JPH06147937A - Pmv display method by thermal environment sensor - Google Patents

Pmv display method by thermal environment sensor

Info

Publication number
JPH06147937A
JPH06147937A JP29721692A JP29721692A JPH06147937A JP H06147937 A JPH06147937 A JP H06147937A JP 29721692 A JP29721692 A JP 29721692A JP 29721692 A JP29721692 A JP 29721692A JP H06147937 A JPH06147937 A JP H06147937A
Authority
JP
Japan
Prior art keywords
temperature
pmv
sensor
radiation
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29721692A
Other languages
Japanese (ja)
Inventor
Kiyotsugu Kanou
喜代継 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP29721692A priority Critical patent/JPH06147937A/en
Publication of JPH06147937A publication Critical patent/JPH06147937A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain PMV value that changes according only to air temperature, wind speed and temperature by calculating, with a specified equation, PMV's air temperature sensitivity, sensor temperature, offset amount and the temperature at which PMV becomes zero when no radiation exist, which indicate confortableness. CONSTITUTION:Temperature Ts indicated by a thermal environment sensor is approximated to Ts=ta+ArXDELTAtr+OF when effect of radiation is linearized. However, ta is air temperature, Ar is a coefficient that relates radiation with sensor output (function of wind speed), and DELTAtr is tr-ta (tr is radiation temperature). Meanwhile, assuming that the temperature at which PMV corresponds to zero is ta#, a constant relating to temperature ta decided by amount of warn clothes, amount of activity and wind speed is Bt, and a constant relating to radiation decided by the amount of worn clothes, the amount of activity and wind speed is Br, the approximation PMV=Bt(ta-ta#)+BrXDELTAtr is obtained. Assuming that DELTAtr=0 and substituting the former equation for the latter equation, PMV=Bt (Ts-OF-ta#), and from reduction temperature of thermal environment sensor, PMV is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱環境センサに関し、特
に該センサによるPMVの表示方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal environment sensor, and more particularly to a method of displaying PMV by the sensor.

【0002】[0002]

【従来の技術】図8は熱環境センサの従来構成図を示す
ものである。熱環境を熱抵抗体10で仕切り、その裏面
側に定出力のヒータ20を配置し、更に、上記熱抵抗体
10の内部または上記ヒータ側側面に配置した温度セン
サ30の出力を熱環境変化として出力するものである。
2. Description of the Related Art FIG. 8 shows a conventional configuration of a thermal environment sensor. The thermal environment is partitioned by the thermal resistor 10, the constant output heater 20 is disposed on the back side thereof, and the output of the temperature sensor 30 disposed inside the thermal resistor 10 or on the heater side surface is used as the thermal environment change. It is what is output.

【0003】このような構成によって、熱環境空間に空
気の流れ(風速)があると熱抵抗体20の温度が下が
り、これによって、温度センサ30に表れる値は、気温
の変化の他、風速の要素をも含むことになる。
With such a configuration, when there is a flow of air (wind velocity) in the thermal environment space, the temperature of the thermal resistor 20 decreases, so that the value displayed on the temperature sensor 30 varies depending on the wind velocity as well as the temperature change. It will also include elements.

【0004】また、壁等よりの熱輻射あるいは、冷輻射
がある場合には、上記熱抵抗体10の温度は上昇又は下
降して温度センサ30にその影響が表れる。従って、上
記温度センサ30は、単に気温のみでなく気流(風速)
や放射による体感温度をも表していることになる。
When there is heat radiation or cold radiation from a wall or the like, the temperature of the thermal resistor 10 rises or falls and the temperature sensor 30 is affected. Therefore, the temperature sensor 30 is used not only for the temperature but also for the air flow (wind speed).
It also means the sensible temperature due to radiation.

【0005】[0005]

【発明が解決しようとする課題】熱環境を表す指標とし
て、従来のように温度で表す方法、着衣量、活動量、湿
度、風速、輻射を考慮した快適度を示したPMV(Predi
cate Mean Vate) 値、更に、着衣量、活動量、湿度、風
速、輻射が標準状態(着衣量clo =0.6 、活動量Met =
1.0 〜1.2 、湿度RH=50%、風速Var =0.1 〜0.15m/
sec )のときの人の生理状態と等価な室温であるSET *
等がある。このうち、国際標準規格では、国際的に広く
用いられるPMV(ISO:No,7730 )が採用されている。
As an index of the thermal environment, PMV (Predi) which indicates the conventional method of expressing by temperature, the amount of clothing, the amount of activity, the humidity, the wind speed, and the comfort level in consideration of radiation
cate Mean Vate) value, as well as clothing, activity, humidity, wind speed, and radiation in standard conditions (clothing clo = 0.6, activity Met =
1.0 to 1.2, humidity RH = 50%, wind speed Var = 0.1 to 0.15 m /
sec *, which is the room temperature equivalent to the physiological state of the human at SET *
Etc. Among them, in the international standard, PMV (ISO: No, 7730) widely used internationally is adopted.

【0006】上記構成の熱環境センサを用いて、風速や
輻射の影響を考慮した体感温度を得たとしても、その温
度はその環境にいる人間が現在の環境を快適に感じてい
るいるか否かを表しているものではない。逆にPMVは
人間が現在の環境を快適に感じているいるか否かを表し
ているが、該PMVを直接測定するセンサは少なく、あ
っても高価であるのが現状である。更に、上記PMVを
計算にて算出する場合、それを導き出す論理式に諸条件
(着衣表面温度tcl、気温ta、輻射温度tr等)を入
れて計算していたに過ぎず、その計算は複雑であった。
Even if the thermal environment sensor having the above-mentioned configuration is used to obtain a sensible temperature in consideration of the influence of wind speed and radiation, the temperature is determined whether or not a person in the environment is comfortable with the current environment. Does not represent On the other hand, the PMV represents whether or not a person feels comfortable in the current environment, but there are few sensors that directly measure the PMV, and at the present time, it is expensive. Further, when calculating the PMV by calculation, the calculation is complicated only by adding various conditions (clothing surface temperature t cl , air temperature ta, radiation temperature tr, etc.) to a logical formula for deriving the PMV. Met.

【0007】また、上記従来の熱環境センサでは湿度の
影響をその出力に表すことができないが、PMVは湿度
の大きさを考慮した快適度を表している。本発明は、上
記従来の事情に鑑みて提案されたものであって、PMV
を従来から使用されている熱環境センサ出力を用いて演
算する方法を提供し、併せて湿度条件をも含むPMVを
提供することを目的とするものである。
Further, although the above-mentioned conventional thermal environment sensor cannot express the influence of humidity in its output, PMV represents the degree of comfort considering the magnitude of humidity. The present invention has been proposed in view of the above conventional circumstances, and PMV
It is an object of the present invention to provide a method for calculating the above using the output of a thermal environment sensor that has been used conventionally, and to provide a PMV that also includes a humidity condition.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために以下の手段を採用している。すなわち、熱環
境空間と熱収支を行う熱抵抗体10と該熱抵抗体の10
の一方の側に配置した定出力のヒータ20と、上記熱抵
抗体10の内部又はヒータ側表面に配置された温度セン
サ30とよりなる熱環境センサにおいて、 PMV=Bt(Ts −OF−ta # ) Bt :PMVの気温感度(風速、着衣量、活動量によっ
て決まる定数) Ts :センサ温度 OF:オフセット分 ta #:: 輻射が無い場合PMVが零となる温度 によって気温、風速、輻射のみに変化するPMVの値を
演算するようにしたものである。
The present invention employs the following means in order to achieve the above object. That is, the thermal resistor 10 for performing heat balance with the thermal environment space and the thermal resistor 10
PMV = B t (T s -OF-) in a thermal environment sensor including a constant output heater 20 disposed on one side of the heat resistor 10 and a temperature sensor 30 disposed inside the thermal resistor 10 or on the heater side surface. t a # ) B t : PMV temperature sensitivity (constant determined by wind speed, amount of clothing, activity amount) T s : Sensor temperature OF: Offset amount ta a # :: Temperature when PMV becomes zero when there is no radiation, The value of PMV that changes only in wind speed and radiation is calculated.

【0009】また、上記輻射が無い状態で、PMVが零
となる温度ta # を湿度の大きさに対応させて変え、P
MVに湿度変化の要件内容を含ませるようにする。
Further, in the absence of the above radiation, the temperature t a # at which PMV becomes zero is changed according to the magnitude of humidity, and P
Make sure that the MV includes the requirement for humidity change.

【0010】[0010]

【作用】熱環境センサの示す温度Ts は輻射の効果を線
形化すれば、 TS =ta +Ar ×Δtr +OF ……(3) ta :気温 Ar :輻射とセンサ出力を関連付ける係数(風速の関
数) Δtr :tr −ta (tr :輻射温度) OF:オフセット分 と近似できる。この式において、tr =ta すなわち輻
射の影響零の条件下では、図1(b) に示すようにセンサ
温度Ts は気温ta に比例する。
[Action] is the temperature T s showing thermal environment sensor if linearize the effect of radiation, T S = t a + A r × Δt r + OF ...... (3) t a: Temperature A r: associate radiation sensor output factor (a function of wind speed) Δt r: t r -t a (t r: radiation temperature) oF: can be approximated with offset. In this equation, under the condition that t r = t a, that is, the influence of radiation is zero, the sensor temperature T s is proportional to the air temperature t a as shown in FIG. 1 (b).

【0011】一方、PMVは、気温ta とPMVが0に
対応する温度ta # との差ta −ta # と、着衣量、活動
量、風速によって決まる気温ta に関する定数Bt 、着
衣量、活動量、風速によって決まる輻射に関する定数B
r を用いて(Bt 、Br に関しては実施例中の式(7)
参照) PMV=Bt(ta −ta # )+Br ×Δtr ……(7) による式で同様に近似できる。ここで、ta =tr すな
わち輻射の影響を受けない条件下ではPMVは上記セン
サ温度Ts と同様図2(b) に示すように気温taに比例
する。
On the other hand, PMV is the temperature taAnd PMV becomes 0
Corresponding temperature ta #Difference ta-Ta #And the amount of clothes, activities
Temperature t determined by volume and wind speedaConstant B fortWearing
Radiation constant B determined by clothing amount, activity amount, and wind speed
rUsing (Bt, BrFor the formula (7) in the examples
See) PMV = Bt(Ta-Ta #) + Br× Δtr …… (7) can be approximated in the same way. Where ta= Trsand
Under the condition that is not affected by radiation, PMV
Temperature TsAs in Fig. 2 (b), the temperature taProportional to
To do.

【0012】上記(3)式よりセンサ温度Ts は気温t
aに比例し、また、(7)式よりPMVも気温ta に比
例する。従って、センサ温度TS とPMVは、両者を結
合する条件を適当に設定すれば、相互に関連付けられる
ことになる。
From the above equation (3), the sensor temperature T s is the temperature t
proportional to a, also proportional to the even temperature t a PMV from (7). Therefore, the sensor temperatures T S and PMV will be associated with each other if the conditions for coupling them are set appropriately.

【0013】そこで、上記条件としてセンサの気温感度
をPMVの気温感度に合わせるようにすると、 PMV=Bt(Ts −OF−ta # ) ……(8) なる式でPMVとセンサ温度TS を関連付けることがで
きる。
[0013] Therefore, when such match the temperature sensitivity of the sensor as the condition to temperature sensitivity PMV, PMV = B t (T s -OF-t a #) PMV with ...... becomes (8) wherein the sensor temperature T S can be associated.

【0014】また、湿度によって上記PMVが零となる
a # を変化させることによって、湿度の変化をPMV
に含ませることが加納となる。
Further, by changing t a # at which the PMV becomes zero according to the humidity, the change in the humidity is changed to PMV.
It will be included in.

【0015】[0015]

【実施例】図1(a) に示すモデルにおいてセンサと環境
の熱平衡状態は q :センサ発熱量 tf :センサ表面温度 TS :センサ出力 R :センサ熱抵抗 Δtr:tr −ta として、輻射の効果を線形化すると以下のように近似で
きる。
DETAILED DESCRIPTION FIG. 1 thermal equilibrium state of the sensor and the environment in the model shown in (a) q: sensor calorific value t f: sensor surface temperature T S: sensor output R: as t r -t a: sensor thermal resistance Delta] t r , When the effect of radiation is linearized, it can be approximated as follows.

【0016】 q=αc(tf −ta )+αr(tf −tr )……(1) q=(Ts −tf )/R ……(2) (1)、(2)式よりtf を消去すれば、 TS =ta +Ar ・Δtr +OF ……(3) となる。ここで、Q = α c (t f −t a ) + α r (t f −t r ) ... (1) q = (T s −t f ) / R (2) (1), (2 If t f is deleted from the equation), T S = t a + A r · Δt r + OF (3) here,

【0017】[0017]

【数1】 [Equation 1]

【0018】すなわち、図1(b) に示すようにta =t
r としたときセンサ温度Ts は気温ta の変化に対して
直線的に変化する。一方、PMVによる人体モデルと環
境の熱平衡を示す図2(b) について考える。
That is, as shown in FIG. 1 (b), t a = t
sensor temperature T s when the r varies linearly with changes in temperature t a. On the other hand, consider Fig. 2 (b), which shows the thermal equilibrium between the human body model and the environment by PMV.

【0019】H :代謝量−呼吸による放熱−皮膚から
の放熱 tcl:着衣表面温度 ts :皮膚温度 ICl:着衣熱抵抗 c :正規化定数 Δtr =tr −ta として、輻射の効果を線形近似すると、以下のように近
似できる。
[0019] H: metabolism - heat release by breathing - heat radiation from the skin t cl: clothes surface temperature t s: skin temperature I Cl: clothing thermal resistance c: a normalizing constant Δt r = t r -t a, radiation The effect can be approximated as follows by linear approximation.

【0020】 H=βc(tcl−ta )+βr(tcl−tr ) ……(4) 〔βc:人体モデルの対流熱伝達係数、βr:人体モデル
の輻射熱伝達係数〕 H=(tS −tCl)/ICl ……(5) (4)式の左辺から右辺を引くと、 PMV=c{H−βc(tcl−ta )−βr(tcl−tr )}……(6) となり、ここで、cはPMVが所定の値(−3〜+3)
の間に入るようにするための正規化定数である。更に、
(4),(5),(6)式よりtclを消去すると,
H = β c (t cl −t a ) + β r (t cl −t r ) ... (4) [β c : convective heat transfer coefficient of human body model, β r : radiant heat transfer coefficient of human body model] H = (t S −t Cl ) / I Cl (5) Subtracting the right side from the left side of the equation (4), PMV = c {H−β c (t cl −t a ) −β r (t cl −t r )} (6), where c is a predetermined value of PMV (−3 to +3)
It is a normalization constant for entering between. Furthermore,
When t cl is eliminated from the equations (4), (5), and (6),

【0021】[0021]

【数2】 [Equation 2]

【0022】とすると PMV=Bt(ta −ta # )+Br × Δt r ……(7) となる。Then, PMV = B t (t a −t a # ) + B r × Δt r (7)

【0023】この(7)式はta =tr とすると図2
(b) に示すように直線で表される。そこで、図1(b) と
図2(b) を比較すると、PMVもセンサ内部温度TS
いずれも直線で表すことができ、条件を適当に選択する
と相互に整合できることが理解できる。
[0023] The expression (7) When t a = t r 2
It is represented by a straight line as shown in (b). Therefore, by comparing FIG. 1 (b) and FIG. 2 (b), it can be understood that both the PMV and the sensor internal temperature T S can be represented by a straight line, and can be matched with each other if the conditions are appropriately selected.

【0024】そこで、熱環境センサの気温感度を人体モ
デルの気温感度と同じにするため、(3)式の両辺にB
t を掛けると、 Bts =Bta +Btr・Δtr +BtOF ……(3′) を得て(7)式 PMV=Bta +BrΔt r−Bta # ……(7) において、Ar =Br/Bt とすると、 PMV=Bt(Ts −OF−ta # ) ……(8) となり、PMVがセンサ温度Ts で表されたことにな
る。
Therefore, in order to make the temperature sensitivity of the thermal environment sensor the same as the temperature sensitivity of the human body model, B is set on both sides of the equation (3).
When multiplied by t, B t T s = B t t a + B t A r · Δt r + B t OF ...... to give (3 ') (7) PMV = B t t a + B r Δt r -B t Table with t a # in ...... (7), a r = B When r / B t, PMV = B t (T s -OF-t a #) ...... (8) next, PMV is the sensor temperature T s It was done.

【0025】ここで、Ar =Br/Bt とするのは、熱
環境センサの輻射感度を人体モデルの輻射感度に合わせ
ることを意味している。図3はta =tr すなわち輻射
を考慮しない状態で着衣量Clo=0.9、活動量Met=
.2、湿度RH50%,風速Var =0.1m/sec の
下でのセンサ出力を用いて上記(8)式を演算した場合
のPMV(四角マーク)とISO( 7730) による理
論値(破線)を示すものであり、理論と実際が一致して
いることが理解できる。
Here, A r = B r / B t means that the radiation sensitivity of the thermal environment sensor is matched with the radiation sensitivity of the human body model. Figure 3 is t a = t r ie clothing amount Clo with no consideration of the radiation zero. 9 activity amount Met =
1.2, humidity RH 50%, the wind speed Var = 0. Theoretical value by 1 m / PMV (square marks) in the case of using the sensor output under calculates the above equation (8) sec and ISO (7730) (dashed line ), It can be understood that the theory and practice are in agreement.

【0026】また図4は活動量Met=1.2、着衣量Cl
o=0.9、気温ta =22.0°C、ta =tr の下で
風速Var を変化させた場合のPMVの理論値(破線)
とセンサ出力(四角マーク)を示すものであり、この場
合もPMVの理論値と実測値がよく一致していることが
理解できる。更に、図5は活動量Met=1.2、着衣量
Clo=0.9、風速Var =0.1m/sec 、気温ta
22.0°C、の下での輻射温度を変化させた場合のP
MVの理論値と実測値を示すものであり、両者がよく一
致している点は上記2つの場合と同じである。
[0026] FIG. 4 is an activity amount Met = 1. 2, amount of clothing Cl
o = 0. 9, the temperature t a = 22.0 ° C, the theoretical value of PMV in the case of changing the wind velocity Var under t a = t r (dashed line)
And the sensor output (square mark) are shown, and it can be understood that the theoretical value of the PMV and the actual measurement value are in good agreement also in this case. Furthermore, Figure 5 is an activity amount Met = 1. 2, amount of clothing Clo = 0. 9, air velocity Var = 0. 1m / sec, air temperature t a =
P when changing the radiant temperature under 22.0 ° C
It shows the theoretical value and the actual measurement value of MV, and the point that they both agree well is the same as in the above two cases.

【0027】更に、図6は本願方法を用いて空調を行っ
た場合のセンサのPMV出力と理論PMV、グローブ温
度(輻射温度)tg 、空内温度ta 、窓際温度tw を示
すものである。窓際温度tw が 昼間に高くなっている
が、PMVは一定に保たれていることが理解できる。
Furthermore, FIG. 6 shows PMV output and theory PMV sensor when performing air conditioning by using the present method, the glove temperature (radiation temperature) t g, empty the temperature t a, the window side temperature t w is there. It can be seen that the window temperature t w is high during the day, but the PMV is kept constant.

【0028】本案に用いる図8に示したセンサーは湿度
の影響を反映することができない。ところが、ISO
(7730)によると風速一定(0.1m/s)の下で
は図7に示すようにPMVと湿度の関係を表わすことが
できる。この図に示すように、風速が一定であれば、湿
度RHが大きくなるに従って、PMV0に対する温度t
a # が低くなる。従って、湿度に対応してta # を小さ
くすることによって、湿度もセンサ出力によるPMVに
反映させることができる。尚、上記図7迄の説明では湿
度を50%に固定している。
The sensor shown in FIG. 8 used in the present invention is a humidity sensor.
Cannot reflect the effects of. However, ISO
According to (7730), under constant wind speed (0.1 m / s)
Can represent the relationship between PMV and humidity as shown in FIG.
it can. As shown in this figure, if the wind speed is constant,
As the temperature RH increases, the temperature t with respect to PMV0 increases.
a #Will be lower. Therefore, ta #Small
By changing the humidity, the humidity can be converted to PMV by the sensor output.
Can be reflected. In addition, in the explanation up to FIG.
The degree is fixed at 50%.

【0029】またISO(7730)によると、Met1
.2、Clo0.9、風速Var0の下での気温ta 、湿度R
H(%)、PMVとの関係は表1で表わすことができ
る。一方、本発明に係る式(8)において、 Bt =(X)RH+(Y) ta # =(V)RH+(W) (X)=0.0003 (Y)=0.2228 (V)=−0.0248 (W)=−23.316 とすると、気温ta 、湿度RH(%)、センサ温度Ts
から、例えば表2に示すようになり、この結果、上記表
1の結果とよく一致し、本発明においてPMVに湿度を
反映させることができることになる。尚、Bt の湿度に
対する影響は非常に小さいのでta # に反映させるだけ
で充分である。
According to ISO (7730), Met1
. 2, Clo0. 9, the temperature t a of the under wind VAR0, humidity R
The relationship between H (%) and PMV can be expressed in Table 1. On the other hand, in the formula (8) according to the present invention, B t = (X) RH + (Y) t a # = (V) RH + (W) (X) = 0.0003 (Y) = 0.2228 (V) = -0.0248 (W) = - When 23.316, temperature t a, humidity RH (%), the sensor temperature T s
Therefore, for example, the results are as shown in Table 2, and as a result, the results are in good agreement with the results in Table 1, and the humidity can be reflected in the PMV in the present invention. Since the influence of B t on the humidity is very small, it is sufficient to reflect it on t a # .

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上、説明したように本発明によると熱
環境センサの検出温度から、PMVを求めることが可能
となり、熱環境センサをより有効に使用することができ
る。更に、熱環境センサのみでは対応できない湿度の変
化にも対応することが可能である。
As described above, according to the present invention, the PMV can be obtained from the temperature detected by the thermal environment sensor, and the thermal environment sensor can be used more effectively. Furthermore, it is possible to deal with a change in humidity that cannot be dealt with by the thermal environment sensor alone.

【図面の簡単な説明】[Brief description of drawings]

【図1】気温とセンサ温度との関係を示すモデルとグラ
フである。
FIG. 1 is a model and graph showing the relationship between air temperature and sensor temperature.

【図2】気温とPMVとの関係を示すモデルとグラフで
ある。
FIG. 2 is a model and a graph showing the relationship between air temperature and PMV.

【図3】本発明による気温とPMVの関係を示すグラフ
である。
FIG. 3 is a graph showing a relationship between air temperature and PMV according to the present invention.

【図4】本発明による風速とPMVとの関係を示すグラ
フである。
FIG. 4 is a graph showing the relationship between wind speed and PMV according to the present invention.

【図5】本発明による輻射温度とPMVとの関係を示す
グラフである。
FIG. 5 is a graph showing the relationship between radiation temperature and PMV according to the present invention.

【図6】本発明による方法を用いた室内空調例を示すグ
ラフである。
FIG. 6 is a graph showing an example of indoor air conditioning using the method according to the present invention.

【図7】本発明による湿度と最適温度との関係を示すグ
ラフである。
FIG. 7 is a graph showing the relationship between humidity and optimum temperature according to the present invention.

【図8】本発明に用いるセンサを示す概念図である。FIG. 8 is a conceptual diagram showing a sensor used in the present invention.

【符号の説明】[Explanation of symbols]

10 熱抵抗体 20 ヒータ 30 センサ 10 Thermal Resistor 20 Heater 30 Sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱環境空間との熱収支を行う熱抵抗体(1
0)と該熱抵抗体(10)の一方の面側に配置した定出力のヒ
ータ(20)と、上記熱抵抗体(10)の内部又はヒータ側表面
に配置された温度センサ(30)とよりなる熱環境センサに
おいて、 PMV=Bt(Ts −OF−ta # ) Bt :PMVの気温感度(風速、着衣量、活動量によっ
て決まる定数) Ts :センサ温度 OF:オフセット分 ta # :輻射がない場合にPMVが零となる温度 によって気温、風速、輻射のみに変化するPMVの値を
センサ温度Ts より演算することを特徴とする熱環境セ
ンサによるPMVの表示方法。
1. A thermal resistor (1) for performing heat balance with a thermal environment space.
0) and a constant output heater (20) disposed on one surface side of the thermal resistor (10), and a temperature sensor (30) disposed inside the thermal resistor (10) or on the heater side surface. in thermal environment sensor comprising more, PMV = B t (T s -OF-t a #) B t: temperature sensitivity PMV (wind speed, amount of clothing, constants determined by the activity amount) T s: sensor temperature oF: offset t a # : A method of displaying a PMV by a thermal environment sensor, which calculates a PMV value that changes only to the temperature, wind speed, and radiation depending on the temperature at which the PMV becomes zero when there is no radiation, from the sensor temperature T s .
【請求項2】 上記輻射が無い場合、PMVが零となる
温度ta # を湿度の大きさに対応させて変え、PMVに
湿度変化の要件内容を含ませる請求項1に記載の熱環境
センサによるPMVの表示方法。
2. The thermal environment sensor according to claim 1, wherein the temperature ta a # at which the PMV becomes zero when there is no radiation is changed corresponding to the magnitude of humidity, and the PMV includes the content of requirement for humidity change. How to display PMV by.
JP29721692A 1992-11-06 1992-11-06 Pmv display method by thermal environment sensor Pending JPH06147937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29721692A JPH06147937A (en) 1992-11-06 1992-11-06 Pmv display method by thermal environment sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29721692A JPH06147937A (en) 1992-11-06 1992-11-06 Pmv display method by thermal environment sensor

Publications (1)

Publication Number Publication Date
JPH06147937A true JPH06147937A (en) 1994-05-27

Family

ID=17843684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29721692A Pending JPH06147937A (en) 1992-11-06 1992-11-06 Pmv display method by thermal environment sensor

Country Status (1)

Country Link
JP (1) JPH06147937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280907A (en) * 1996-04-18 1997-10-31 Mitsubishi Motors Corp Thermal environment measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280907A (en) * 1996-04-18 1997-10-31 Mitsubishi Motors Corp Thermal environment measuring method

Similar Documents

Publication Publication Date Title
US10805987B2 (en) System for determining ambient temperature
JP2575268B2 (en) Apparatus and method for adaptive control of HVAC system
Parsons International standards for the assessment of the risk of thermal strain on clothed workers in hot environments
JP2006194540A (en) Air-conditioning control method using hot/cold feeling predicted value, air conditioner, program for air conditioner, and server device
Mayer Objective criteria for thermal comfort
CN106679122A (en) Air conditioner control method and air conditioner
EP3502582B1 (en) Method for controlling a hvac-apparatus, control unit and use of a control unit
JP2581625B2 (en) Method and apparatus for calculating thermal sensation, method and apparatus for calculating predicted average thermal sensation
KR100565697B1 (en) method for controlling agreeableness quotient in air-conditioning system
JPH04131652A (en) Estimated mean temperature feeling calculation device
Madsen Thermal comfort measurements
JPH06147937A (en) Pmv display method by thermal environment sensor
US5674007A (en) Method for calculating PMV of air conditioning system
CN111741710A (en) Core temperature detection system and method
JPH06347077A (en) Indoor environment control device
WO1992002767A1 (en) Method of computing equivalent temperature and instrument for environment measurement
JPH0587737B2 (en)
JPH0979642A (en) Air conditioning device
KR100204234B1 (en) A sensing device and controlling method with comfortable operation for air conditioner
JPH0510791A (en) Method and device for computing anticipated average feeling temperature
Kon Thermal comfort sensor
EP4224081A1 (en) Temperature load management device, temperature load management method, and computer program
Madsen Thermal environmental parameters and their measurement
JPH06159765A (en) Operation controller for air conditioner
EP4334692A1 (en) Thermal comfort measuring system