JPH06148637A - Production of liquid crystal display element - Google Patents

Production of liquid crystal display element

Info

Publication number
JPH06148637A
JPH06148637A JP29839392A JP29839392A JPH06148637A JP H06148637 A JPH06148637 A JP H06148637A JP 29839392 A JP29839392 A JP 29839392A JP 29839392 A JP29839392 A JP 29839392A JP H06148637 A JPH06148637 A JP H06148637A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
ultraviolet light
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29839392A
Other languages
Japanese (ja)
Inventor
Masato Oe
昌人 大江
Hisao Yokokura
久男 横倉
Katsumi Kondo
克己 近藤
Shuichi Ohara
周一 大原
Naoki Kikuchi
直樹 菊池
Shinji Hasegawa
真二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29839392A priority Critical patent/JPH06148637A/en
Publication of JPH06148637A publication Critical patent/JPH06148637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide the process for production of the liquid crystal display element which has high display quality, i.e., free from seizure and after-image and to provide the method for effective irradiation with UV rays. CONSTITUTION:A pair of glass substrates 1a, 1b are provided thereon with transparent electrodes 2a, 2b, consisting of indium tin oxide, etc. Oriented films 3a, 3b consisting of polyimide, etc., are formed on these transparent electrodes and are baked under prescribed conditions, by which the films are formed. The polyimide films obtd. in such a manner are subjected to a rubbing treatment. Two sheets of such transparent electrode substrates are stuck to each other via a spacer in such a manner that the rubbing direction attains a prescribed angle, by which the liquid crystal cell having a specified cell spacing is produced. The nematic liquid crystal 4 is encapsulated into this cell 4 and the liquid crystal element after the sealing of the liquid crystal is irradiated with UV light by using a UV light lamp 5, by which the liquid crystal display element is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示素子の残像及
び焼き付け特性に優れた液晶表示素子を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a liquid crystal display device having excellent afterimage and printing characteristics of the liquid crystal display device.

【0002】[0002]

【従来の技術】ネマチック液晶を用いた液晶セルは、電
極基板の透明電極上に配向膜塗布し、その形成された膜
をラビンク処理し、基板を貼り合わせるために基板の周
りをシール硬化し、その後、液晶封入の工程を経て作製
される。例えば、スーパーツイスト液晶表示素子では、
種々のドメインの発生を防止する高プレチルト角のポリ
イミド配向膜を用いた液晶素子の製造方法及び紫外線を
配向膜に照射して液晶素子を製造する方法等が提案され
ている(特開平2−226118号公報,特開平2−40623号公
報)。
2. Description of the Related Art A liquid crystal cell using a nematic liquid crystal is formed by applying an alignment film on a transparent electrode of an electrode substrate, subjecting the formed film to a Rabink treatment, and sealing and hardening the periphery of the substrate to bond the substrates together. After that, it is manufactured through a process of enclosing the liquid crystal. For example, in the super twist liquid crystal display element,
A method of manufacturing a liquid crystal element using a polyimide alignment film having a high pretilt angle for preventing the generation of various domains, a method of manufacturing a liquid crystal element by irradiating the alignment film with ultraviolet rays, and the like have been proposed (JP-A-2-226118). (Japanese Patent Laid-Open No. 2-40623).

【0003】[0003]

【発明が解決しようとする課題】液晶表示素子に、ある
特定の文字或いは図形パターンを一定期間表示している
と、そのパターンが画面上に焼き付く、いわゆる残像と
呼ばれる現象がある。この残像現象は画質を低下させる
ため、この残像低減が大きな課題となっている。従来技
術では、特に焼き付け、残像と呼ばれる表示むらの発生
を回避する表示品質良好な液晶表示素子の製造方法が得
られていなかった。
When a certain character or graphic pattern is displayed on a liquid crystal display device for a certain period of time, the pattern is burned on the screen, which is a so-called afterimage. Since this image lag phenomenon deteriorates the image quality, reducing the image lag is a major issue. In the prior art, a method for manufacturing a liquid crystal display element with good display quality, which avoids the occurrence of display unevenness called image sticking or afterimage, has not been obtained.

【0004】本発明の目的は、表示品質の高い、即ち焼
き付け、残像のない液晶表示素子の製造方法を提供する
ことにある。
An object of the present invention is to provide a method of manufacturing a liquid crystal display device having high display quality, that is, no image sticking or afterimage.

【0005】本発明の他の目的は、上記製造方法におい
て効果的な紫外光照射法を提供することにある。
Another object of the present invention is to provide an effective ultraviolet light irradiation method in the above manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意検討した結果、液晶素子に紫外光を照
射することにより液晶セル中の電荷輸送がスムーズに進
行することを発見し、表示画素に直流成分が残留しても
即座にその成分を相殺するような電荷輸送が液晶層内で
進行することを見出した。その結果、焼き付け現象を低
減することが判り本発明を完成するに至った。本発明の
要旨は次のとおりである。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the charge transport in a liquid crystal cell proceeds smoothly by irradiating the liquid crystal element with ultraviolet light. However, it has been found that even if a direct current component remains in the display pixel, charge transport that immediately cancels out the direct current component proceeds in the liquid crystal layer. As a result, it was found that the baking phenomenon was reduced, and the present invention was completed. The gist of the present invention is as follows.

【0007】本発明は、図1に示す方法で紫外光照射を
行った。液晶素子は、一対のガラス基板1a,1bにイ
ンジウム・スズ酸化物などの透明電極2a,2bを設
け、この透明電極上にポリイミド配向膜3a,3bを塗
布焼成,ラビリング処理後スペーサを介して貼り合わせ
液晶素子を作製した。その後、ネマチック液晶4を封入
し液晶素子に紫外光ランプ5を用いて紫外光を照射し液
晶表示素子を得る。
In the present invention, ultraviolet light irradiation was performed by the method shown in FIG. In the liquid crystal element, transparent electrodes 2a and 2b made of indium tin oxide or the like are provided on a pair of glass substrates 1a and 1b, and polyimide alignment films 3a and 3b are applied and baked on the transparent electrodes. A combined liquid crystal element was produced. After that, the nematic liquid crystal 4 is sealed and the liquid crystal element is irradiated with ultraviolet light using the ultraviolet lamp 5 to obtain a liquid crystal display element.

【0008】また、紫外光照射の効率を高めるため透明
電極基板の一方の透明電極をもう一方の透明電極より薄
くし、紫外光の透過率を上げ紫外光照射の効率を上げる
こともできる。更には、強度の大きい紫外光を使って紫
外光照射処理を行う際、緩衝剤として液晶表示素子を挿
入して複数枚に重ねた液晶表示素子に紫外光照射処理を
行うこともできる。
Further, in order to increase the efficiency of ultraviolet light irradiation, one transparent electrode of the transparent electrode substrate may be made thinner than the other transparent electrode to increase the transmittance of ultraviolet light and increase the efficiency of ultraviolet light irradiation. Furthermore, when performing ultraviolet light irradiation processing using ultraviolet light having high intensity, it is possible to insert a liquid crystal display element as a buffer and perform ultraviolet light irradiation processing on a plurality of liquid crystal display elements.

【0009】さらに、本発明には、液晶及び配向膜材料
にピリミジン骨格を有する化学構造を導入することで、
紫外光から受ける効果をより高めることができる。
Further, in the present invention, by introducing a chemical structure having a pyrimidine skeleton into the liquid crystal and the alignment film material,
The effect received from ultraviolet light can be further enhanced.

【0010】本発明の液晶表示素子の製造方法を詳細に
述べる。例えば、透明基板として平滑性の良好なフロー
トガラスを用い、この基板上に透明電極として酸化イン
ジウム(In23),酸化スズ(SnO2 )及びITO
(インジウム・スズ・オキサイド)等を真空蒸着,スパ
ッタリング,CVD等を設け、更に、ポリイミド,ポリ
アミド,ポリ酢酸ビニル,ポリビニルアルコール,セル
ロース,アクリル,エポキシ,ウレタン等の樹脂を用い
た塗布形成する。また、配向膜は透明電極上に直接設置
してもよいし、透明電極上に絶縁膜を設け、その上に形
成してもよい。このようにして設けた配向膜はナイロ
ン,ポリエステル,ポリアクリロニトルのような合成繊
維,綿,羊毛のような天然繊維などを用いてラビング処
理され、そのラビング処理された面を内側にし、液晶を
挾んで相対させる。次に、本発明の特徴である紫外光照
射処理が行われる。例えば、高圧水銀灯,キセノンラン
プなどの希ガス放電管,重水素放電管等を光源として用
いて行うことができる。その処理時間は、液晶及び配向
膜材料分子,液晶層或いは配向膜層の厚さ、また、紫外
線波長にもよるが、数秒から数十分程度が良い。
A method of manufacturing the liquid crystal display device of the present invention will be described in detail. For example, a float glass having good smoothness is used as a transparent substrate, and indium oxide (In 2 O 3 ), tin oxide (SnO 2 ) and ITO are used as transparent electrodes on this substrate.
(Indium tin oxide) or the like is provided by vacuum vapor deposition, sputtering, CVD or the like, and is further formed by coating using a resin such as polyimide, polyamide, polyvinyl acetate, polyvinyl alcohol, cellulose, acryl, epoxy or urethane. Further, the alignment film may be directly provided on the transparent electrode, or an insulating film may be provided on the transparent electrode and then formed thereon. The alignment film provided in this way is rubbed with synthetic fibers such as nylon, polyester, polyacrylonitrile, cotton, and natural fibers such as wool, and the rubbed surface is placed inside and the liquid crystal is Cleave and make them face each other. Next, the ultraviolet light irradiation treatment, which is a feature of the present invention, is performed. For example, a rare gas discharge tube such as a high pressure mercury lamp or a xenon lamp, a deuterium discharge tube, or the like can be used as a light source. The treatment time depends on the thickness of the liquid crystal and the alignment film material molecules, the thickness of the liquid crystal layer or the alignment film layer, and the wavelength of ultraviolet rays, but is preferably several seconds to several tens of minutes.

【0011】[0011]

【作用】本発明の液晶表示素子は、液晶素子に紫外光を
照射することにより液晶セル内の電荷の輸送過程がスム
ーズに進行する様になったと考えられる。その結果、配
向膜に直流成分が残留しても即座にその成分を相殺する
ように電荷が液晶と配向膜の界面に輸送され、残像,焼
き付け現象を低減したものと考えられる。
In the liquid crystal display element of the present invention, it is considered that the charge transport process in the liquid crystal cell smoothly proceeds by irradiating the liquid crystal element with ultraviolet light. As a result, it is considered that, even if the direct current component remains in the alignment film, the electric charge is immediately transported to the interface between the liquid crystal and the alignment film so as to cancel the component, thereby reducing the afterimage and the burning phenomenon.

【0012】[0012]

【実施例】以下、本発明の実施例によって具体的に説明
する。ただし、これら実施例によって本発明の技術的範
囲が限定されるものではない。
EXAMPLES Hereinafter, examples of the present invention will be specifically described. However, the technical scope of the present invention is not limited by these examples.

【0013】〈実施例1〉3×4cmのガラス基板に(厚
さ1.1mm )上にインジウム・スズ酸化物の透明電極を
2000Åの厚さで設け、この上に1,1,1,3,
3,3−ヘキサフルオロ−2,2−ビス[4−(4−ア
ミノフェノキシ)フェニル]プロパンと1,2,3,4
−シクロブタンテトラカルボン酸2無水物からなるポリ
イミド配向膜を塗布し、250℃で1時間焼成し膜厚5
00Åの膜を形成した。こうして得られたポリイミド膜
をレーヨン布でラビング処理した。次に、この二枚の透
明電極基板をラビング方向が240°になるようにして
スペーサを介して貼り合わせ、セル間隙が6μmの液晶
セルを作製した。このセルにネマチック液晶ZLI−2
009(メルク社製)にZLI−1052(メルク社
製)を混ぜたもの(7:3)を封入した。そして、この
液晶封入後の液晶素子に25mW/cm2 の紫外光を10
秒間照射し、液晶表示素子を得た。
<Embodiment 1> A transparent electrode of indium tin oxide having a thickness of 2000 Å is provided on a glass substrate having a size of 3 × 4 cm (thickness: 1.1 mm), and 1,1,1,3 are provided thereon. ,
3,3-hexafluoro-2,2-bis [4- (4-aminophenoxy) phenyl] propane and 1,2,3,4
-Coating with a polyimide alignment film made of cyclobutane tetracarboxylic dianhydride and baking at 250 ° C for 1 hour to give a film thickness of 5
A film of 00Å was formed. The polyimide film thus obtained was rubbed with a rayon cloth. Next, these two transparent electrode substrates were bonded together via a spacer so that the rubbing direction was 240 ° to produce a liquid crystal cell having a cell gap of 6 μm. Nematic liquid crystal ZLI-2 in this cell
A mixture (7: 3) in which ZLI-1052 (manufactured by Merck) was mixed with 009 (manufactured by Merck) was enclosed. Then, 25 mW / cm 2 of ultraviolet light is applied to the liquid crystal element after the liquid crystal is sealed.
It was irradiated for a second to obtain a liquid crystal display element.

【0014】次に、得られた液晶素子の評価法について
述べる。
Next, a method for evaluating the obtained liquid crystal element will be described.

【0015】下記に液晶表示素子に直流バイアスを印加
した際の透過率の変化を調べ、界面に生じた電荷の緩和
時間の測定について記す。
The change in the transmittance when a DC bias is applied to the liquid crystal display element is examined below, and the measurement of the relaxation time of the charge generated at the interface is described below.

【0016】液晶表示素子の明状態の透過率を100%
とすると、透過率が40%になるように設定した500
Hzの正弦波を印加しておき、ある時刻より波形に直
流成分0.2V をバイアスとして印加し、さらにある
所定の時間後直流の極性を反転させる。この時、液晶素
子内の内部電界が一瞬大きくなり液晶がそれに応答し、
透過率が大きくなる。その後、時間の経過と共に液晶層
内の電荷が界面に輸送されることによって内部電界が緩
和され透過率が減衰する。ここで、透過光が70%減衰
するまでの時間を界面に生じた電荷の緩和時間τと定義
する。図2に液晶素子の典型的な透過率変化を示す。点
Aはの操作をした瞬間にあたり、点Bがの操作をし
た瞬間に相当する。尚、ここで定義した緩和時間τが小
さいほど、残像及び焼き付け現象が低減される。
The transmittance of the liquid crystal display device in the bright state is 100%.
Then, the transmittance is set to 40% and the value is set to 500.
A sine wave of Hz is applied, a DC component of 0.2 V is applied to the waveform as a bias from a certain time, and the polarity of the DC is inverted after a predetermined time. At this time, the internal electric field in the liquid crystal element momentarily increases and the liquid crystal responds to it,
Increased transmittance. After that, as time passes, the charge in the liquid crystal layer is transported to the interface, so that the internal electric field is relaxed and the transmittance is attenuated. Here, the time until the transmitted light is attenuated by 70% is defined as the relaxation time τ of the charge generated at the interface. FIG. 2 shows a typical change in transmittance of the liquid crystal element. The point A corresponds to the moment when the operation of is performed and the point B corresponds to the moment when the operation of is performed. It should be noted that the smaller the relaxation time τ defined here, the more the afterimage and the burning phenomenon are reduced.

【0017】そこで、この方法で液晶表示素子について
測定を行った結果、緩和時間τとして11秒を得た。
Then, as a result of measuring the liquid crystal display element by this method, a relaxation time τ of 11 seconds was obtained.

【0018】〈実施例2〉3×4cmのガラス基板に(厚
さ1.1mm )上にインジウム・スズ酸化物の透明電極を
2000Åの厚さで設け、この上に1,1,1,3,
3,3−ヘキサフルオロ−2,2−ビス[4−(4−ア
ルミノフェノキシ)フェニル]プロパンと1,2,3,
4−シクロブタンテトラカルボン酸2無水物からなるポ
リイミド配向膜を塗布し、250℃で1時間焼成し膜厚
500Åの膜を形成した。こうして得られたポリイミド
膜をレーヨン布でラビング処理した。次に、この二枚の
透明電極基板をラビング方向が240°になるようにし
てスペーサを介して貼り合わせ、セル間隙が6μmの液
晶セルを作製した。このセルにネマチック液晶ZLI−
2009(メルク社製)にZLI−1052(メルク社
製)を混ぜたもの(7:3)を封入した。そして、この
液晶封入後の液晶素子に35mW/cm2 の紫外光を10
秒間照射し、液晶表示素子を得た。
<Embodiment 2> A transparent electrode of indium tin oxide having a thickness of 2000 Å is provided on a glass substrate of 3 × 4 cm (thickness: 1.1 mm), and 1,1,1,3 are formed on the transparent electrode. ,
3,3-hexafluoro-2,2-bis [4- (4-aluminophenoxy) phenyl] propane and 1,2,3,
A polyimide alignment film made of 4-cyclobutanetetracarboxylic dianhydride was applied and baked at 250 ° C. for 1 hour to form a film having a film thickness of 500 Å. The polyimide film thus obtained was rubbed with a rayon cloth. Next, these two transparent electrode substrates were bonded together via a spacer so that the rubbing direction was 240 ° to produce a liquid crystal cell having a cell gap of 6 μm. Nematic liquid crystal ZLI-
The mixture (7: 3) in which ZLI-1052 (manufactured by Merck) was mixed with 2009 (manufactured by Merck) was enclosed. Then, 35 mW / cm 2 of ultraviolet light is applied to the liquid crystal element after enclosing the liquid crystal.
It was irradiated for a second to obtain a liquid crystal display element.

【0019】次に、実施例1に記した方法で液晶表示素
子を評価した結果、緩和時間τとして7秒を得た。
Next, as a result of evaluating the liquid crystal display element by the method described in Example 1, a relaxation time τ of 7 seconds was obtained.

【0020】〈実施例3〉3×4cmのガラス基板に(厚
さ1.1mm )上にインジウム・スズ酸化物の透明電極を
2000Åの厚さで設け、この上に1,1,1,3,
3,3−ヘキサフルオロ−2,2−ビス[4−(4−ア
ミノフェノキシ)フェニル]プロパンとピロメリット酸
2無水物からなるポリイミド配向膜を塗布し、250℃
で1時間焼成し膜厚500Åの膜を形成した。こうして
得られたポリイミド膜をレーヨン布でラビング処理し
た。次に、この二枚の透明電極基板をラビング方向が2
40°になるようにしてスペーサを介して貼り合わせ、
セル間隙が6μmの液晶セルを作製した。このセルにネ
マチック液晶ZLI−2009(メルク社製)にZLI
−1052(メルク社製)を混ぜたもの(7:3)を封
入した。そして、この液晶封入後の液晶素子に25mW
/cm2 の紫外光を10秒間照射し、液晶表示素子を得
た。
<Embodiment 3> A transparent electrode of indium tin oxide having a thickness of 2000 Å is provided on a glass substrate having a size of 3 × 4 cm (thickness: 1.1 mm), and 1,1,1,3 are provided thereon. ,
A polyimide alignment film composed of 3,3-hexafluoro-2,2-bis [4- (4-aminophenoxy) phenyl] propane and pyromellitic dianhydride is applied, and the temperature is set to 250 ° C.
It was baked for 1 hour to form a film having a film thickness of 500Å. The polyimide film thus obtained was rubbed with a rayon cloth. Next, the rubbing direction of the two transparent electrode substrates is set to 2
Laminated through spacers at 40 °,
A liquid crystal cell having a cell gap of 6 μm was produced. Nematic liquid crystal ZLI-2009 (manufactured by Merck Ltd.)
A mixture (-7: 3) of -1052 (Merck) was sealed. And 25mW is applied to the liquid crystal element after the liquid crystal is sealed.
The liquid crystal display device was obtained by irradiating with ultraviolet light of / cm 2 for 10 seconds.

【0021】次に、実施例1に記した方法で液晶表示素
子を評価した結果、緩和時間τとして10秒を得た。
Next, the liquid crystal display device was evaluated by the method described in Example 1, and a relaxation time τ of 10 seconds was obtained.

【0022】〈実施例4〉3×4cmのガラス基板に(厚
さ1.1mm )上にインジウム・スズ酸化物の透明電極を
2000Åの厚さで設け、この上に1,1,1,3,
3,3−ヘキサフルオロ−2,2−ビス[4−(4−ア
ミノフェノキシ)フェニル]プロパンと2,2−ビス
[4−(3,4−ジカルボキシフェノキシ)フェニル]
トリデカンテトラカルボン酸2無水物からなるポリイミ
ド配向膜を塗布し、250℃で1時間焼成し膜厚500
Åの膜を形成した。こうして得られたポリイミド膜をレ
ーヨン布でラビング処理した。次に、この二枚の透明電
極基板をラビング方向が240°になるようにしてスペ
ーサを介して貼り合わせ、セル間隙が6μmの液晶セル
を作製した。このセルにネマチック液晶ZLI−200
9(メルク社製)にZLI−1052(メルク社製)を
混ぜたもの(7:3)を封入した。そして、この液晶封
入後の液晶素子に25mW/cm2 の紫外光を10秒間照
射し、液晶表示素子を得た。
<Embodiment 4> A transparent electrode of indium tin oxide having a thickness of 2000 Å is provided on a glass substrate of 3 × 4 cm (thickness: 1.1 mm), and 1,1,1,3 are provided thereon. ,
3,3-Hexafluoro-2,2-bis [4- (4-aminophenoxy) phenyl] propane and 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl]
A polyimide alignment film made of tridecanetetracarboxylic dianhydride is applied and baked at 250 ° C. for 1 hour to give a film thickness of 500.
Å formed a film. The polyimide film thus obtained was rubbed with a rayon cloth. Next, these two transparent electrode substrates were bonded together via a spacer so that the rubbing direction was 240 ° to produce a liquid crystal cell having a cell gap of 6 μm. Nematic liquid crystal ZLI-200 was added to this cell.
9 (manufactured by Merck) and ZLI-1052 (manufactured by Merck) were mixed (7: 3). Then, the liquid crystal element filled with the liquid crystal was irradiated with ultraviolet light of 25 mW / cm 2 for 10 seconds to obtain a liquid crystal display element.

【0023】次に、実施例1に記した方法で液晶表示素
子を評価した結果、緩和時間τとして5秒を得た。
Next, as a result of evaluating the liquid crystal display element by the method described in Example 1, a relaxation time τ of 5 seconds was obtained.

【0024】〈実施例5〉3×4cmのガラス基板に(厚
さ1.1mm )上にインジウム・スズ酸化物の透明電極を
2000Åの厚さで設け、この上に4−(p−アミノフ
ェニル)−1−アミノピリミジンとピロメリット酸2無
水物からなるポリイミド配向膜を塗布し、250℃で1
時間焼成し膜厚500Åの膜を形成した。こうして得ら
れたポリイミド膜をレーヨン布でラビング処理した。次
に、この二枚の透明電極基板をラビング方向が240°
になるようにしてスペーサを介して貼り合わせ、セル間
隙が6μmの液晶セルを作製した。このセルにネマチッ
ク液晶ZLI−2009(メルク社製)にZLI−10
52(メルク社製)を混ぜたもの(7:3)を封入し
た。そして、この液晶封入後の液晶素子に25mW/cm
2 の紫外光を10秒間照射し、液晶表示素子を得た。
<Embodiment 5> A transparent electrode of indium tin oxide having a thickness of 2000 Å was provided on a glass substrate of 3 × 4 cm (thickness: 1.1 mm), and 4- (p-aminophenyl) was formed thereon. ) A polyimide alignment film composed of 1-aminopyrimidine and pyromellitic dianhydride is applied, and the coating is performed at 250 ° C. for 1
Firing was performed for a time to form a film having a film thickness of 500Å. The polyimide film thus obtained was rubbed with a rayon cloth. Next, the rubbing direction of the two transparent electrode substrates is 240 °.
And a liquid crystal cell having a cell gap of 6 μm. Nematic liquid crystal ZLI-2009 (manufactured by Merck & Co., Inc.) was added to this cell as ZLI-10.
A mixture (7: 3) of 52 (manufactured by Merck) was enclosed. And 25mW / cm for the liquid crystal element after this liquid crystal is enclosed.
Ultraviolet light 2 was irradiated for 10 seconds to obtain a liquid crystal display device.

【0025】次に、実施例1に記した方法で液晶表示素
子を評価した結果、緩和時間τとして2秒を得た。
Next, as a result of evaluating the liquid crystal display device by the method described in Example 1, a relaxation time τ of 2 seconds was obtained.

【0026】〈実施例6〉3×4cmのガラス基板に(厚
さ1.1mm )上にインジウム・スズ酸化物の透明電極を
2000Åの厚さで設け、この上に1,1,1,3,
3,3−ヘキサフルオロ−2,2−ビス[4−(4−ア
ミノフェノキシ)フェニル]プロパンと1,2,3,4
−シクロブタンテトラカルボン酸2無水物からなるポリ
イミド配向膜を塗布し、250℃で1時間焼成し膜厚5
00Åの膜を形成した。こうして得られたポリイミド膜
をレーヨン布でラビング処理した。次に、この二枚の透
明電極基板をラビング方向が240°になるようにして
スペーサを介して貼り合わせ、セル間隙が6μmの液晶
セルを作製した。このセルにネマチック液晶ZLI−2
009(メルク社製)にZLI−1052(メルク社
製)を混ぜたもの(7:3)に4−ペンチルシアノフェ
ニルピリミジン或いは4−(p−ヘキシルフェニル)−
シアノフェニルピリミジンなどのピリミジン骨格を有す
る液晶化合物を10%加えた液晶を封入した。そして、
この液晶封入後の液晶素子に25mW/cm2 の紫外光を
10秒間照射し、液晶表示素子を得た。
<Embodiment 6> A transparent electrode of indium tin oxide having a thickness of 2000 Å is provided on a glass substrate of 3 × 4 cm (thickness: 1.1 mm), and 1,1,1,3 are formed on the transparent electrode. ,
3,3-hexafluoro-2,2-bis [4- (4-aminophenoxy) phenyl] propane and 1,2,3,4
-Coating with a polyimide alignment film made of cyclobutane tetracarboxylic dianhydride and baking at 250 ° C for 1 hour to give a film thickness of 5
A film of 00Å was formed. The polyimide film thus obtained was rubbed with a rayon cloth. Next, these two transparent electrode substrates were bonded together via a spacer so that the rubbing direction was 240 ° to produce a liquid crystal cell having a cell gap of 6 μm. Nematic liquid crystal ZLI-2 in this cell
A mixture of ZLI-1052 (manufactured by Merck & Co.) and 0LI (manufactured by Merck) (7: 3) was added to 4-pentylcyanophenylpyrimidine or 4- (p-hexylphenyl)-.
A liquid crystal containing 10% of a liquid crystal compound having a pyrimidine skeleton such as cyanophenylpyrimidine was added. And
The liquid crystal element filled with the liquid crystal was irradiated with ultraviolet light of 25 mW / cm 2 for 10 seconds to obtain a liquid crystal display element.

【0027】次に、実施例1に記した方法で液晶表示素
子を評価した結果、緩和時間τとして2秒を得た。
Next, as a result of evaluating the liquid crystal display element by the method described in Example 1, a relaxation time τ of 2 seconds was obtained.

【0028】〈実施例7〉3×4cmの一対のガラス基板
に(厚さ1.1mm )のうち、一方にインジウム・スズ酸
化物の透明電極を2000Åの厚さで設け、もう一方の
ガラス基板に同様の透明電極を1500Åの厚さで設け
る。これら透明電極上に1,1,1,3,3,3−ヘキ
サフルオロ−2,2−ビス[4−(4−アミノフェノキ
シ)フェニル]プロパンと1,2,3,4−シクロブタ
ンテトラカルボン酸2無水物からなるポリイミド配向膜
を塗布し、250℃で1時間焼成し膜厚500Åの膜を
形成した。こうして得られたポリイミド膜をレーヨン布
でラビング処理した。次に、この二枚の透明電極基板を
ラビング方向が240°になるようにしてスペーサを介
して貼り合わせ、セル間隙が6μmの液晶セルを作製し
た。このセルにネマチック液晶ZLI−2009(メル
ク社製)にZLI−1052(メルク社製)を混ぜたも
の(7:3)を封入した。そして、この液晶封入後の液
晶素子に25mW/cm2 の紫外光を10秒間照射し、液
晶表示素子を得た。
<Embodiment 7> Of a pair of 3 × 4 cm glass substrates (thickness: 1.1 mm), a transparent electrode made of indium tin oxide was provided on one side to a thickness of 2000 Å, and the other glass substrate was formed. A similar transparent electrode is provided with a thickness of 1500Å. On these transparent electrodes 1,1,1,3,3,3-hexafluoro-2,2-bis [4- (4-aminophenoxy) phenyl] propane and 1,2,3,4-cyclobutanetetracarboxylic acid A polyimide alignment film made of dianhydride was applied and baked at 250 ° C. for 1 hour to form a film having a film thickness of 500 Å. The polyimide film thus obtained was rubbed with a rayon cloth. Next, these two transparent electrode substrates were bonded together via a spacer so that the rubbing direction was 240 ° to produce a liquid crystal cell having a cell gap of 6 μm. A nematic liquid crystal ZLI-2009 (manufactured by Merck) mixed with ZLI-1052 (manufactured by Merck) was sealed in the cell (7: 3). Then, the liquid crystal element filled with the liquid crystal was irradiated with ultraviolet light of 25 mW / cm 2 for 10 seconds to obtain a liquid crystal display element.

【0029】次に、実施例1に記した方法で液晶表示素
子を評価した結果、緩和時間τとして7秒を得た。
Next, as a result of evaluating the liquid crystal display element by the method described in Example 1, a relaxation time τ of 7 seconds was obtained.

【0030】本実施例によって、実施例1と比較して紫
外光照射の効率,効果が向上した。 〈実施例8〉15×25cmのガラス基板に(厚さ1.1m
m )上にインジウム・スズ酸化物の透明電極を2000
Åの厚さで設け、この上に1,1,1,3,3,3−ヘ
キサフルオロ−2,2−ビス[4−(4−アミノフェノ
キシ)フェニル]プロパンと1,2,3,4−シクロブ
タンテトラカルボン酸2無水物からなるポリイミド配向
膜を塗布し、250℃で1時間焼成し膜厚500Åの膜
を形成した。こうして得られたポリイミド膜をレーヨン
布でラビング処理した。次に、この二枚の透明電極基板
をラビング方向が240°になるようにしてスペーサを
介して貼り合わせ、セル間隙が6μmの液晶セルを作製
した。このセルにネマチック液晶ZLI−2009(メ
ルク社製)にZLI−1052(メルク社製)を混ぜた
もの(7:3)を封入した。
According to this embodiment, the efficiency and effect of ultraviolet light irradiation are improved as compared with the first embodiment. Example 8 A glass substrate of 15 × 25 cm (thickness 1.1 m
m) with 2000 indium tin oxide transparent electrode
Å with a thickness of 1,1,1,3,3,3-hexafluoro-2,2-bis [4- (4-aminophenoxy) phenyl] propane and 1,2,3,4 A polyimide alignment film made of cyclobutanetetracarboxylic dianhydride was applied and baked at 250 ° C. for 1 hour to form a film having a film thickness of 500Å. The polyimide film thus obtained was rubbed with a rayon cloth. Next, these two transparent electrode substrates were bonded together via a spacer so that the rubbing direction was 240 ° to produce a liquid crystal cell having a cell gap of 6 μm. A nematic liquid crystal ZLI-2009 (manufactured by Merck) mixed with ZLI-1052 (manufactured by Merck) (7: 3) was sealed in the cell.

【0031】この液晶封入後の液晶素子を紫外光照射装
置に送り台に長方形である液晶素子の長辺(25cm)を
直径2cm長さが30cmの円柱状の紫外光ランプに平行に
なるよう配置し、送り速さを1cm/sで25mW/cm2
の紫外光照射し液晶表示素子を得た。その結果、5分間
に20素子作製した。また、実施例1に記した方法で液
晶表示素子を評価した結果、緩和時間τとして11秒を
得た。
The liquid crystal element after encapsulating the liquid crystal is placed on the ultraviolet light irradiation device so that the long side (25 cm) of the rectangular liquid crystal element is parallel to the cylindrical ultraviolet lamp having a diameter of 2 cm and a length of 30 cm. The feed rate is 25 mW / cm 2 at 1 cm / s.
Then, the liquid crystal display device was obtained by irradiating with ultraviolet light. As a result, 20 devices were produced in 5 minutes. Further, as a result of evaluating the liquid crystal display element by the method described in Example 1, a relaxation time τ of 11 seconds was obtained.

【0032】〈実施例9〉15×25cmのガラス基板に
(厚さ1.1mm )上にインジウム・スズ酸化物の透明電
極を2000Åの厚さで設け、この上に1,1,1,
3,3,3−ヘキサフルオロ−2,2−ビス[4−(4
−アミノフェノキシ)フェニル]プロパンと1,2,
3,4−シクロブタンテトラカルボン酸2無水物からな
るポリイミド配向膜を塗布し、250℃で1時間焼成し
膜厚500Åの膜を形成した。こうして得られたポリイ
ミド膜をレーヨン布でラビング処理した。次に、この二
枚の透明電極基板をラビング方向が240°になるよう
にしてスペーサを介して貼り合わせ、セル間隙が6μm
の液晶セルを作製した。このセルにネマチック液晶ZL
I−2009(メルク社製)にZLI−1052(メル
ク社製)を混ぜたもの(7:3)を封入した。
<Embodiment 9> A transparent electrode of indium tin oxide having a thickness of 2000 Å is provided on a glass substrate of 15 × 25 cm (thickness: 1.1 mm), and 1,1,1,
3,3,3-hexafluoro-2,2-bis [4- (4
-Aminophenoxy) phenyl] propane and 1,2,
A polyimide alignment film made of 3,4-cyclobutanetetracarboxylic dianhydride was applied and baked at 250 ° C. for 1 hour to form a film having a film thickness of 500 Å. The polyimide film thus obtained was rubbed with a rayon cloth. Next, the two transparent electrode substrates were bonded together via a spacer so that the rubbing direction was 240 °, and the cell gap was 6 μm.
A liquid crystal cell was manufactured. Nematic liquid crystal ZL in this cell
A mixture (7: 3) of I-2009 (made by Merck) mixed with ZLI-1052 (made by Merck) was enclosed.

【0033】この液晶封入後の液晶素子を5枚重ね、更
にもう一枚を光緩衝用として紫外光光源と重ねた液晶素
子の間になるよう挿入した。そして、紫外光照射装置の
送り台に長方形である液晶素子の長辺(25cm)を直径
2cm長さが30cmの円柱状の紫外光ランプに平行になる
よう配置し、送り速さを1cm/sで500mW/cm2
紫外光照射し液晶表示素子を得た。その結果、5分間に
100素子作製した。また、実施例1に記した方法で液
晶表示素子を評価した結果、緩和時間τとして光源に近
い素子から順に5秒,6秒,8秒,10秒,13秒を得
た。
Five liquid crystal elements after enclosing the liquid crystal were stacked, and another one was inserted so as to serve as a light buffer between the ultraviolet light source and the stacked liquid crystal element. Then, the long side (25 cm) of the rectangular liquid crystal element was placed on the sending base of the ultraviolet light irradiation device so as to be parallel to the cylindrical ultraviolet lamp having a diameter of 2 cm and a length of 30 cm, and the sending speed was 1 cm / s. And irradiated with 500 mW / cm 2 of ultraviolet light to obtain a liquid crystal display device. As a result, 100 devices were manufactured in 5 minutes. Further, as a result of evaluating the liquid crystal display element by the method described in Example 1, the relaxation time τ was 5 seconds, 6 seconds, 8 seconds, 10 seconds and 13 seconds in order from the element closer to the light source.

【0034】〈比較例1〉実施例1で紫外線照射を行わ
なかった以外は、全く同様の方法で液晶表示素子を製造
した。
<Comparative Example 1> A liquid crystal display device was manufactured in the same manner as in Example 1, except that the ultraviolet irradiation was not performed.

【0035】3×4cmのガラス基板に(厚さ1.1mm )
上にインジウム・スズ酸化物の透明電極を設け、この上
に1,1,1,3,3,3−ヘキサフルオロ−2,2−
ビス[4−(4−アミノフェノキシ)フェニル]プロパ
ンと1,2,3,4−シクロブタンテトラカルボン酸2
無水物からなるポリイミド配向膜を塗布し、250℃で
1時間焼成し膜厚500Åの膜を形成した。こうして得
られたポリイミド膜をレーヨン布でラビング処理した。
次に、この二枚の透明電極基板をラビング方向が240
°になるようにしてスペーサを介して貼り合わせ、セル
間隙が6μmの液晶セルを作製した。このセルにネマチ
ック液晶ZLI−2009(メルク社製)にZLI−10
52(メルク社製)を混ぜたもの(7:3)を封入し
た。
On a glass substrate of 3 × 4 cm (thickness: 1.1 mm)
A transparent electrode of indium tin oxide is provided on top of which 1,1,1,3,3,3-hexafluoro-2,2-
Bis [4- (4-aminophenoxy) phenyl] propane and 1,2,3,4-cyclobutanetetracarboxylic acid 2
A polyimide alignment film made of an anhydride was applied and baked at 250 ° C. for 1 hour to form a film having a film thickness of 500Å. The polyimide film thus obtained was rubbed with a rayon cloth.
Next, the rubbing direction of the two transparent electrode substrates is 240
The liquid crystal cell having a cell gap of 6 μm was produced by adhering via a spacer at an angle of °. Nematic liquid crystal ZLI-2009 (manufactured by Merck) was added to this cell.
A mixture (7: 3) of 52 (manufactured by Merck) was enclosed.

【0036】次に、得られた液晶表示の評価法について
述べる。
Next, the evaluation method of the obtained liquid crystal display will be described.

【0037】下記に液晶表示素子に直流バイアスを印加
した際の透過率の変化を調べ、界面に生じた電荷の緩和
時間の測定について記す。
The change in transmittance when a DC bias is applied to the liquid crystal display element is examined below, and the measurement of the relaxation time of the charge generated at the interface is described.

【0038】液晶表示素子の明状態の透過率を100%
とすると、透過率が40%になるように設定した500
Hzの正弦波を印加しておき、ある時刻より波形に直
流成分0.2V をバイアスとして印加し、さらにある
所定の時間後直流の極性を反転させる。この時、液晶素
子内の内部電界が一瞬大きくなり液晶がそれに応答し、
透過率が大きくなる。その後、時間の経過と共に液晶層
内の電荷が界面に輸送されることによって内部電界が緩
和され透過率が減衰する。ここで、透過光が70%減衰
するまでの時間を界面に生じた電荷の緩和時間τと定義
する。図2に液晶素子の典型的な透過率変化を示す。点
Aは上記の操作をした瞬間にあたり、点Bがの操作
をした瞬間に相当する。
The transmittance of the liquid crystal display device in the bright state is 100%.
Then, the transmittance is set to 40% and the value is set to 500.
A sine wave of Hz is applied, a DC component of 0.2 V is applied to the waveform as a bias from a certain time, and the polarity of the DC is inverted after a predetermined time. At this time, the internal electric field in the liquid crystal element momentarily increases and the liquid crystal responds to it,
Increased transmittance. After that, as time passes, the charge in the liquid crystal layer is transported to the interface, so that the internal electric field is relaxed and the transmittance is attenuated. Here, the time until the transmitted light is attenuated by 70% is defined as the relaxation time τ of the charge generated at the interface. FIG. 2 shows a typical change in transmittance of the liquid crystal element. Point A corresponds to the moment when the above operation is performed, and corresponds to the moment when point B performs the operation.

【0039】そこで、上記方法にて液晶表示素子につい
て測定を行った結果、緩和時間τとして23秒を得た。
Then, as a result of measuring the liquid crystal display element by the above method, a relaxation time τ of 23 seconds was obtained.

【0040】〈比較例2〉15×25cmのガラス基板に
(厚さ1.1mm )上にインジウム・スズ酸化物の透明電
極を2000Åの厚さで設け、この上に1,1,1,
3,3,3−ヘキサフルオロ−2,2−ビス[4−(4
−アミノフェノキシ)フェニル]プロパンと1,2,
3,4−シクロブタンテトラカルボン酸2無水物からな
るポリイミド配向膜を塗布し、250℃で1時間焼成し
膜厚500Åの膜を形成した。こうして得られたポリイ
ミド膜をレーヨン布でラビング処理した。次に、この二
枚の透明電極基板をラビング方向が240°になるよう
にしてスペーサを介して貼り合わせ、セル間隙が6μm
の液晶セルを作製した。このセルにネマチック液晶ZL
I−2009(メルク社製)にZLI−1052(メル
ク社製)を混ぜたもの(7:3)を封入した。
<Comparative Example 2> A transparent electrode of indium tin oxide having a thickness of 2000 Å was provided on a glass substrate of 15 × 25 cm (thickness: 1.1 mm), and 1,1,1,
3,3,3-hexafluoro-2,2-bis [4- (4
-Aminophenoxy) phenyl] propane and 1,2,
A polyimide alignment film made of 3,4-cyclobutanetetracarboxylic dianhydride was applied and baked at 250 ° C. for 1 hour to form a film having a film thickness of 500 Å. The polyimide film thus obtained was rubbed with a rayon cloth. Next, the two transparent electrode substrates were bonded together via a spacer so that the rubbing direction was 240 °, and the cell gap was 6 μm.
A liquid crystal cell was manufactured. Nematic liquid crystal ZL in this cell
A mixture (7: 3) of I-2009 (made by Merck) mixed with ZLI-1052 (made by Merck) was enclosed.

【0041】この液晶封入後の液晶素子を紫外光照射装
置の送り台に長方形である液晶素子の短辺(15cm)を
直径2cm長さが30cmの円柱状の紫外光ランプに平行に
なるように配置し、送り速さを1cm/sで25mW/cm
2 の紫外光照射し液晶表示素子を得た。その結果、5分
間に12素子作製した。また、実施例1に記した方法で
液晶表示素子を評価した結果、緩和時間τとして11秒
を得た。
The liquid crystal element after the liquid crystal was sealed was placed on the feed table of the ultraviolet light irradiation device so that the short side (15 cm) of the rectangular liquid crystal element was parallel to the cylindrical ultraviolet lamp having a diameter of 2 cm and a length of 30 cm. Placed at a feed rate of 1 cm / s, 25 mW / cm
The liquid crystal display device was obtained by irradiating ultraviolet light of 2 . As a result, 12 devices were produced in 5 minutes. Further, as a result of evaluating the liquid crystal display element by the method described in Example 1, a relaxation time τ of 11 seconds was obtained.

【0042】実施例1から実施例7と比較例1の液晶表
示素子において、界面に生じた電荷の緩和時間τを測定
した。結果を表1に示す。
In the liquid crystal display devices of Examples 1 to 7 and Comparative Example 1, the relaxation time τ of the charge generated at the interface was measured. The results are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】上記の結果から緩和時間τが小さい方が残
像及び焼き付け現象の低減に効果的であるということを
考慮すると、本発明の液晶表示素子の製造方法により製
造された液晶表示素子は、残像や焼き付けのない表示面
の均一性に優れたものであることが判る。
From the above results, considering that the shorter relaxation time τ is more effective in reducing the afterimage and the image sticking phenomenon, the liquid crystal display device manufactured by the method for manufacturing a liquid crystal display device of the present invention shows the afterimage. It can be seen that the display surface is excellent in uniformity without burning.

【0045】実施例8から実施例9と比較例2の液晶表
示素子において、1分間に紫外線照射可能な液晶表示素
子の個数を生産効率として評価した。表2に結果を示
す。
In the liquid crystal display elements of Examples 8 to 9 and Comparative Example 2, the number of liquid crystal display elements capable of irradiating ultraviolet rays per minute was evaluated as the production efficiency. The results are shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】上記の結果から明らかなように、本発明の
液晶表示素子の製造方法により、生産効率良く残像や焼
き付けのない表示面の均一性に優れた液晶表示素子を製
造できる。
As is clear from the above results, the liquid crystal display element manufacturing method of the present invention makes it possible to manufacture a liquid crystal display element having excellent display surface uniformity with no afterimage or burn-in with good production efficiency.

【0048】[0048]

【発明の効果】本発明によれば、液晶表示素子の製造過
程において液晶を封入後紫外光を照射する工程を導入す
ることによって、表示面が均一で残像が少ない表示品質
良好な液晶表示素子を提供することができる。
According to the present invention, by introducing a step of irradiating ultraviolet light after encapsulating a liquid crystal in the manufacturing process of a liquid crystal display device, a liquid crystal display device having a uniform display surface and a small afterimage can be obtained. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の紫外光照射の概要を示した説明図。FIG. 1 is an explanatory view showing an outline of ultraviolet light irradiation of the present invention.

【図2】液晶表示素子に直流成分を印加したときの透過
光の応答特性図。
FIG. 2 is a response characteristic diagram of transmitted light when a DC component is applied to a liquid crystal display element.

【符号の説明】[Explanation of symbols]

1a,1b…ガラス基板、2a,2b…透明電極、3
a,3b…配向膜、4…液晶層、5…紫外光ランプ。
1a, 1b ... Glass substrate, 2a, 2b ... Transparent electrode, 3
a, 3b ... Alignment film, 4 ... Liquid crystal layer, 5 ... UV lamp.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大原 周一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 菊池 直樹 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 (72)発明者 長谷川 真二 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuichi Ohara 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Naoki Kikuchi 3300 Hayano, Mobara, Chiba Co., Ltd. (72) Inventor Shinji Hasegawa, 3300 Hayano, Mobara-shi, Chiba Hitachi Device Co., Ltd. Electronic Device Division

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】透明電極を有し少なくとも一方が透明な一
対の基板上に液晶に配向させるための高分子膜を形成
し、前記高分子膜をラビング処理し、ラビング方向が2
00度以上の角度になる様に、ラビング処理した面が相
対する様に、前記基板間が所定の空隙になる様に前記基
板を貼り合わせ、前記基板の周りをシール材で固め、前
記基板の間に、旋光性物質が添加され正の誘電異方性を
示しねじれたら旋構造を有するネマチック液晶を挾持さ
せる液晶表示素子の製造方法において、ラビング処理し
た高分子膜を具備した基板間にネマチック液晶を挾持さ
せた液晶表示素子に、紫外光照射を行うことを特徴とす
る液晶表示素子の製造方法。
1. A polymer film for aligning liquid crystal is formed on a pair of substrates having transparent electrodes, at least one of which is transparent, and the polymer film is rubbed to obtain a rubbing direction of 2
The substrates are attached to each other so that the surfaces subjected to the rubbing process face each other such that the surfaces are rubbed so as to form an angle of 00 degrees or more, and the periphery of the substrates is fixed with a sealing material. In a method for manufacturing a liquid crystal display device, in which a nematic liquid crystal having a twisted helical structure and having a positive dielectric anisotropy added with an optical rotatory substance is sandwiched, a nematic liquid crystal is provided between substrates provided with a rubbing-treated polymer film. A method for manufacturing a liquid crystal display element, which comprises irradiating an ultraviolet light to the liquid crystal display element that holds the liquid crystal.
【請求項2】請求項1において、透明電極の膜厚が50
0Å以上互いに異なる一対の基板を用いる液晶表示素子
の製造方法。
2. The transparent electrode according to claim 1, wherein the film thickness of the transparent electrode is 50.
A method of manufacturing a liquid crystal display device using a pair of substrates different from each other by 0Å or more.
【請求項3】請求項1において、ネマチック液晶にピリ
ミジン骨格を含む液晶化合物を混合させる液晶表示素子
の製造方法。
3. The method for producing a liquid crystal display device according to claim 1, wherein a nematic liquid crystal is mixed with a liquid crystal compound having a pyrimidine skeleton.
【請求項4】請求項1において、高分子膜としてピリミ
ジン骨格を含むポリアミック酸を用いる液晶表示素子の
製造方法。
4. The method for producing a liquid crystal display device according to claim 1, wherein the polymer film is a polyamic acid containing a pyrimidine skeleton.
【請求項5】請求項1において、複数枚の液晶表示素子
を重ねて紫外光照射する液晶表示素子の製造方法。
5. The method for manufacturing a liquid crystal display device according to claim 1, wherein a plurality of liquid crystal display devices are superposed and irradiated with ultraviolet light.
【請求項6】請求項1において、紫外光照射のための光
源として高圧,低圧水銀灯を用いる液晶表示素子の製造
方法。
6. The method of manufacturing a liquid crystal display device according to claim 1, wherein a high-pressure and low-pressure mercury lamp is used as a light source for ultraviolet light irradiation.
【請求項7】請求項1において、紫外光照射のための光
源としてキセノンランプを用いる液晶表示素子の製造方
法。
7. The method for manufacturing a liquid crystal display device according to claim 1, wherein a xenon lamp is used as a light source for irradiating ultraviolet light.
JP29839392A 1992-11-09 1992-11-09 Production of liquid crystal display element Pending JPH06148637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29839392A JPH06148637A (en) 1992-11-09 1992-11-09 Production of liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29839392A JPH06148637A (en) 1992-11-09 1992-11-09 Production of liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH06148637A true JPH06148637A (en) 1994-05-27

Family

ID=17859123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29839392A Pending JPH06148637A (en) 1992-11-09 1992-11-09 Production of liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH06148637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615261B2 (en) 2004-12-30 2009-11-10 Lg Display Co., Ltd. Method of forming alignment layer in liquid crystal display device
WO2011099215A1 (en) * 2010-02-09 2011-08-18 シャープ株式会社 Liquid crystal display panel manufacturing method and liquid crystal display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615261B2 (en) 2004-12-30 2009-11-10 Lg Display Co., Ltd. Method of forming alignment layer in liquid crystal display device
WO2011099215A1 (en) * 2010-02-09 2011-08-18 シャープ株式会社 Liquid crystal display panel manufacturing method and liquid crystal display panel
JP5404820B2 (en) * 2010-02-09 2014-02-05 シャープ株式会社 Manufacturing method of liquid crystal display panel

Similar Documents

Publication Publication Date Title
JPH08122792A (en) Preparation of substrate for liquid crystal display device, preparation of liquid crystal display device and liquid crystal display device
JPH08328005A (en) Liquid crystal oriented film, treatment of liquid crystal oriented film, liquid crystal holding substrate, liquid crystal display element, production of liquid crystal display element and material for liquid crystal oriented film
JPH06148637A (en) Production of liquid crystal display element
KR101053303B1 (en) Inspection device and inspection method of liquid crystal display
JP2000227595A (en) Production of liquid crystal display device
JPH037913A (en) Liquid crystal oriented film and production thereof and liquid crystal display device using this film
JPH0854629A (en) Liquid crystal display element and its production
JP2001296528A (en) Liquid crystal display device
JP3130570B2 (en) Liquid crystal display device
JPH0240623A (en) Manufacture of liquid crystal display element
KR20020041592A (en) Method for fabricating smetic liquid crystal display device
US20160131936A1 (en) Liquid crystal display panel and method of manufaturing same
JP2610259B2 (en) Liquid crystal display manufacturing method
JPS60113213A (en) Manufacture of liquid crystal display element
KR100407778B1 (en) OCB mode LCD by photo Allgnment Technology
JPH04127126A (en) Ferroelectric liquid crystal device
JPH0950034A (en) Liquid crystal display device and its production
JPH06273708A (en) Liquid crystal display element
KR100255071B1 (en) Method of forming an optical alignment film of a liquid crystal display device
JPH05232476A (en) Liquid crystal display element
JPH06273710A (en) Liquid crystal display element
KR100212287B1 (en) Display device using ki solution
JP3538075B2 (en) Method for manufacturing liquid crystal electro-optical device
KR20050030395A (en) Alignment layer material and the method of forming the alignment layer thereof
KR20040057247A (en) Liquid crystal display device and method for fabricating the same