に一酸化炭素濃度が低下
すると装置入口弁を閉じることにより、年間を通じての
一酸化炭素除去装置への通気量を減少させ、大気中に含
まれる触媒被毒物質の一酸化炭素除去装置への流入絶対
量を減少することにより、装置の連続運転時間を改善し
たものである。
Based on such measurement facts, when the concentration of carbon monoxide in the atmosphere rises, the inlet valve of the carbon monoxide removing device is opened,
By increasing the air flow rate to the equipment, and conversely, when the carbon monoxide concentration decreases, the equipment inlet valve is closed to reduce the air flow rate to the carbon monoxide removal equipment throughout the year and to poison the catalyst contained in the atmosphere. The continuous operation time of the device is improved by reducing the absolute amount of the substance flowing into the device for removing carbon monoxide.

〔作 用〕[Work]

大気中あるいは一酸化炭素除去装置の出口に設けた一酸
化炭素濃度分析計の検出値により、弁制御装置が働ら
き、前記検出値が上昇すると装置の入口弁が開くと共に
バイパス弁が閉じる。逆に前記検出値が低下すると装置
の入口弁が閉じると共にバイパス弁が開くように作用す
るので装置の長期連続運転が可能となる。
The valve control device operates according to the detection value of the carbon monoxide concentration analyzer provided in the atmosphere or at the outlet of the carbon monoxide removing device, and when the detection value rises, the inlet valve of the device opens and the bypass valve closes. On the contrary, when the detected value decreases, the inlet valve of the device is closed and the bypass valve is opened, so that the device can be continuously operated for a long period of time.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、空気吸込口1の近傍に設置される、一
酸化炭素濃度分析管9を通じて吸引された大気中の一酸
化炭素は、一酸化炭素濃度分析計10により濃度が測定さ
れる。一方空気吸込口1を通じて吸入された空気は、空
気圧縮機2により通常5〜8kg/cm2Gに昇圧され、8
0〜100℃の温度となり管3を通じて送気される。一
酸化炭素分析計10により測定された温度は信号として変
換され、弁制御装置11に接続される。一酸化炭素濃度が
高くなると弁制御装置11の指令により一酸化炭素除去装
置5の入口弁4を開とすると同時にバイパス弁8を閉と
することにより、空気圧縮機2の流量を変えることな
く、連続的に弁の開閉操作がなされる。逆に、一酸化炭
素の濃度が低下するにつれ弁制御装置11の指令により入
口弁4を徐々に閉とし、バイパス弁8を徐々に閉とし、
全体としての流量を変えることなく制御される。
In FIG. 1, the concentration of carbon monoxide in the air sucked through a carbon monoxide concentration analysis tube 9 installed near the air inlet 1 is measured by a carbon monoxide concentration analyzer 10. On the other hand, the air taken in through the air suction port 1 is normally pressurized to 5 to 8 kg / cm 2 G by the air compressor 2,
A temperature of 0 to 100 ° C. is reached and air is sent through the pipe 3. The temperature measured by the carbon monoxide analyzer 10 is converted as a signal and connected to the valve controller 11. When the carbon monoxide concentration becomes high, the inlet valve 4 of the carbon monoxide removing device 5 is opened at the same time as the bypass valve 8 is closed by a command from the valve control device 11 without changing the flow rate of the air compressor 2. The valve is opened and closed continuously. On the contrary, as the concentration of carbon monoxide decreases, the inlet valve 4 is gradually closed and the bypass valve 8 is gradually closed according to a command from the valve controller 11.
It is controlled without changing the flow rate as a whole.

このようにして、一酸化炭素の装置入口濃度に応じて一
酸化炭素除去装置5に流入する空気量を増減し、必要な
場合にのみ一酸化炭素除去装置5に空気を通じることに
より、必要最小限の空気を装置に通気することになる。
In this way, the amount of air flowing into the carbon monoxide removing device 5 is increased or decreased according to the device inlet concentration of carbon monoxide, and air is passed through the carbon monoxide removing device 5 only when necessary, so that the minimum required amount can be obtained. A limited amount of air will be vented to the device.

一酸化炭素除去装置5に流入した空気中の一酸化炭素
は、空気中の酸素と触媒効果により反応して二酸化炭素
となり、出口管6を経由して送気され、バイパス弁8を
経由した空気と合流したのち管7を経て次工程に送気さ
れる。
The carbon monoxide in the air that has flowed into the carbon monoxide removing device 5 reacts with oxygen in the air due to a catalytic effect to become carbon dioxide, which is sent through the outlet pipe 6 and passed through the bypass valve 8. After merging with, the gas is sent to the next process through the pipe 7.

一酸化炭素の濃度分析管9は、必ずしも空気吸込口1の
近傍である必要性はなく、例えば第2図に示すごとく、
一酸化炭素除去装置5の出口管6とバイパス弁8の合流
点より下流の管7に設置することもできる。この場合に
も、一酸化炭素濃度が高くなると装置の入口弁4を閉と
すると同時にバイパス弁8を閉とすることにより、やは
り第1図で示した効果と同様の効果を上げることができ
る。
The carbon monoxide concentration analysis tube 9 does not necessarily have to be in the vicinity of the air suction port 1, and, for example, as shown in FIG.
It can also be installed in the pipe 7 downstream of the confluence of the outlet pipe 6 of the carbon monoxide removing device 5 and the bypass valve 8. Also in this case, when the carbon monoxide concentration becomes high, the effect similar to that shown in FIG. 1 can be obtained by closing the inlet valve 4 of the apparatus and closing the bypass valve 8 at the same time.

本実施例によれば、季節的に夏場は一酸化炭素の濃度が
低く、ほとんど空気の全量をバイパス弁を通じて流すこ
とができ、また1日のうちでも朝夕の通勤時間帯分の4
〜5時間を除いてはバイパス弁を通じて空気を流すこと
ができることから、次の効果を上げることができる。
According to the present embodiment, the concentration of carbon monoxide is low in the summer season, and almost all of the air can be made to flow through the bypass valve.
Since air can flow through the bypass valve except for ~ 5 hours, the following effects can be achieved.

一酸化炭素除去装置通気比率として (1)季節変動分として1年のうち約半分はバイパス弁で
全量流せるとして 0.5 (2)時間変動分として1日のうち5時間程度のみ一酸化
炭素除去装置通気として 5÷24=0.2 よって本発明により、装置に通気する量は、 0.5×0.2=0.1 となり、該略年間を通じて一酸化炭素除去装置に通気す
る絶対量は、本発明によらない場合に比べて約10分の
1、即ち云いかえれば一酸化炭素除去としての目的を達
成するためのシステム全体としての連続運転時間を10
倍に延長できることにより、この効果は非常に大きいと
いえる。
As a ventilation ratio for carbon monoxide remover (1) As a seasonal variation, about half of one year can be completely discharged by a bypass valve 0.5 (2) As a time variation, only about 5 hours a day Therefore, according to the present invention, the amount of air vented to the device is 0.5 × 0.2 = 0.1, and the absolute amount of air vented to the carbon monoxide removing device is approximately Compared to the case without the invention, the continuous operation time of the whole system for achieving the purpose of carbon monoxide removal is about 1/10, that is, 10 times.
It can be said that this effect is very large because it can be doubled.

本一酸化炭素除去装置の設置場所によっても若干、発明
の効果は異なるが、一般に一酸化炭素除去装置に接続す
る空気分離装置は工業地域に設置されることが多く、夏
冬の大気の安定,不安定現象も類似していることから、
類似と効果をあげることができる。
Although the effect of the invention is slightly different depending on the installation location of the carbon monoxide removing device, generally, an air separation device connected to the carbon monoxide removing device is often installed in an industrial area, which stabilizes the atmosphere in summer and winter, Since the instability phenomenon is similar,
It can be similar and effective.

〔発明の効果〕 本発明によれば、大気中あるいは装置出口の一酸化炭素
濃度の検出値で、装置の入口弁とバイパス弁とを制御
し、年間を通じての一酸化炭素除去装置への通気量を減
少させるので装置の長期連続運転が可能となる。
[Advantages of the Invention] According to the present invention, the detection value of the carbon monoxide concentration in the atmosphere or at the device outlet controls the inlet valve and bypass valve of the device, and the amount of ventilation to the carbon monoxide removing device throughout the year. It is possible to continuously operate the device for a long period of time because it reduces.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の一酸化炭素除去装置の概略
系統図、第2図は同じく他の実施例の一酸化炭素除去装
置の概略系統図、第3図は従来の一酸化炭素除去装置の
概略系統図である。 4……入口弁、5……一酸化炭素除去装置、6……出口
管、8……バイパス弁、9…一酸化炭素濃度分析管、10
……一酸化炭素濃度分析計、11……弁制御装置
FIG. 1 is a schematic system diagram of a carbon monoxide removing apparatus according to an embodiment of the present invention, FIG. 2 is a schematic system diagram of a carbon monoxide removing apparatus according to another embodiment, and FIG. 3 is a conventional carbon monoxide removal apparatus. It is a schematic system diagram of a removal device. 4 ... Inlet valve, 5 ... Carbon monoxide removing device, 6 ... Outlet pipe, 8 ... Bypass valve, 9 ... Carbon monoxide concentration analysis pipe, 10
...... Carbon monoxide concentration analyzer, 11 ...... Valve control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津嶋 寛 山口県下松市大字東豊井794番地 日立テ クノエンジニアリング株式会社笠戸事業所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Tsushima 794 Azuma Higashitoyo, Kudamatsu City, Yamaguchi Prefecture Hitachi Techno Engineering Co., Ltd. Kasado Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】大気中の一酸化炭素と触媒反応により除去
する一酸化炭素除去装置において、 前記一酸化炭素除去装置をバイパスさせる配管経路を設
け、該バイパス配管経路と一酸化炭素除去装置の入口と
にそれぞれ弁を設け、大気あるいは一酸化炭素除去装置
の出口配管の経路に設けた一酸化炭素濃度分析計の検出
値により、制御装置を介して前記それぞれの弁を制御す
るように構成したことを特徴とする一酸化炭素除去装
置。
1. A carbon monoxide removing device for removing carbon monoxide in the atmosphere by a catalytic reaction, wherein a pipe passage for bypassing the carbon monoxide removing device is provided, and the bypass pipe passage and the inlet of the carbon monoxide removing device. And a valve for each of them, and configured to control each of the valves via a control device according to the detection value of the carbon monoxide concentration analyzer provided in the atmosphere or the path of the outlet pipe of the carbon monoxide removal device. A device for removing carbon monoxide.
【請求項2】大気中の一酸化炭素を触媒反応により除去
する装置の制御方法において、 大気中の一酸化炭素濃度あるいは装置出口の一酸化炭素
濃度が上昇すると、装置の入口弁を開とすると共にバイ
パス弁を閉とすることにより、装置への通気量を増加さ
せ、逆に大気中の一酸化炭素濃度あるいは装置出口の一
酸化炭素濃度が低下すると、装置の入口弁を閉とすると
共にバイパス弁を開とすることにより、装置への通気量
を減少させる制御を行なうことを特徴とする一酸化炭素
除去装置の制御方法。
2. A method for controlling an apparatus for removing carbon monoxide in the air by a catalytic reaction, wherein the inlet valve of the apparatus is opened when the concentration of carbon monoxide in the atmosphere or the carbon monoxide concentration at the apparatus outlet increases. By closing the bypass valve together with the device, the amount of ventilation to the device is increased. Conversely, when the concentration of carbon monoxide in the atmosphere or the concentration of carbon monoxide at the device outlet decreases, the device inlet valve is closed and the bypass A method for controlling a carbon monoxide removing device, which is characterized in that a control for reducing an air flow rate to the device is performed by opening a valve.
JP63300582A 1988-11-30 1988-11-30 Carbon monoxide removing apparatus and control method thereof Expired - Lifetime JPH0615017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300582A JPH0615017B2 (en) 1988-11-30 1988-11-30 Carbon monoxide removing apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300582A JPH0615017B2 (en) 1988-11-30 1988-11-30 Carbon monoxide removing apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JPH02149318A JPH02149318A (en) 1990-06-07
JPH0615017B2 true JPH0615017B2 (en) 1994-03-02

Family

ID=17886576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300582A Expired - Lifetime JPH0615017B2 (en) 1988-11-30 1988-11-30 Carbon monoxide removing apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JPH0615017B2 (en)

Also Published As

Publication number Publication date
JPH02149318A (en) 1990-06-07

Similar Documents

Publication Publication Date Title
CA1160564A (en) Waste gas purification method and system
Wofsy Interactions of CH4 and CO in the earth's atmosphere
US5330727A (en) Apparatus for removing carbon monoxide from gaseous media
KR910002499A (en) Catalytic Removal of Nitric Oxide from Exhaust Gas Using Reducing Agent
US4004882A (en) Gas analysis diluter
US4735785A (en) Method of removing oxides of nitrogen from flue gas
Dalai et al. The effects of pressure and temperature on the catalytic oxidation of hydrogen sulfide in natural gas and regeneration of the catalyst to recover the sulfur produced
US5221517A (en) Methane analyzer with improved sample preparation
GB1515494A (en) Carbon monoxide detection apparatus and method
CA2569539A1 (en) Process and system for controlling a process gas stream
US5375414A (en) Automotive engine exhaust aftertreatment system including hydrocarbon adsorber with internal engine purge flow control
JPH0615017B2 (en) Carbon monoxide removing apparatus and control method thereof
US5976889A (en) Gas analyzer and method for detecting NOx
CA2671370C (en) A method and apparatus for catalyst regeneration
US4400352A (en) Method and a device for optimizing purification of diesel exhaust gases
DE59108424D1 (en) METHOD FOR RECOVERY OF SULFUR FROM A H2S-CONTAINING GAS FLOW AT HIGH PRESSURE
US4509727A (en) Off-gas monitor for steel processes
JPS5932575Y2 (en) Sulfur dioxide reduction device coupled with Claus reactor
US4863691A (en) Gas-passage change-over apparatus
TW338006B (en) Method for measuring oxidation-reduction potential in a flue gas desulfurization process
Fleming et al. Procedures in sampling and handling auto exhaust
JPH11197455A (en) Method and apparatus for treating organo-halogenous gas
JP2915687B2 (en) Exhaust gas denitration equipment for diesel engines
JP4319471B2 (en) Sample gas concentration meter
SU1677463A1 (en) Method of automatic control of process of argon cleaning from oxygen