JPH06148264A - Measuring method for leakage current - Google Patents

Measuring method for leakage current

Info

Publication number
JPH06148264A
JPH06148264A JP4294134A JP29413492A JPH06148264A JP H06148264 A JPH06148264 A JP H06148264A JP 4294134 A JP4294134 A JP 4294134A JP 29413492 A JP29413492 A JP 29413492A JP H06148264 A JPH06148264 A JP H06148264A
Authority
JP
Japan
Prior art keywords
power source
voltage
relay
power supply
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4294134A
Other languages
Japanese (ja)
Inventor
Yoshiteru Nakayama
巧輝 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP4294134A priority Critical patent/JPH06148264A/en
Publication of JPH06148264A publication Critical patent/JPH06148264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To determine accepted or rejected products by a method wherein a resistance and a relay are connected in series to a power source terminal and a comparator and voltage drops by the product of a leak current and the resistance are compared to measure the leak current. CONSTITUTION:A relay 3 is turned ON to set and apply a desired voltage to a power source supply unit 5 and a time-sharing pattern is inputted into an input terminal 12 of a semiconductor IC device 2 to be measured with a driver 8. At the same time, the internal condition is outputted in time division at an output terminal 11 to complete the internal setting for the measurement of a leakage current of a static power source comparing the results. A voltage drop attributed to an operation power source current Idd flowing through the relay 3 during the setting is almost zero and the voltage at a power source terminal 10 gives a set applied voltage of a unit 5, so that sufficient supply of the power source becomes possible to enable the realization of a normal internal setting. When the internal setting is completed and a static state enters, with the turning OFF of the relay 3, a static power source leakage current Ids of the device 2 flows through a resistance 4 to generate a voltage drop RXIds. The drop voltages thus obtained are compared 6 to judge acceptable or rejected products.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路デバイ
ス等のリーク電流の測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a leak current of a semiconductor integrated circuit device or the like.

【0002】[0002]

【従来の技術】図2は従来の半導体集積回路デバイスの
静止電源リーク電流の測定方法の構成を示す図である。
2. Description of the Related Art FIG. 2 is a diagram showing a configuration of a conventional method for measuring a quiescent power supply leakage current of a semiconductor integrated circuit device.

【0003】図2に示すように、従来の測定方法は、被
測定半導体集積回路デバイス21の電源端子VDDがL
SIテスター22の電流測定回路のDCユニット23と
電源供給ユニット24にリレー25を通じて接続され、
さらに被測定半導体集積回路デバイス21の入力端子は
LSIテスター22のドライバーユニット26に、また
被測定半導体集積回路デバイス21の出力端子はLSI
テスター22のコンパレータユニット27に接続され
る。
As shown in FIG. 2, according to the conventional measuring method, the power supply terminal VDD of the semiconductor integrated circuit device 21 to be measured is L.
The DC unit 23 of the current measuring circuit of the SI tester 22 and the power supply unit 24 are connected through the relay 25,
Further, the input terminal of the semiconductor integrated circuit device 21 under test is the driver unit 26 of the LSI tester 22, and the output terminal of the semiconductor integrated circuit device 21 under test is the LSI.
It is connected to the comparator unit 27 of the tester 22.

【0004】このように構成された従来の静止電源リー
クの測定方法について説明する。被測定半導体集積回路
デバイス21の静止電源リーク電流の測定を行うために
は、先ずLSIテスター22のリレー25をDCユニッ
ト23側に接続し、LSIテスター22のドライバーユ
ニット26より被測定半導体集積回路デバイス21の入
力端子にDCユニット23による印加電圧と同一レベル
の電圧またはGNDレベルの電圧を印加し静止電源リー
ク電流の測定を行う。
A conventional static power supply leak measuring method configured as described above will be described. In order to measure the static power supply leakage current of the semiconductor integrated circuit device under test 21, the relay 25 of the LSI tester 22 is first connected to the DC unit 23 side, and the semiconductor integrated circuit device under test is measured by the driver unit 26 of the LSI tester 22. A voltage of the same level as the voltage applied by the DC unit 23 or a voltage of GND level is applied to the input terminal 21 of the DC unit 23 to measure the static power supply leak current.

【0005】また、被測定半導体集積回路デバイス21
の内部回路の構成上、内部状態の設定が必要となる場合
はLSIテスター22のドライバーユニット26より、
あらかじめ時間分割した内部設定入力情報をパターン化
しスタートさせる。
Further, the semiconductor integrated circuit device 21 under test is measured.
When it is necessary to set the internal state due to the configuration of the internal circuit of the driver unit 26 of the LSI tester 22,
The internal setting input information, which is time-divided in advance, is patterned and started.

【0006】スタート後の被測定半導体集積回路デバイ
ス21の出力端子の出力情報をLSIテスター22のコ
ンパレータユニット27により、あらかじめ時間分割し
た内部設定出力情報パターンとを比較しながら正常に動
作しているかをチェックし内部状態の設定を終了する。
その時点でDCユニットにより静止電源リーク電流の測
定を行う。
After the start, the comparator unit 27 of the LSI tester 22 compares the output information of the output terminal of the semiconductor integrated circuit device 21 to be measured with the internally set output information pattern which is time-divided in advance to check whether or not it is operating normally. Check to finish setting the internal state.
At that time, the static power supply leak current is measured by the DC unit.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の構成において、被測定半導体集積回路デバイス21
の内部回路の設定が必要な場合は、内部設定用のパター
ンを動作させる必要があり、そのときの被測定半導体集
積回路デバイス21の電源供給電源となるのは、LSI
テスター22のDCユニット23による印加電圧とな
る。
However, in the above-mentioned conventional configuration, the semiconductor integrated circuit device 21 under test is measured.
If it is necessary to set the internal circuit of the LSI, it is necessary to operate the internal setting pattern. At that time, the power supply source of the semiconductor integrated circuit device under test 21 is the LSI.
The voltage is applied by the DC unit 23 of the tester 22.

【0008】LSIテスター22のDCユニット23は
被測定電流の大きさによって種々の測定レンジを備えて
いるが、静止電源リーク電流といった微少電流を測定す
る場合はその値に近いレンジが最適であり、大きなレン
ジで測定すると精度が劣ってしまい正確な測定は不可能
である。
The DC unit 23 of the LSI tester 22 has various measurement ranges depending on the magnitude of the current to be measured, but when measuring a minute current such as a static power supply leak current, the range close to that value is the optimum. When measuring in a large range, the accuracy is poor and accurate measurement is impossible.

【0009】その結果、微少電流を測定するために小さ
な測定レンジで内部設定用のパターンを動作させると被
測定半導体集積回路デバイス21の動作電源電流とな
り、大きな電流が流れてしまって、正常に内部設定が行
われず、リーク電流を測定することが困難であるという
問題があった。
As a result, when the pattern for internal setting is operated in a small measurement range to measure a minute current, it becomes an operating power supply current of the semiconductor integrated circuit device 21 to be measured, and a large current flows, so that the internal circuit operates normally. There is a problem that it is difficult to measure the leak current because the setting is not performed.

【0010】この発明の目的は、上記従来の問題点を解
決するものであり、内部設定のために大きな電源電流容
量を必要とする被測定半導体集積回路デバイス等のリー
ク電流の測定方法を提供することである。
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a method for measuring a leak current of a semiconductor integrated circuit device under test or the like which requires a large power supply current capacity for internal setting. That is.

【0011】[0011]

【課題を解決するための手段】この発明の測定方法は、
LSIテスターの電源供給ユニットから並列に接続され
た抵抗とリレーを直列に被測定半導体集積回路デバイス
の電源端子およびLSIテスターのコンパレータに接続
することによって、被測定半導体集積回路デバイスのリ
ーク電流を測定するものである。
The measuring method of the present invention comprises:
The leak current of the semiconductor integrated circuit device under test is measured by connecting the resistor and the relay connected in parallel from the power supply unit of the LSI tester in series to the power supply terminal of the semiconductor integrated circuit device under test and the comparator of the LSI tester. It is a thing.

【0012】[0012]

【作用】この発明の構成によれば、リーク電流と抵抗と
の積による電圧降下をコンパレータによって、電圧比較
を行うことでリーク電流を測定し、良品か不良品かを決
定することができる。
According to the structure of the present invention, the voltage drop due to the product of the leak current and the resistance is compared with the voltage by the comparator to measure the leak current and determine whether the product is a good product or a defective product.

【0013】[0013]

【実施例】以下、この発明の一実施例について図面を参
照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は、この発明の一実施例の静止電源リ
ーク電流の測定方法を示す構成図である。
FIG. 1 is a block diagram showing a method of measuring a static power supply leakage current according to an embodiment of the present invention.

【0015】図1において、1はLSIテスター、2は
被測定半導体集積回路デバイス、3はリレー、4は抵抗
を示す。またLSIテスター内部の5は電源供給ユニッ
ト、6と7はコンパレータ、8はドライバー、9はGN
Dを示す。また、被測定半導体集積回路デバイス2の1
0は電源端子、11は出力端子、12は入力端子、13
はGND端子を示す。
In FIG. 1, 1 is an LSI tester, 2 is a semiconductor integrated circuit device under test, 3 is a relay, and 4 is a resistor. In the LSI tester, 5 is a power supply unit, 6 and 7 are comparators, 8 is a driver, and 9 is GN.
D is shown. In addition, 1 of the semiconductor integrated circuit device 2 under test is measured.
0 is a power supply terminal, 11 is an output terminal, 12 is an input terminal, 13
Indicates a GND terminal.

【0016】以下、このように構成した静止電源リーク
電流の測定方法について説明する。先ず、リレー3をオ
ンにし、次にLSIテスター1の電源供給ユニット5を
目的の印加電圧に設定し印加する。ここで電源供給ユニ
ット5は大きな電流供給ができるものである。次にLS
Iテスター1のドライバー8によって時分割パターンを
被測定半導体集積回路デバイス2の入力端子12に入力
すると、それと同時に出力端子11に内部状態が時分割
に出力される。この出力がLSIテスター1のコンパレ
ータ2によって比較されながら静止電源リーク電流測定
のための内部設定が完了する。
The method of measuring the static power supply leakage current thus configured will be described below. First, the relay 3 is turned on, and then the power supply unit 5 of the LSI tester 1 is set to a target applied voltage and applied. Here, the power supply unit 5 can supply a large current. Then LS
When the time-division pattern is input to the input terminal 12 of the semiconductor integrated circuit device 2 to be measured by the driver 8 of the I tester 1, at the same time, the internal state is time-divisionally output to the output terminal 11. While this output is being compared by the comparator 2 of the LSI tester 1, the internal setting for measuring the static power supply leakage current is completed.

【0017】この設定時に流れる動作電源電流Iddはリ
レー3に流れるためこれによる電圧降下はほぼ零であ
る。従って、被測定半導体集積回路デバイス2の電源端
子10にかかる電圧はLSIテスター1の電源供給ユニ
ット5の設定印加電圧となり、十分に電源供給が可能と
なり正常な内部設定が実現できる。
Since the operating power supply current Idd flowing in this setting flows in the relay 3, the voltage drop due to this is almost zero. Therefore, the voltage applied to the power supply terminal 10 of the semiconductor integrated circuit device 2 to be measured becomes the set applied voltage of the power supply unit 5 of the LSI tester 1, and the power can be sufficiently supplied to realize the normal internal setting.

【0018】次に、正常に内部設定が完了し静止状態に
入った時点でリレー3をオフにする。
Next, the relay 3 is turned off when the internal setting is completed normally and the stationary state is entered.

【0019】リレー3をオフすると被測定半導体集積回
路デバイス2の静止電源リーク電流Idsは抵抗4を流
れ、電圧降下R×Idsを発生する。この電圧降下はLS
Iテスター1のコンパレータ1によって比較され、良品
か不良品かの判定をすることができるものである。
When the relay 3 is turned off, the quiescent power supply leakage current Ids of the semiconductor integrated circuit device 2 under measurement flows through the resistor 4 to generate a voltage drop R × Ids. This voltage drop is LS
The comparator 1 of the I tester 1 makes a comparison to determine whether the product is a good product or a defective product.

【0020】[0020]

【発明の効果】この発明の測定方法によれば、被測定デ
バイスの電源端子に直列に接続された抵抗に流れるリー
ク電流と抵抗との積による電圧降下をコンパレータによ
って、電圧比較を行うことで良品か不良品かが決定され
る測定方法を実現することができる。
According to the measuring method of the present invention, the voltage drop due to the product of the resistance and the leak current flowing through the resistor connected in series to the power supply terminal of the device under test is compared by the comparator to determine the non-defective product. It is possible to realize a measuring method that determines whether the product is defective or defective.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の静止電源リーク電流の測
定方法の構成を示す図
FIG. 1 is a diagram showing a configuration of a method for measuring a quiescent power source leakage current according to an embodiment of the present invention.

【図2】従来の静止電源リーク電流の測定方法の構成を
示す図
FIG. 2 is a diagram showing a configuration of a conventional static power supply leakage current measuring method.

【符号の説明】[Explanation of symbols]

1 LSIテスター 2 被測定半導体集積回路デバイス 3 リレー 4 抵抗R 1 LSI tester 2 Semiconductor integrated circuit device under test 3 Relay 4 Resistance R

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】LSIテスターの電源供給ユニットから並
列に接続された抵抗とリレーを直列に被半導体集積回路
デバイスの電源端子およびLSIテスターのコンパレー
タに接続され、静止電源リーク電流と本抵抗との積によ
る電圧降下をコンパレータによって電圧比較を行うこと
を特徴とするリーク電流の測定方法。
1. A resistor and a relay connected in parallel from a power supply unit of an LSI tester are connected in series to a power supply terminal of a semiconductor integrated circuit device and a comparator of an LSI tester, and a product of a quiescent power supply leakage current and a main resistance. A method for measuring leak current, characterized in that the voltage drop due to voltage is compared by a comparator.
JP4294134A 1992-11-02 1992-11-02 Measuring method for leakage current Pending JPH06148264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4294134A JPH06148264A (en) 1992-11-02 1992-11-02 Measuring method for leakage current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4294134A JPH06148264A (en) 1992-11-02 1992-11-02 Measuring method for leakage current

Publications (1)

Publication Number Publication Date
JPH06148264A true JPH06148264A (en) 1994-05-27

Family

ID=17803747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4294134A Pending JPH06148264A (en) 1992-11-02 1992-11-02 Measuring method for leakage current

Country Status (1)

Country Link
JP (1) JPH06148264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879176B1 (en) 2003-11-04 2005-04-12 Solid State Measurements, Inc. Conductance-voltage (GV) based method for determining leakage current in dielectrics
US7688100B2 (en) 2008-06-30 2010-03-30 Freescale Semiconductor, Inc. Integrated circuit and a method for measuring a quiescent current of a module
CN109991521A (en) * 2019-04-04 2019-07-09 惠州雷曼光电科技有限公司 Light emitting diode detection circuit and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879176B1 (en) 2003-11-04 2005-04-12 Solid State Measurements, Inc. Conductance-voltage (GV) based method for determining leakage current in dielectrics
US7688100B2 (en) 2008-06-30 2010-03-30 Freescale Semiconductor, Inc. Integrated circuit and a method for measuring a quiescent current of a module
CN109991521A (en) * 2019-04-04 2019-07-09 惠州雷曼光电科技有限公司 Light emitting diode detection circuit and device
CN109991521B (en) * 2019-04-04 2021-01-22 惠州雷曼光电科技有限公司 Light emitting diode detection circuit and device

Similar Documents

Publication Publication Date Title
US5731700A (en) Quiescent power supply current test method and apparatus for integrated circuits
JPH09211088A (en) Method and apparatus for detecting fault in cmos integrated circuit
KR20010020388A (en) Integrated circuit tester with compensation for leakage current
US20010005143A1 (en) Configuration for measurement of internal voltages in an integrated semiconductor apparatus
JPH06148264A (en) Measuring method for leakage current
JP2919147B2 (en) Test method for semiconductor integrated circuit
US6037796A (en) Current waveform analysis for testing semiconductor devices
US6703854B2 (en) Burn-in apparatus having average voltage calculating circuit
JPH11142471A (en) Burn-in test method and burn-in test device
US6949946B1 (en) Integrated semiconductor circuit and method for functional testing of pad cells
JP2730504B2 (en) Test probe pin contact failure judgment method and in-circuit tester
JP2000258490A (en) Device testing system
JP3372488B2 (en) Test device for semiconductor CMOS integrated circuit
JP2000165244A (en) Semiconductor integrated circuit device
JP2003084048A (en) Testing device for semiconductor
US4686462A (en) Fast recovery power supply
US5990699A (en) Method for detecting opens through time variant current measurement
JP4909192B2 (en) Capacitor capacity measuring device
JPS63147666A (en) Testing device for thermal head substrate
JPH05273298A (en) Semiconductor integrated circuit device and its test method
KR20020071449A (en) Semiconductor tester, semiconductor intergrated circuit and semiconductor testing method
JPH05107321A (en) Measuring device for integrated circuit
JPH06109806A (en) Tester for evaluating semiconductor
KR19990048279A (en) Leakage current inspection method and device by voltage measurement
JPH0524222Y2 (en)