JPH0587737B2 - - Google Patents

Info

Publication number
JPH0587737B2
JPH0587737B2 JP61210063A JP21006386A JPH0587737B2 JP H0587737 B2 JPH0587737 B2 JP H0587737B2 JP 61210063 A JP61210063 A JP 61210063A JP 21006386 A JP21006386 A JP 21006386A JP H0587737 B2 JPH0587737 B2 JP H0587737B2
Authority
JP
Japan
Prior art keywords
clothing
temperature
humidity
amount
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61210063A
Other languages
Japanese (ja)
Other versions
JPS6365317A (en
Inventor
Noboru Kobayashi
Masahiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61210063A priority Critical patent/JPS6365317A/en
Publication of JPS6365317A publication Critical patent/JPS6365317A/en
Publication of JPH0587737B2 publication Critical patent/JPH0587737B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば空気調和機により人体に快適
な室内環境を提供する際に、その空気調和機の制
御データとなる温熱環境状態を測定するための温
熱環境測定器の改良に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention measures thermal environmental conditions that serve as control data for the air conditioner, for example, when an air conditioner provides a comfortable indoor environment for the human body. The present invention relates to the improvement of thermal environment measuring instruments for

(従来の技術) 一般に、空気調和機を室内の気温のみに基づい
て制御することにより、室内環境を人体に快適な
温熱状態に維持することには限度があり、その他
の温熱環境因子として気流速(風速)、湿度、輻
射等の各物理量を合わせて実際の居住温熱環境を
評価する必要がある。そして、このような温熱状
態を検知するための温熱環境測定器には、人体の
熱的平衡を拠りどころに、測定器と人体との間に
熱的な相関関係が成立するように製作すべきこと
が要求されるものである。
(Prior art) In general, there is a limit to maintaining the indoor environment in a thermal state that is comfortable for the human body by controlling an air conditioner based only on the indoor temperature. It is necessary to evaluate the actual residential thermal environment by combining physical quantities such as (wind speed), humidity, and radiation. Thermal environment measuring devices used to detect such thermal conditions should be manufactured in such a way that a thermal correlation is established between the measuring device and the human body, based on the thermal equilibrium of the human body. This is what is required.

この種の測定器として、従来、例えば特開昭58
−218624号公報に開示されるように、中空状の球
殻内に電気ヒータを有する発熱体と、該発熱体の
表面温度を測定する温度センサとを備え、電気ヒ
ータへの結電により発熱体に所定の熱量を供給し
た上で、その表面温度を測定することにより、環
境の温熱状態を気温、気流速、輻射を加味して測
定するようにしたものは知られている。
Conventionally, as this type of measuring instrument, for example,
As disclosed in Japanese Patent No. 218624, it is equipped with a heating element having an electric heater in a hollow spherical shell, and a temperature sensor that measures the surface temperature of the heating element, and the heating element is heated by energizing the electric heater. It is known to measure the thermal state of the environment by supplying a predetermined amount of heat to the air and then measuring its surface temperature, taking into account air temperature, air flow velocity, and radiation.

ところで、室内の温熱環境が同じであつても、
季節の変化による衣服の変化や就寝時の寝具の着
用の有無等、ユーザーの着衣量の変化に伴つて体
感は異なる。これは、着衣による熱抵抗が体感に
影響を及ぼすからである。
By the way, even if the indoor thermal environment is the same,
The user's experience differs depending on the amount of clothing the user wears, such as changes in clothing due to seasonal changes and whether or not bedding is worn while sleeping. This is because the thermal resistance caused by clothing affects the physical sensation.

しかし、上記従来のものでは、環境の温熱状態
を気温、気流速、輻射を考慮した体感温度の形で
検知するものであるので、着衣量の変化によつて
体感が異なり、こうした測定器を用いて空気調和
機を制御する場合、着衣量の変化によつてその都
度、快適設定温度を設定し直さねばならないとい
う問題があつた。
However, with the above-mentioned conventional devices, the thermal state of the environment is detected in the form of sensible temperature that takes into account air temperature, air velocity, and radiation, so the sensation differs depending on the amount of clothing worn, so it is difficult to use such a measuring device. When controlling an air conditioner using the air conditioner, there is a problem in that the comfort temperature setting must be reset each time the amount of clothing changes.

また、従来のものでは、温熱環境因子の1つで
ある湿度を考慮していないので、湿度の変化によ
つて体感が異なるという実際の温熱環境を正確に
把握できない不具合もあつた。
In addition, the conventional method does not take humidity, which is one of the thermal environment factors, into account, so there is a problem in that the actual thermal environment cannot be accurately grasped because the physical sensation varies depending on changes in humidity.

そこで、斯かる諸問題を解決するために、本出
願人は、既に、環境の気温、気速流、輻射と共に
湿度、ユーザーの着衣量をも考慮した体感温度を
検知することにより、ユーザーの着衣量又は湿度
に応じた実際の温熱環境を正確に把握できるよう
にしたものを提案している(特願昭60−265325号
並びに特願昭60−265326号の各明細書及び図面参
照)。
Therefore, in order to solve these problems, the present applicant has already developed a system that detects the user's clothing by detecting the perceived temperature that takes into account the environmental temperature, air velocity, radiation, humidity, and the amount of clothing the user is wearing. We have proposed a method that allows accurate understanding of the actual thermal environment depending on volume or humidity (see the specifications and drawings of Japanese Patent Application No. 60-265325 and Japanese Patent Application No. 60-265326).

すなわち、これらのものは、熱量の供給により
発熱する発熱体と、該発熱体の表面温度を検知す
る温度検知器と、室内の湿度を検知する湿度検知
器(又は人体の着衣量の熱抵抗を入力する着衣量
入力器)と、発熱体の表面温度及び湿度(又は着
衣量の熱抵抗)に基づいて気温、気流速、輻射に
応じた体感温度を演算する演算回路とを設けたも
のである。
In other words, these devices include a heating element that generates heat by supplying heat, a temperature sensor that detects the surface temperature of the heating element, and a humidity sensor that detects indoor humidity (or a sensor that measures the thermal resistance of the amount of clothing on the human body). It is equipped with a clothing amount input device) and an arithmetic circuit that calculates the sensible temperature according to the air temperature, air velocity, and radiation based on the surface temperature and humidity of the heating element (or the thermal resistance of the amount of clothing). .

(発明が解決しようとする問題点) ところで、湿度や着衣量の体感温度に及ぼす影
響は気温、輻射、気流速が変化した場合に異な
る。しかし、上記提案のものでは、気温、気流
速、輻射が変化したときでも湿度、着衣量の影響
を一律としており、その影響を精度よく算出する
ことができず、改良の余地が存する。
(Problems to be Solved by the Invention) By the way, the effects of humidity and amount of clothing on the sensible temperature vary depending on changes in air temperature, radiation, and airflow velocity. However, in the above proposal, even when the temperature, air velocity, and radiation change, the effects of humidity and amount of clothing are uniformly affected, and the effects cannot be calculated accurately, so there is room for improvement.

本発明は以上の諸点に鑑みて上記提案のものを
改良すべくなされたものであり、その目的は、湿
度及び着衣量の体感温度に及ぼす影響を演算する
際に気温、気流速、輻射をも変数として加味する
ようにすることにより、気温、気流速、輻射が変
化した場合でも湿度及び着衣量の体感温度に及ぼ
す影響を精度よく算出できるようにし、よつて気
温、気流速、輻射、湿度及び着衣量を総合評価し
た体感温度を正確に検知し得るようにせんとする
ことにある。
The present invention has been made to improve the above-mentioned proposal in view of the above points, and its purpose is to take into account air temperature, air velocity, and radiation when calculating the influence of humidity and amount of clothing on sensible temperature. By taking these into account as variables, it is possible to accurately calculate the effects of humidity and amount of clothing on the perceived temperature even when the temperature, air velocity, radiation, and radiation change. The purpose is to accurately detect the sensible temperature based on a comprehensive evaluation of the amount of clothing.

(問題点を解決するための手段) この目的を達成するために、本発明での解決手
段は、第1図に示すように、発熱手段4と、この
発熱手段4の周囲を囲む殻体3と、この殻体3の
表面温度を測定する熱電対8とを有し、殻体3の
外表面に、弗素樹脂及び酸化チタンの複合材から
なり、人体の皮膚ないし衣服の分光輻射率に概略
合致する輻射率を有する輻射材料層14が設けら
れていて、気温Ta、気流速V、輻射Trのうちの
1つ以上の環境因子を考慮した体感温度yを測定
する測定手段10を備える。
(Means for solving the problem) In order to achieve this object, the solving means of the present invention includes a heat generating means 4 and a shell 3 surrounding the heat generating means 4, as shown in FIG. and a thermocouple 8 for measuring the surface temperature of the shell 3. The outer surface of the shell 3 is made of a composite material of fluororesin and titanium oxide, and has a spectral emissivity approximately equal to that of human skin or clothing. A radiant material layer 14 having a matching emissivity is provided, and a measuring means 10 is provided for measuring the sensible temperature y in consideration of one or more environmental factors of the air temperature Ta, the air velocity V, and the radiation Tr.

さらに、湿度RHを検知する湿度検知器11
と、人体の着衣量に対応する熱抵抗cloを入力す
る着衣量入力器13と、上記測定手段10、湿度
検知器11及び着衣量入力器13の各出力を受
け、湿度RH及び着衣量に対応する熱抵抗cloの
体感温度yへの換算を気温Ta、気流速V、輻射
Trの各変数を含む演算式により行う演算回路1
2とを設ける。
Furthermore, a humidity detector 11 that detects humidity RH
and a clothing amount input device 13 that inputs the thermal resistance clo corresponding to the amount of clothing on the human body, and receives the outputs of the measuring means 10, humidity detector 11, and clothing amount input device 13, and corresponds to the humidity RH and the amount of clothing. Convert the thermal resistance clo to the sensible temperature y using the air temperature Ta, air velocity V, and radiation.
Arithmetic circuit 1 using arithmetic expressions including each variable of Tr
2 will be provided.

(作 用) この構成により、本発明では、測定手段10に
よつて環境因子を考慮した体感温度yが測定され
るとともに、湿度検知器11で湿度RHが、また
着衣量入力器13により着衣量に対応した熱抵抗
cloがそれぞれ検知され、この検知された湿度
RH及び着衣量に対応した熱抵抗cloは、演算回
路12において体感温度yに気温Ta、気流速V、
輻射Trの変数を含む演算式により換算される。
このため、気温Ta、気流速V、輻射Trが変化し
た場合、それに応じて湿度RH及び着衣量の影響
も変化し、このことによつて湿度RH及び着衣が
関連して体感温度yに及ぼす影響を精度よく算出
できる。
(Function) With this configuration, in the present invention, the measuring means 10 measures the sensible temperature y in consideration of environmental factors, the humidity detector 11 measures the humidity RH, and the clothing amount input device 13 measures the amount of clothing. Thermal resistance corresponding to
clo is detected respectively, and this detected humidity
Thermal resistance clo corresponding to RH and the amount of clothing is calculated by calculating the sensible temperature y, air temperature Ta, air velocity V,
It is converted using an arithmetic expression that includes the radiation Tr variable.
Therefore, when the temperature Ta, air velocity V, and radiation Tr change, the influence of the humidity RH and the amount of clothing will change accordingly, and this will affect the relative influence of the humidity RH and clothing on the sensible temperature y. can be calculated with high accuracy.

(実施例) 以下、本発明の実施例を図面に基づいて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本発明の実施例に係る空気調和機制御
用の温熱環境測定器Aの全体構成を示し、1は球
状の発熱体であつて、該発熱体1は、パイプ状の
支持棒2を貫通固定した銅、アルミニウム等の熱
伝導率の高い金属よりなる中空球状の殻体3内の
中心部に発熱手段としての電気ヒータ4が封入さ
れてなるものである。上記電気ヒータ4には支持
棒2内に充填固定した電気絶縁体5を貫通して該
電気ヒータ4に電源回路6からの電力を供給する
電力供給路7,7が接続され、この電力供給線
7,7により電気ヒータ4が殻体3内で固定支持
されている。
FIG. 1 shows the overall configuration of a thermal environment measuring device A for controlling an air conditioner according to an embodiment of the present invention, in which 1 is a spherical heating element, and the heating element 1 has a pipe-shaped support rod 2. An electric heater 4 as a heat generating means is enclosed in the center of a hollow spherical shell 3 made of metal with high thermal conductivity such as copper or aluminum and fixed through the shell. The electric heater 4 is connected to power supply lines 7, 7 which pass through an electric insulator 5 filled and fixed in the support rod 2 and supply electric power from a power supply circuit 6 to the electric heater 4. The electric heater 4 is fixedly supported within the shell 3 by 7,7.

また、上記発熱体1の殻体3内表面には発熱体
1表面(殻体3)の温度Tsを検知する熱電対8
が固着され、該熱電対8の出力線9は上記絶縁体
5及び支持棒2内を通つて殻体3外に導出されて
おり、電気ヒータ4を通電により発熱させて発熱
体1に熱量を供給し、その状態で熱電対8の出力
電圧により発熱体1の表面温度Tsを検出し、こ
の表面温度Tsに基づいて室内環境の温熱状態を
気温、気流速及び輻射を考慮した体感温度として
測定するようにした測定手段としての測定素子1
0が構成されている。
Further, on the inner surface of the shell 3 of the heating element 1, a thermocouple 8 is provided to detect the temperature Ts of the surface of the heating element 1 (shell 3).
is fixed, and the output wire 9 of the thermocouple 8 passes through the insulator 5 and the support rod 2 and is led out of the shell 3. The electric heater 4 is energized to generate heat, and the amount of heat is transferred to the heating element 1. In this state, the surface temperature Ts of the heating element 1 is detected by the output voltage of the thermocouple 8, and based on this surface temperature Ts, the thermal state of the indoor environment is measured as the sensible temperature taking into account the air temperature, air flow velocity, and radiation. Measuring element 1 as a measuring means configured to
0 is configured.

さらに、上記発熱体1の殻体3外表面には、人
体の皮膚ないし衣服の分光輻射率に概略合致する
輻射率を有する例えば四弗化エチレン樹脂
(PTFE)等の弗素樹脂及び酸化チタン(TiO2
の所定顔料の複合材よりなる薄膜の輻射材料層1
4が設けられており、人体等の輻射熱伝導率と発
熱体1の輻射熱伝導率とを合致させて上記体感温
度を一層精度よく検知するようにしている。
Further, on the outer surface of the shell 3 of the heating element 1, a fluororesin such as tetrafluoroethylene resin (PTFE) and titanium oxide (TiO 2 )
A thin radiant material layer 1 made of a composite material of a predetermined pigment.
4 is provided to match the radiant heat conductivity of the human body and the like with the radiant heat conductivity of the heating element 1 to detect the sensible temperature with higher accuracy.

上記支持棒2の側方には室内の湿度RHを検知
する湿度検知器としての湿度センサ11が配設さ
れ、該湿度センサ11の出力は上記熱電対8(測
定素子10)の出力と共に演算回路12に入力さ
れている。さらに、13は人体の着衣量に対応す
る熱抵抗cloを設定する着衣量入力器であつて、
この着衣量入力器13の出力は上記演算回路12
に入力されており、演算回路12において、熱電
対8により検出された発熱体1の表面温度Tsと、
湿度センサ11により検出された室内の湿度RH
と、着衣量入力器13から入力された、着衣量に
応じた熱抵抗cloとに基づいて気温、気流速、輻
射、湿度及び着衣量に応じた室内環境の体感温度
yを以下に示す演算式(1)により算出するように構
成されている。
A humidity sensor 11 as a humidity detector for detecting indoor humidity RH is arranged on the side of the support rod 2, and the output of the humidity sensor 11 is sent to a calculation circuit along with the output of the thermocouple 8 (measuring element 10). 12 is input. Furthermore, 13 is a clothing amount input device for setting a thermal resistance clo corresponding to the amount of clothing on the human body,
The output of this clothing amount input device 13 is
and the surface temperature Ts of the heating element 1 detected by the thermocouple 8 in the arithmetic circuit 12;
Indoor humidity RH detected by humidity sensor 11
Based on the thermal resistance clo corresponding to the amount of clothing inputted from the clothing amount input device 13, the sensible temperature y of the indoor environment according to the air temperature, air velocity, radiation, humidity, and amount of clothing is calculated using the following calculation formula. It is configured to calculate according to (1).

すなわち、気温をTa、気流速をV、輻射をTr
とすると、これらの環境因子Ta,V,Tr及び湿
度RH、着衣量cloを総合評価した体感温度yは、 y=f(Ts,RH,clo) =Ts+CRH+CCLO ……(1) CRH=f1(RH,Ts,clo) ……(2) CCLO=f2(clo,Ts,RH) ……(3) (但し、CRHは湿度の体感温度換算値、CCLO
着衣量の体感温度換算値) となり、この演算式(1)の実験等によつて最適に設
定された具体例を示すと、次のようになる。
In other words, the temperature is Ta, the air velocity is V, and the radiation is Tr.
Then, the sensible temperature y, which is the comprehensive evaluation of these environmental factors Ta, V, Tr, humidity RH, and amount of clothing clo, is: y=f(Ts, RH, clo) =Ts+C RH +C CLO ……(1) C RH = f 1 (RH, Ts, clo) ... (2) C CLO = f 2 (clo, Ts, RH) ... (3) (However, C RH is the humidity equivalent to sensible temperature, and C CLO is the amount of clothing The sensible temperature conversion value) is given, and a specific example of the optimum setting of this calculation formula (1) through experiments etc. is as follows.

y=KET*+g1(RH)−g1(0.5) +g2(clo)−g2(0.6) ……(4) g1(RH)=0.234(RH−0.1) ×(KET*−25.8+2.84clo) +0.847(RH−0.1) ×(KET*−25.8+2.84clo) +1.76(RH−0.1)−0.14 ……(5) g2(clo)=(0.138clo−0.594) ×clo×(KET*−38) ……(6) KET*=h(Ta,Tr,V) ……(7) (但し、KET*は発熱体1の熱的平衡特性を人
体の同特性と略一致するように設定したときの測
定素子10の出力値) すなわち、この湿度RH及び着衣量の熱抵抗
cloを体感温度yに換算する演算式(4)〜(7)におい
ては、気温Ta、気流速V、輻射Trの温熱環境因
子が変数として考慮されている。
y=KET * +g 1 (RH) − g 1 (0.5) + g 2 (clo) − g 2 (0.6) ...(4) g 1 (RH) = 0.234 (RH − 0.1) × (KET * −25.8 + 2 .84clo) +0.847(RH−0.1) ×(KET * −25.8+2.84clo) +1.76(RH−0.1)−0.14 ……(5) g 2 (clo) = (0.138clo−0.594) ×clo ×(KET * −38) ……(6) KET * = h(Ta, Tr, V) ……(7) (However, KET * indicates that the thermal equilibrium characteristics of heating element 1 approximately match the same characteristics of the human body. (output value of the measuring element 10 when set to
In equations (4) to (7) for converting clo into sensible temperature y, thermal environmental factors such as air temperature Ta, air velocity V, and radiation Tr are taken into consideration as variables.

そして、この(4)〜(7)式により、演算された体感
温度yと、ASHRAE(米国空調衛生学会)で採
用されている人間の温度感覚を表す温熱指標
SET*との関係は第2図〜第8図に示すようにな
る。尚、各図において、実線はSET*を、破線は
演算された体感温度yをそれぞれ示し、同一線上
の各点は気温Taが等しい場合のSET*、体感温度
yを表しており、線が図で上側になるほど気温
Taが0.5℃ずつ高くなるものである。
Then, using equations (4) to (7), the calculated sensible temperature y and the thermal index representing human temperature sensation adopted by ASHRAE (American Society of Air Conditioning Hygiene Society)
The relationship with SET * is shown in FIGS. 2 to 8. In each figure, the solid line represents SET * , the broken line represents the calculated sensible temperature y, and each point on the same line represents SET * and the sensible temperature y when the air temperature Ta is equal. The higher the temperature, the higher the temperature.
Ta increases by 0.5℃.

第2図〜第5図は着衣量及び気流速を変化させ
た場合であり、第2図は着衣量0.3cloで気流速
0.15m/sのときを、第3図は同様に着衣量
0.3cloで気流速0.8m/sのときを、第4図は着衣
量1.0cloで気流速0.15m/sのときを、第5図は
着衣量1.0cloで気流速0.8m/sのときをそれぞれ
示している。そして、第2図によると、気温Ta
の高低に応じて湿度RHによるSET*の変化率が
異なることが、また第2図〜第5図により、気流
速Vが変化した場合には湿度RHによるSET*
変化率が異なることがそれぞれ判り、単に湿度
RHのみの1次式では体感温度yを近似できない
ものとなる。
Figures 2 to 5 show the cases where the amount of clothing and airflow velocity are changed, and Figure 2 shows the airflow velocity when the amount of clothing is 0.3clo.
Figure 3 shows the amount of clothing when the speed is 0.15m/s.
Figure 4 shows the case when the amount of clothing is 1.0clo and the airflow velocity is 0.15m/s. Figure 5 shows the case when the amount of clothing is 1.0clo and the airflow velocity is 0.8m/s. are shown respectively. According to Figure 2, the temperature Ta
The rate of change in SET * due to humidity RH differs depending on the height of I see, it's just humidity.
A linear equation using only RH cannot approximate the sensible temperature y.

一方、第6図〜第8図は湿度RHを50%として
気流速Vを変えた場合であり、第6図は気流速
0.15m/sのとき、第7図は気流速0.3m/sのと
き、第8図は気流速0.8m/sのときをそれぞれ
示す。この第6図〜第8図から、着衣量cloの体
感温度SET*に及ぼす影響も着衣量cloのみの1次
式では近似できないことが判る。
On the other hand, Figures 6 to 8 show the case where the humidity RH is 50% and the air flow velocity V is changed, and Figure 6 shows the air flow velocity.
When the air velocity is 0.15 m/s, FIG. 7 shows the air velocity when the air velocity is 0.3 m/s, and FIG. 8 shows the air velocity when the air velocity is 0.8 m/s. From FIGS. 6 to 8, it can be seen that the influence of the amount of clothing clo on the sensible temperature SET * cannot be approximated by a linear equation based only on the amount of clothing clo.

しかし、本実施例によれば、図示の如く、いず
れの条件下でも体感温度yは温熱指標SET*と略
一致しており、気温、輻射、気流速が変化した場
合でもSET*に近い出力値を得ることができる。
However, according to this example, as shown in the figure, the sensible temperature y substantially matches the thermal index SET * under all conditions, and even when the temperature, radiation, and air velocity change, the output value is close to SET *. can be obtained.

したがつて、上記実施例においては、熱電対8
により所定の熱量が供給された発熱体1の表面温
度Tsが検出され、その信号が演算回路12に入
力される。この表面温度Tsは気温Ta、気流速V
及び輻射Trの関数である。また、湿度センサ1
1により室内の湿度RHが検出されてその信号が
演算回路12に入力されるとともに、着衣量入力
器13により着衣量に応じた熱抵抗cloの信号が
同演算回路12に入力される。そして、この演算
回路12において、これら発熱体1の表面温度
Ts、湿度RH及び着衣量に応じた熱抵抗cloに基
づいて体感温度yが上記式(4)〜(7)により演算され
る。この体感温度yは気温Ta、気流速V、輻射
Tr、湿度RH及び着衣量cloに応じたものとなり、
このことより、この体感温度yを用いて空気調和
機を制御するとき、一度快適温度に設定すれば、
湿度RH又は着衣量cloが変化しても着衣量入力
器13からそのときの着衣量に応じた熱抵抗clo
を入力させるだけでよく、快適設定温度を変更す
る必要がなく、快適な温熱環境を維持することが
できる。
Therefore, in the above embodiment, the thermocouple 8
The surface temperature Ts of the heating element 1 to which a predetermined amount of heat has been supplied is detected, and the signal thereof is input to the arithmetic circuit 12. This surface temperature Ts is the air temperature Ta and the air flow velocity V
and is a function of the radiation Tr. In addition, humidity sensor 1
1 detects the humidity RH in the room and inputs its signal to the arithmetic circuit 12, and a clothing amount input device 13 inputs a signal of thermal resistance clo corresponding to the amount of clothing to the same arithmetic circuit 12. In this arithmetic circuit 12, the surface temperature of these heating elements 1 is
The sensible temperature y is calculated by the above equations (4) to (7) based on Ts, humidity RH, and thermal resistance clo depending on the amount of clothing. This sensible temperature y is the air temperature Ta, the air velocity V, and the radiation
It depends on Tr, humidity RH and amount of clothing clo.
From this, when controlling the air conditioner using this sensible temperature y, once the comfortable temperature is set,
Even if the humidity RH or the amount of clothing clo changes, the thermal resistance clo corresponding to the amount of clothing at that time is input from the clothing amount input device 13.
You can maintain a comfortable thermal environment without having to change the comfort temperature setting.

その場合、上記演算回路12では、湿度RH、
着衣量cloの体感温度yに及ぼす影響を気温Ta、
気流速V、輻射Trを変数とした演算式(4)〜(7)に
より演算しているので、気温Ta、気流速V、輻
射Trが変化した場合であつても湿度RH、着衣量
cloの体感温度yを精度よく算出することができ、
よつて気温Ta、気流速V、輻射Tr、湿度RH、
着衣量cloを総合評価した体感温度yを正確に検
知することができる。
In that case, in the arithmetic circuit 12, the humidity RH,
The influence of the amount of clothing clo on the sensible temperature y is determined by the temperature Ta,
Since it is calculated using equations (4) to (7) with air velocity V and radiation Tr as variables, even when the temperature Ta, air velocity V, and radiation Tr change, humidity RH and amount of clothing are
The sensible temperature y of clo can be calculated with high accuracy,
Therefore, temperature Ta, air velocity V, radiation Tr, humidity RH,
It is possible to accurately detect the sensible temperature y, which is a comprehensive evaluation of the amount of clothing clo.

(発明の効果) 以上説明したように、この発明の温熱環境測定
器によると、発熱手段と、外表面に人体の皮膚な
いし衣服の分光輻射率に概略合致する輻射率を有
する、弗素樹脂及び酸化チタンの複合材からなる
輻射材料層が形成されて、発熱手段の周囲を囲む
殻体と、殻体の表面温度を測定する熱電対とを有
し、気温、気流速、輻射のうちの1つ以上の環境
因子を考慮した体感温度を測定する測定手段を備
えるとともに、湿度を検知する湿度検知器と、人
体の着衣量に対応する熱抵抗を入力する着衣量入
力器と、測定手段、湿度検知器及び着衣量入力器
の各出力を受け、湿度及び着衣量に対応する熱抵
抗を気温、気流速、輻射の各変数を含む演算式に
より体感温度に換算する演算回路とを備え、湿度
及び着衣量の体感温度に及ぼす影響を換算するに
あたり、気温、気流速、輻射を変数とした演算式
により換算するようにしたものであるので、気
温、気流速、輻射が変化した場合であつても湿度
及び着衣量の体感温度に及ぼす影響を精度よく算
出することができ、よつて気温、気流速、輻射、
湿度及び着衣量を総合評価した体感温度を比較的
簡単な構成で正確に検知することができるもので
ある。
(Effects of the Invention) As explained above, the thermal environment measuring device of the present invention includes a heat generating means, a fluororesin and an oxidized resin having a spectral emissivity that roughly matches the spectral emissivity of human skin or clothing on the outer surface. A radiant material layer made of a titanium composite material is formed and has a shell surrounding the heat generating means and a thermocouple for measuring the surface temperature of the shell, which measures one of air temperature, air velocity, and radiation. In addition to being equipped with a measuring means for measuring the sensible temperature considering the above environmental factors, a humidity detector for detecting humidity, a clothing amount input device for inputting thermal resistance corresponding to the amount of clothing on the human body, a measuring means, and a humidity detection device. It is equipped with an arithmetic circuit that receives the outputs of the humidity and clothing amount input device and converts the thermal resistance corresponding to the humidity and clothing amount into a sensible temperature using an arithmetic formula that includes air temperature, air velocity, and radiation variables. When converting the effect of air flow on perceived temperature, we use an arithmetic formula that uses air temperature, air velocity, and radiation as variables, so even when air temperature, air velocity, and radiation change, humidity remains It is possible to accurately calculate the influence of the amount of clothing on the perceived temperature, and therefore the effects of temperature, air velocity, radiation,
It is possible to accurately detect the sensible temperature based on a comprehensive evaluation of humidity and amount of clothing with a relatively simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであり、第1
図は全体構成図である。第2図〜第5図はそれぞ
れ着衣量及び気流速を変えたときの体感温度と温
熱指標SET*との関係を示す特性図、第6図〜第
8図はそれぞれ気流速を変えたときの体感温度と
温熱指標SET*との関係を示す特性図である。 A…温熱環境測定器、1…発熱体、8…熱電
対、10…測定素子、11…湿度センサ、12…
演算回路、13…着衣量入力器、Ts…発熱体温
度、RH…湿度、clo…着衣量に対する熱抵抗、
a…気温、V…気流速、Tr…輻射。
The drawings show embodiments of the present invention.
The figure is an overall configuration diagram. Figures 2 to 5 are characteristic diagrams showing the relationship between sensible temperature and thermal index SET * when changing the amount of clothing and airflow velocity, respectively, and Figures 6 to 8 are characteristic diagrams showing the relationship between the sensible temperature and the thermal index SET* when changing the amount of clothing and airflow velocity, respectively. FIG. 2 is a characteristic diagram showing the relationship between sensible temperature and thermal index SET * . A... Thermal environment measuring device, 1... Heating element, 8... Thermocouple, 10... Measuring element, 11... Humidity sensor, 12...
Arithmetic circuit, 13... Clothing amount input device, Ts... Heating element temperature, RH... Humidity, clo... Thermal resistance with respect to the amount of clothing,
a...Temperature, V...Air velocity, Tr...Radiation.

Claims (1)

【特許請求の範囲】 1 発熱手段4と、上記発熱手段4の周囲を囲む
殻体3と、上記殻体3の表面温度を測定する熱電
対8とを有し、上記殻体3の外表面に、弗素樹脂
及び酸化チタンの複合材からなり、人体の皮膚な
いし衣服の分光輻射率に概略合致する輻射率を有
する輻射材料層14が設けられていて、気温Ta、
気流速V、輻射Trのうちの1つ以上の環境因子
を考慮した体感温度yを測定する測定手段10
と、 湿度RHを検知する湿度検知器11と、 人体の着衣量に対応する熱抵抗cloを入力する
着衣量入力器13と、 上記測定手段10、湿度検知器11及び着衣量
入力器13の各出力を受け、湿度RH及び着衣量
に対応する熱抵抗cloを気温Ta、気流速V、輻射
Trの各変数を含む演算式により体感温度yに換
算する演算回路12とを備えたことを特徴とする
温熱環境測定器。
[Scope of Claims] 1. A device comprising: a heat generating means 4; a shell 3 surrounding the heat generating means 4; and a thermocouple 8 for measuring the surface temperature of the shell 3; A radiant material layer 14 made of a composite material of fluororesin and titanium oxide and having an emissivity that roughly matches the spectral emissivity of human skin or clothing is provided, and the temperature Ta,
Measuring means 10 for measuring sensible temperature y considering one or more environmental factors of air flow velocity V and radiation Tr
, a humidity detector 11 that detects the humidity RH, a clothing amount input device 13 that inputs the thermal resistance clo corresponding to the amount of clothing on the human body, and each of the measuring means 10, the humidity detector 11, and the clothing amount input device 13. After receiving the output, calculate the thermal resistance clo corresponding to the humidity RH and amount of clothing by calculating the temperature Ta, air velocity V, and radiation.
1. A thermal environment measuring device comprising: an arithmetic circuit 12 for converting into a sensible temperature y using an arithmetic expression including each variable of Tr.
JP61210063A 1986-09-05 1986-09-05 Warmth environment measuring instrument Granted JPS6365317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61210063A JPS6365317A (en) 1986-09-05 1986-09-05 Warmth environment measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210063A JPS6365317A (en) 1986-09-05 1986-09-05 Warmth environment measuring instrument

Publications (2)

Publication Number Publication Date
JPS6365317A JPS6365317A (en) 1988-03-23
JPH0587737B2 true JPH0587737B2 (en) 1993-12-17

Family

ID=16583203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210063A Granted JPS6365317A (en) 1986-09-05 1986-09-05 Warmth environment measuring instrument

Country Status (1)

Country Link
JP (1) JPS6365317A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519832Y2 (en) * 1988-08-19 1993-05-25
JPH02280037A (en) * 1989-04-21 1990-11-16 Kyoto Denshi Kogyo Kk Heat environment sensor
KR100523611B1 (en) * 2001-06-14 2005-10-24 주식회사 태크녹스 Apparatus for measurement and evaluation of thermal comfort the inside clothes
KR20020095295A (en) * 2001-06-14 2002-12-26 주식회사 태크녹스 A method for measurement and evaluation of thermal comfort a chamber
JP6459763B2 (en) * 2015-05-11 2019-01-30 株式会社大林組 Work risk assessment method
JP7322332B2 (en) * 2019-12-13 2023-08-08 学校法人東京理科大学 measuring equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573019B2 (en) * 1977-05-25 1982-01-19
JPS57139240A (en) * 1981-02-24 1982-08-28 Sharp Corp Temperature control for air conditioner
JPS58218624A (en) * 1982-06-14 1983-12-19 Matsushita Electric Ind Co Ltd Warmth detecting element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573019U (en) * 1980-06-06 1982-01-08
JPS57134521U (en) * 1981-02-13 1982-08-21

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573019B2 (en) * 1977-05-25 1982-01-19
JPS57139240A (en) * 1981-02-24 1982-08-28 Sharp Corp Temperature control for air conditioner
JPS58218624A (en) * 1982-06-14 1983-12-19 Matsushita Electric Ind Co Ltd Warmth detecting element

Also Published As

Publication number Publication date
JPS6365317A (en) 1988-03-23

Similar Documents

Publication Publication Date Title
Mayer Objective criteria for thermal comfort
JP2575268B2 (en) Apparatus and method for adaptive control of HVAC system
US5333784A (en) Radiation detector with thermocouple calibration and remote temperature reference
US20020114375A1 (en) Ambient and perfusion normalized temperature detector
JP2006194540A (en) Air-conditioning control method using hot/cold feeling predicted value, air conditioner, program for air conditioner, and server device
US4158965A (en) Electronic thermometer with heat conditioned probe
EP3502582A1 (en) Method for controlling a hvac-apparatus, control unit and use of a control unit
JPH0587737B2 (en)
JPH0577931B2 (en)
Madsen Thermal comfort measurements
JPH0518592A (en) Method and apparatus for calculating warm heat feeling, method and apparatus for calculating predicted mean warm feeling
JPH10103745A (en) Detecting device of thermal environment
GB2600472A (en) A haircare appliance
WO1992002767A1 (en) Method of computing equivalent temperature and instrument for environment measurement
US5674007A (en) Method for calculating PMV of air conditioning system
JPS62125241A (en) Thermo-detecting element
JPH04131653A (en) Thermal sense operation device
KR100204234B1 (en) A sensing device and controlling method with comfortable operation for air conditioner
JPS61181916A (en) Thermal detection element
JPH0584423B2 (en)
JPS6012569B2 (en) Thermal environment measuring instrument
JPS62125239A (en) Thermo-detecting element
JP2628112B2 (en) Thermal sensation calculation device
JPH0478132B2 (en)
JPS62125240A (en) Thermo-detecting element