JPH02149318A - Apparatus for removing carbon monoxide and control method thereof - Google Patents

Apparatus for removing carbon monoxide and control method thereof

Info

Publication number
JPH02149318A
JPH02149318A JP63300582A JP30058288A JPH02149318A JP H02149318 A JPH02149318 A JP H02149318A JP 63300582 A JP63300582 A JP 63300582A JP 30058288 A JP30058288 A JP 30058288A JP H02149318 A JPH02149318 A JP H02149318A
Authority
JP
Japan
Prior art keywords
carbon monoxide
atmosphere
concentration
valve
removal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63300582A
Other languages
Japanese (ja)
Other versions
JPH0615017B2 (en
Inventor
Osamu Kita
喜多 修
Hisazumi Ishizu
石津 尚澄
Hiroshi Tsushima
津嶋 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP63300582A priority Critical patent/JPH0615017B2/en
Publication of JPH02149318A publication Critical patent/JPH02149318A/en
Publication of JPH0615017B2 publication Critical patent/JPH0615017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To enable a long-term continuous operation of an apparatus for removing carbon monoxide by respectively controlling an inlet valve and a bypass valve of the apparatus through a control unit in response to the detected values from a carbon monoxide concentration analyzer provided in the atmosphere or in an outlet line of the apparatus. CONSTITUTION:Carbon monoxide in the atmosphere is removed by catalytic reaction by means of an apparatus for removing carbon monoxide 5. A line bypassing the apparatus 5 is provided so that a valve 8 and 4 are provided in the bypass line and at the inlet of the apparatus 5 respectively, whereby in response to the detected values from a carbon monoxide concentration analyzer 10 provided in the atmosphere or in an outlet line of the apparatus 5, the valves 8 and 4 are regulated respectively through a control unit 11. As a result, quantity of air passing through the apparatus for removing carbon monoxide through the year can be reduced, enabling thereby a long-term continuous operation of the apparatus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一酸化炭素の除去に係り、特に大気中の一酸化
炭素を触媒反応により除去する装置及びその制御方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the removal of carbon monoxide, and particularly to an apparatus for removing carbon monoxide from the atmosphere by a catalytic reaction and a control method thereof.

〔従来の技術〕[Conventional technology]

従来の大気中の一酸化炭素を触媒反応により除去する装
置の例を第3図に示す。大気中の成分としては、窒素、
酸素、アルゴン、二酸化炭素、水分が含まれている。そ
の他の微蓋不純物として、−酸化炭素、炭化水素、硫化
物、塩化物、ダスト等が含まれており、特に沸点が窒素
に近いため空気分離装置で分離が難しい一酸化炭素につ
いては、空気分離装置に送入する11Hに除去してお(
必要かあった。
FIG. 3 shows an example of a conventional apparatus for removing carbon monoxide from the atmosphere through a catalytic reaction. Components in the atmosphere include nitrogen,
Contains oxygen, argon, carbon dioxide, and water. Other fine impurities include carbon oxides, hydrocarbons, sulfides, chlorides, dust, etc. Carbon monoxide, which has a boiling point close to nitrogen and is difficult to separate with air separation equipment, is particularly difficult to separate by air separation. Removed at 11H before feeding into the equipment (
It was necessary.

第3図において、空気吸込口lより吸入した空気は、空
気圧縮機2で通常5〜8KP/dGに昇圧され、80〜
100℃の温度となり、管3を経由して、−酸化炭素除
去装置5に導入される。本装置内には触媒が充填されて
おり、−酸化炭素は空気中の酸素と反応して二酸化炭素
に転化される。
In Fig. 3, the air taken in from the air suction port 1 is normally boosted to 5 to 8 KP/dG by the air compressor 2, and then 80 to 80 KP/dG.
The temperature reaches 100° C., and it is introduced into the -carbon oxide removal device 5 via the pipe 3. The device is filled with a catalyst, and carbon oxide reacts with oxygen in the air and is converted into carbon dioxide.

このように化学反応により、−酸化炭素を除去された空
気は出口管6を経由して次工程に送気される。しかしな
がら、従来のこのような方法では、大気中に含まれる、
炭化水素特に重質の油類や、硫化物、塩化物により触媒
が序々に被毒され、その結果−酸化炭素の反応率が低下
することから、長期の連続運転ができず、はなはだしい
場合には数か月で装置としての機能が発揮できないとい
う欠点があった。なお、この種の装置として関連するも
のには例えば特開昭55−152517号等か挙げられ
る。
The air from which -carbon oxide has been removed by the chemical reaction is sent to the next step via the outlet pipe 6. However, in this conventional method, the
The catalyst is gradually poisoned by hydrocarbons, especially heavy oils, sulfides, and chlorides, and as a result, the reaction rate of carbon oxide decreases, making long-term continuous operation impossible, and in severe cases. The drawback was that the device could no longer function in a few months. Incidentally, related devices of this type include, for example, Japanese Patent Application Laid-Open No. 55-152517.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は装置の長期連続運転について配慮がされ
ておらず、常に空気圧縮機の全量を一酸化炭素除去装置
に導入するため、大気中の触媒被毒物質により装置の長
期連続運転ができない欠点がありだ。
The above conventional technology does not take into account long-term continuous operation of the equipment, and because the entire amount of the air compressor is always introduced into the carbon monoxide removal equipment, the drawback is that the equipment cannot be operated continuously for a long time due to catalyst poisoning substances in the atmosphere. There is.

本発明の目的は、装置の制御を改善することにより装置
の連続運転時間を改善できる一酸化炭素除去装置及びそ
の制御方法を提供することにある。
An object of the present invention is to provide a carbon monoxide removal device and a control method thereof, which can improve the continuous operation time of the device by improving the control of the device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、大気中の一酸化炭素濃度を
年間を通じて計測した結果、夏場には濃度が低畷、冬場
に濃度か藁い計測事実と、1日のうち朝の通勤時間帯と
夕方の退勤時間帯に濃度か置く、その他の時間は濃度が
低い計測事実が判明した。これは夏場には大気が安定し
ていて一酸化炭素濃度の拡散状態か良好なことが考えら
れ、冬場には大気の逆転層か生じゃすく拡散状態が悪く
なるため季節により濃度か増減するものと推定された。
In order to achieve the above objective, we measured the concentration of carbon monoxide in the atmosphere throughout the year, and found that the concentration was low in the summer, low in the winter, and that the concentration was low during the morning commuting time of the day. It was found that the concentration was measured in the evening when people were leaving work, and the concentration was lower at other times. This is thought to be because the atmosphere is stable in the summer and the carbon monoxide concentration is well diffused, whereas in the winter the atmospheric inversion layer or carbon monoxide concentration deteriorates and the carbon monoxide concentration increases or decreases depending on the season. It was estimated that

また−日により濃度か増減する現象は自動車の往来と関
わりがあることか推定された。
It was also assumed that the phenomenon of increasing and decreasing concentrations depending on the day was related to the traffic of automobiles.

このような計測事実に基づき、大気中の一酸化炭素濃度
が上昇すると一酸化炭素除去装置の人口弁を開として、
装置への通気量を増大させ、逆に一酸化炭素濃度が低下
すると装置人口弁を閉じることにより、年間を通じての
一酸化炭素除去装置への通気量を減少させ、大気中に含
まれる触媒被毒物質の一酸化炭素除去装置への流入絶対
量を減少することにより、装置の連続運転時間を改善し
たものである。
Based on these measurement facts, when the concentration of carbon monoxide in the atmosphere rises, the population valve of the carbon monoxide removal device is opened.
By increasing the amount of ventilation to the equipment and conversely closing the equipment valve when the carbon monoxide concentration decreases, the amount of ventilation to the carbon monoxide removal equipment is reduced throughout the year, reducing catalyst poisoning contained in the atmosphere. By reducing the absolute amount of material flowing into the carbon monoxide removal device, continuous operation time of the device is improved.

〔作  用〕[For production]

大気中あるいは一酸化炭素除去装置の出口に設けた一酸
化炭素濃度分析計の検出値により、弁制御装置が働らき
、前記検出値が上昇すると装置の入口弁が開くと共にバ
イパス弁が閉じる。逆に前記検出値が低下すると装置の
入口弁が閉じると共にバイパス弁が開くように作用する
ので装置の長期連続運転が可能となる。
A valve control device operates based on the detected value of a carbon monoxide concentration analyzer installed in the atmosphere or at the outlet of the carbon monoxide removal device, and when the detected value increases, the inlet valve of the device opens and the bypass valve closes. Conversely, when the detected value decreases, the inlet valve of the device closes and the bypass valve opens, allowing long-term continuous operation of the device.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、空気吸込口1の近傍に設置される、−
酸化炭素濃度分析管9を通じて吸引された大気中の一酸
化炭素は、−酸化炭素濃度分析計10により濃度が測定
される。一方空気吸込口1を通じて吸入された空気は、
空気圧縮機2により通常5〜8に9/c++lGに昇圧
され、80〜100℃の温度となり管3を通して送気さ
れる。−酸化炭素分析計10により測定された温度は信
号として変換され、弁制御装置i[11に接続される。
In FIG. 1, -
The concentration of carbon monoxide in the atmosphere sucked through the carbon oxide concentration analysis tube 9 is measured by a carbon oxide concentration analyzer 10 . On the other hand, the air sucked through the air intake port 1 is
The pressure is normally raised to 5 to 8 to 9/c++lG by the air compressor 2, and the air is supplied through the pipe 3 at a temperature of 80 to 100°C. - The temperature measured by the carbon oxide analyzer 10 is converted as a signal and connected to the valve control device i[11.

−酸化炭素濃度か高(なると弁制御装M11の指令によ
り一酸化炭素濃度装[5の大口弁4を開とすると同時に
バイパス弁8を閉とすることにより、空気圧縮機2の流
電を変えることな(、連続的に弁の開閉操作がなされる
。逆に、−酸化炭素の濃度が低下するにつれ弁制御装置
11の指令により人口弁4を徐々に閉とし、バイパス弁
8を徐々に閉とし、全体としてのtN、mを変えること
なく制御される。
- When the carbon oxide concentration becomes high (when the carbon monoxide concentration device M11 commands the large mouth valve 4 of the carbon monoxide concentration device [5] and simultaneously closes the bypass valve 8, the current flowing through the air compressor 2 is changed. The valve is opened and closed continuously. Conversely, as the concentration of carbon oxide decreases, the artificial valve 4 is gradually closed by a command from the valve control device 11, and the bypass valve 8 is gradually closed. and is controlled without changing the overall tN and m.

このようにして、−酸化炭素の装置入口濃度に応じて一
酸化炭素除去装置5に流入する空気量を増減し、必要な
場合にのみ一酸化炭素除去装置5に空気を通じることに
より、必要最少限の空気を装置に通気することになる。
In this way, - the amount of air flowing into the carbon monoxide removal device 5 is increased or decreased depending on the concentration of carbon oxide at the device inlet, and the air is passed through the carbon monoxide removal device 5 only when necessary. This will allow limited air to be vented into the device.

−酸化炭素除去装置5に流入した空気中の一酸化炭素は
、空気中の酸素と触媒効果により反応して二酸化炭素と
なり、出口管6を経由して送気され、バイパス弁8を経
由した空気と合流したのち管7を経て次工程に送気され
る。
- Carbon monoxide in the air that has flowed into the carbon oxide removal device 5 reacts with oxygen in the air due to the catalytic effect to become carbon dioxide, which is then sent via the outlet pipe 6 and the air is passed through the bypass valve 8. After merging with the air, the air is sent to the next process through the pipe 7.

一酸化炭素の濃度分析管9は、必ずしも空気吸込口lの
近傍である必要性はな鳴、例えば第2図に示すごとく、
−酸化炭素濃度装vIL5の出口1iF6とバイパス弁
8の合流点より下流の管7に設置することもできる。こ
の場合にも、−酸化炭素濃度が高くなると装置の大口弁
4を閉とすると同時にバイパス弁8を閉とすることによ
り、やはり第1図で示した効果と同様の効果を上げるこ
とができる。
The carbon monoxide concentration analysis tube 9 does not necessarily need to be located near the air intake port 1; for example, as shown in FIG.
- It can also be installed in the pipe 7 downstream from the confluence of the outlet 1iF6 of the carbon oxide concentration device vIL5 and the bypass valve 8. In this case as well, by closing the large mouth valve 4 of the device and simultaneously closing the bypass valve 8 when the -carbon oxide concentration increases, the same effect as shown in FIG. 1 can be achieved.

本実施例によれば、季節的に夏場は一酸化炭素の濃度が
低く、はとんど空気の全量をバイパス弁を通じて流すこ
とかでき、蓉だ1日のうちでも朝夕の通勤時間帯分の4
〜5時間を除いてはバイパス弁を通じて空気を流すこと
かできることから、次の効果を上げることかできる。
According to this embodiment, the concentration of carbon monoxide is low in the summer season, and almost all of the air can be flowed through the bypass valve, and even during the morning and evening commuting hours during the day, the concentration of carbon monoxide is low. 4
Since air can only be allowed to flow through the bypass valve except for ~5 hours, the following effects can be achieved.

一酸化炭素除去装置通気比率として (1)季節変動分として1年のうち約半分はバイパス弁
で全量流せるとして o5 (2)  時間変動分として1日のうち5時間程度のみ
一酸化炭素除去装置通気として 5÷24 = 0.2 よって本発明により、装置に通気する量は、0、5  
X  0.2 = 0.1 となり、該略年間を通じて一酸化炭素除去装置に通気す
る絶対量は、本発明によらない場合に比べて約10分の
l、Illち云いかえれば一酸化炭素除去としての目的
を達成するためのシステム全体としての連続運転時間を
10倍に廷長できたことにより、この効果は非常に大き
いといえる。
The carbon monoxide removal equipment ventilation ratio is (1) Seasonal fluctuations, assuming that the entire amount can be flowed through the bypass valve for about half of the year. (2) Hourly fluctuations, the carbon monoxide removal equipment ventilation is only for about 5 hours a day. ÷24 = 0.2 Therefore, according to the invention, the amount of ventilation into the device is 0.5
X 0.2 = 0.1, and the absolute amount of ventilation to the carbon monoxide removal device throughout the year is about 10 times that of the case without the present invention, or in other words, the amount of carbon monoxide removal This effect can be said to be extremely large, since the continuous operation time of the entire system to achieve the objective was increased by ten times.

本−酸化炭素除去装置の設置場所によっても若干、発明
の効果は異なるが、一般に一酸化炭素除去装置に接続す
る空気分離装置は工業地域に設置されることか多く、夏
冬の大気の安定、不安定現象も類似していることから、
類似の効果をあげることができる。
Although the effects of the present invention differ slightly depending on the installation location of the carbon oxide removal device, in general, the air separation device connected to the carbon monoxide removal device is often installed in industrial areas, and the air separation device is stabilized in summer and winter. Since the instability phenomena are similar,
A similar effect can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、大気中あるいは装置出口の一酸化炭素
濃度の検出値で、装置の入口弁とバイパス弁とを制御し
、年間を通じての一酸化炭素除去装置への通気量を減少
させるので装置の長期連結運転が可能となる。
According to the present invention, the inlet valve and bypass valve of the device are controlled based on the detected value of the carbon monoxide concentration in the atmosphere or at the device outlet, and the amount of ventilation to the carbon monoxide removal device throughout the year is reduced. long-term connected operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の一酸化炭素除去装置の概略
系統図、第2図は同じ(他の実施例の一酸化炭素除去装
置のS略系統因、第3図は従来の一酸化炭素除去装置の
概略系統図である。 4・・・・・・入口弁、5・・・・・・−酸化炭素除去
装置、6・・・・・・出口管、8・・・・・・バイパス
弁、9・・・・・・−酸化炭素濃度分析管、10・・・
・・・−酸化炭素濃度分析針、11・・−・・弁制御装
Fig. 1 is a schematic system diagram of a carbon monoxide removal device according to an embodiment of the present invention, Fig. 2 is the same system diagram (S schematic diagram of a carbon monoxide removal device of another embodiment), and Fig. 3 is a schematic diagram of a conventional carbon monoxide removal device. It is a schematic system diagram of a carbon oxide removal device. 4... Inlet valve, 5... Carbon oxide removal device, 6... Outlet pipe, 8...・Bypass valve, 9...-Carbon oxide concentration analysis tube, 10...
...-Carbon oxide concentration analysis needle, 11...Valve control device

Claims (1)

【特許請求の範囲】 1、大気中の一酸化炭素と触媒反応により除去する一酸
化炭素除去装置において、 前記一酸化炭素除去装置をバイパスさせる配管経路を設
け、該バイパス配管経路と一酸化炭素除去装置の入口と
にそれぞれ弁を設け、大気あるいは一酸化炭素除去装置
の出口配管の経路に設けた一酸化炭素濃度分析計の検出
値により、制御装置を介して前記それぞれの弁を制御す
るように構成したことを特徴とする一酸化炭素除去装置
。 2、大気中の一酸化炭素を触媒反応により除去する装置
の制御方法において、 大気中の一酸化炭素濃度あるいは装置出口の一酸化炭素
濃度が上昇すると、装置の入口弁を開とすると共にバイ
パス弁を閉とすることにより、装置への通気量を増加さ
せ、逆に大気中の一酸化炭素濃度あるいは装置出口の一
酸化炭素濃度が低下すると、装置の入口弁を閉とすると
共にバイパス弁を開とすることにより、装置への通気量
を減少させる制御を行なうことを特徴とする一酸化炭素
除去装置の制御方法。
[Claims] 1. In a carbon monoxide removal device that removes carbon monoxide in the atmosphere through a catalytic reaction, a piping route that bypasses the carbon monoxide removal device is provided, and the bypass piping route and the carbon monoxide removal device are provided. A valve is provided at each inlet of the device, and each of the valves is controlled via a control device based on the atmosphere or the detected value of a carbon monoxide concentration analyzer installed in the route of the outlet piping of the carbon monoxide removal device. A carbon monoxide removal device characterized by comprising: 2. In a method of controlling a device that removes carbon monoxide from the atmosphere through a catalytic reaction, when the concentration of carbon monoxide in the atmosphere or the concentration of carbon monoxide at the device outlet increases, the inlet valve of the device is opened and the bypass valve is closed. By closing the valve, the amount of ventilation to the equipment increases. Conversely, if the carbon monoxide concentration in the atmosphere or the carbon monoxide concentration at the equipment outlet decreases, the inlet valve of the equipment is closed and the bypass valve is opened. 1. A method of controlling a carbon monoxide removal device, characterized in that the amount of ventilation to the device is controlled to be reduced by doing so.
JP63300582A 1988-11-30 1988-11-30 Carbon monoxide removing apparatus and control method thereof Expired - Lifetime JPH0615017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300582A JPH0615017B2 (en) 1988-11-30 1988-11-30 Carbon monoxide removing apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300582A JPH0615017B2 (en) 1988-11-30 1988-11-30 Carbon monoxide removing apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JPH02149318A true JPH02149318A (en) 1990-06-07
JPH0615017B2 JPH0615017B2 (en) 1994-03-02

Family

ID=17886576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300582A Expired - Lifetime JPH0615017B2 (en) 1988-11-30 1988-11-30 Carbon monoxide removing apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JPH0615017B2 (en)

Also Published As

Publication number Publication date
JPH0615017B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US5330727A (en) Apparatus for removing carbon monoxide from gaseous media
CA1160564A (en) Waste gas purification method and system
JP3168217B2 (en) Method and apparatus for supplying gas to ultra-high precision analyzer
EP1017121A3 (en) Method for operating fuel cells on impure fuels
WO2008130475A1 (en) Method for direct oxidation of hydrogen sulfide to elemental sulfur at low temperatures
US2826480A (en) Removal of oxygen or hydrogen from gases
US6355150B1 (en) Analyzer for measuring H2S and its use for a sulfur oxidation reactor
US5221517A (en) Methane analyzer with improved sample preparation
US4891950A (en) Control system and method for a synthesis gas process
JPH02149318A (en) Apparatus for removing carbon monoxide and control method thereof
KR950009987A (en) Liquid supply system and liquid supply method
KR930010761B1 (en) Air separating apparatus
KR20190010177A (en) Apparatus for supplying hydrogen gas
JPH0856646A (en) Low-oxygen incubator
US4509727A (en) Off-gas monitor for steel processes
US4863691A (en) Gas-passage change-over apparatus
JPS5932575Y2 (en) Sulfur dioxide reduction device coupled with Claus reactor
CN220551794U (en) Low-temperature liquid oxygen discharge valve device
JPH0283015A (en) Gas dehumidification
SU1677463A1 (en) Method of automatic control of process of argon cleaning from oxygen
JPS58210311A (en) Exhaust gas purifier
JPS62266200A (en) Control of methane fermentation
JP2915687B2 (en) Exhaust gas denitration equipment for diesel engines
JPS6344099Y2 (en)
CN1024323C (en) Turndown control method for membrane separation systems