JPH06146046A - Cathode for electrolysis and its production - Google Patents
Cathode for electrolysis and its productionInfo
- Publication number
- JPH06146046A JPH06146046A JP4321285A JP32128592A JPH06146046A JP H06146046 A JPH06146046 A JP H06146046A JP 4321285 A JP4321285 A JP 4321285A JP 32128592 A JP32128592 A JP 32128592A JP H06146046 A JPH06146046 A JP H06146046A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- platinum group
- group metal
- plating
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、工業電解用の活性化陰
極及びその製造方法に関し,より詳細には高活性で劣化
を受けにくく更に製造工程をコントロールしやすい工業
用陰極及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activated cathode for industrial electrolysis and a method for producing the same, and more particularly to an industrial cathode having a high activity, less susceptible to deterioration, and easy to control the production process, and a method for producing the same. .
【0002】[0002]
【従来技術とその問題点】塩化アルカリ水溶液特に食塩
水から苛性ソーダ等と塩素を電解的に製造する電解工業
において使用される電極として、陽極と共に陰極の果た
す役割が近年重視されてきている。ソーダ電解用活性化
陰極として、ニッケル単体やニッケルにラネーニッケル
等を被覆した古くから使用されている陰極の他に、ニッ
ケル又は鉄、及びその合金を基体とし、その表面に白金
族金属やその酸化物を被覆した陰極が使用されている
(特公昭59−48872 号公報)。この陰極は前記基体を例
えば二酸化ルテニウム微粒子を分散させたニッケルめっ
き浴中で分散めっきすることにより製造される。この他
に前記基体上を水素吸蔵合金と水素発生に対して活性な
粒子の両者を分散粒子として含むめっき浴中で分散めっ
きして得られる電解用陰極がある(特開平2−258992号
公報、特開平2−310388号公報、特開平3−36287 号公
報等)。2. Description of the Prior Art As an electrode used in the electrolysis industry for electrolytically producing caustic soda and chlorine from an aqueous solution of alkali chloride, particularly saline, the role of the cathode and the anode has recently been emphasized. As an activated cathode for soda electrolysis, in addition to a cathode that has been used for a long time such as nickel simple substance or Raney nickel coated on nickel, nickel or iron, and an alloy thereof as a substrate, a platinum group metal or its oxide on the surface A cathode coated with is used (Japanese Patent Publication No. 59-48872). This cathode is manufactured by dispersion-plating the substrate in, for example, a nickel plating bath in which ruthenium dioxide fine particles are dispersed. In addition to this, there is a cathode for electrolysis obtained by dispersion plating on the substrate in a plating bath containing both hydrogen storage alloy and particles active for hydrogen generation as dispersed particles (JP-A-2-258992, JP-A-2-310388, JP-A-3-36287, etc.).
【0003】白金族金属等を被覆した陰極では電極活性
は十分であるが通電停止時に陽極電流が流れて電極活性
物質である前記白金族金属が劣化するという欠点があ
る。この陰極における電極活性物質の劣化という欠点を
解消するために提案された陰極が前記水素吸蔵合金を電
極活性物質とする陰極であり、この陰極は次のようにし
てその劣化を抑制する。つまり水の電解により陰極反応
で生成する水酸イオンと水素ガスのうちの後者の水素ガ
スを電解液中及び大気中に放出することなく自身の水素
吸蔵能により内部に吸蔵し、通電停止時に吸蔵された水
素を放出して電流を負担することにより電極活性物質の
劣化が防止される。しかしこの水素吸蔵合金は本来電極
活性物質として開発されたものではなく水素発生過電圧
はさほど低くなく電解効率の面からは十分とは言いがた
いという欠点がある。A cathode coated with a platinum group metal or the like has sufficient electrode activity, but has a drawback that the anode group current, which is an electrode active substance, deteriorates when the energization is stopped and the anode current flows. A cathode proposed in order to solve the drawback of deterioration of the electrode active material in the cathode is a cathode using the hydrogen storage alloy as the electrode active material, and this cathode suppresses the deterioration as follows. In other words, the latter hydrogen gas of the hydrogen ions and the hydrogen gas generated by the cathodic reaction due to the electrolysis of water is stored inside by the hydrogen storage capacity of itself without being released into the electrolyte solution and into the atmosphere, and is stored when the energization is stopped. Degradation of the electrode active material is prevented by releasing the generated hydrogen and carrying an electric current. However, this hydrogen storage alloy was not originally developed as an electrode active substance, and the hydrogen generation overvoltage is not so low that it is difficult to say that it is sufficient in terms of electrolysis efficiency.
【0004】[0004]
【発明の目的】本発明は、前述の貴金属陰極と水素吸蔵
合金型陰極の有する欠点を解消し、電解効率の面からも
通電停止時の電極保護の面からも十分満足できる電解用
陰極及びその製造方法を提供することを目的とする。It is an object of the present invention to solve the above-mentioned disadvantages of the noble metal cathode and the hydrogen storage alloy type cathode, and to obtain a cathode for electrolysis which is sufficiently satisfactory both in terms of electrolysis efficiency and in terms of electrode protection when current is stopped. It is intended to provide a manufacturing method.
【0005】[0005]
【問題点を解決するための手段】本発明は、第1に導電
性基体及び該導電性基体上に形成された少なくとも水素
吸蔵合金及び白金族金属又はその酸化物を含む陰極活性
物質の被覆層を含んで成ることを特徴とする電解用陰極
であり、第2に導電性基体上に水素吸蔵合金を分散ニッ
ケルめっきして該水素吸蔵合金及びニッケルを含む第1
分散めっき層を形成し、次いで該第1分散めっき層上に
白金族金属又はその酸化物を分散ニッケルめっきして該
白金族金属又はその酸化物及びニッケルを含む第2分散
めっき層を形成することを特徴とする電解用陰極の製造
方法である。以下本発明を詳細に説明する。SUMMARY OF THE INVENTION The present invention is firstly a coating layer of a cathode active material containing a conductive substrate and at least a hydrogen storage alloy and a platinum group metal or its oxide formed on the conductive substrate. A cathode for electrolysis, comprising: second, a hydrogen storage alloy is plated with nickel on a conductive substrate by dispersion nickel plating, and the first cathode contains the hydrogen storage alloy and nickel.
Forming a dispersion plating layer, and then performing a dispersion nickel plating of a platinum group metal or an oxide thereof on the first dispersion plating layer to form a second dispersion plating layer containing the platinum group metal or an oxide thereof and nickel. And a method for producing a cathode for electrolysis. The present invention will be described in detail below.
【0006】電極活性の高い白金族金属又はその酸化物
を電極活性物質とする電極は寸法安定性電極(DSE)
として知られ、食塩電解等の陽極としては従来から広く
利用されている。この寸法安定性電極は陽極反応を促進
して電解効率を上昇させかつ陽極反応に対する高い耐性
を有するため、陽極としての使用の面からは十分満足で
きるものであった。しかしながらこの寸法安定性電極は
陰極反応に対する耐性が低いため電極活性を有しなが
ら、陰極としての使用は制限されていた。これは主とし
て通電停止時や低電流密度下の運転時に生じやすい逆電
流により陰極活性物質である前記白金族金属やその酸化
物が劣化するからである。この劣化を抑制するために従
来は通電停止時や低電流密度運転時に前記逆方向電流を
打ち消すための微弱な電流を流す等の対策が試みられて
いるが、操作の煩雑性や経済性の面からより一層の改良
が望まれていた。An electrode using a highly active platinum group metal or its oxide as an electrode active material is a dimensionally stable electrode (DSE).
And has been widely used as an anode for salt electrolysis or the like. Since this dimensionally stable electrode promotes the anodic reaction to increase the electrolysis efficiency and has high resistance to the anodic reaction, it was sufficiently satisfactory from the viewpoint of use as an anode. However, this dimensionally stable electrode has a low resistance to the cathodic reaction, so that it has limited electrode use while being used as a cathode. This is because the platinum group metal or its oxide, which is the cathode active material, is deteriorated mainly by the reverse current that tends to occur when the energization is stopped or the operation is performed at a low current density. In order to suppress this deterioration, measures such as flowing a weak current for canceling the reverse current at the time of stopping energization or low current density operation have been attempted in the past, but in terms of operation complexity and economical efficiency. Therefore, further improvement has been desired.
【0007】本発明は正にこの要請に応えるものであ
り、本発明により電極自身が逆電流を打ち消す能力を有
し、他の補助手段なしに高電解効率の陰極として使用で
きる電極を提供することができる。本発明に係わる電解
用陰極の導電性基体としては、ニッケル、鉄及びこれら
合金等が好ましく使用される。該基体の形状はガス抜き
を容易に行うことができる多孔質形状、例えばエキスパ
ンドメッシュ、パンチプレート等であることが望まし
い。The present invention meets exactly this demand, and the present invention provides an electrode which has a capability of canceling reverse current by itself and can be used as a cathode having high electrolysis efficiency without other auxiliary means. You can As the conductive substrate of the electrolysis cathode according to the present invention, nickel, iron and alloys thereof are preferably used. The shape of the substrate is preferably a porous shape that allows easy degassing, such as an expanded mesh or a punch plate.
【0008】この導電性基体上に被覆形成される電極活
性物質は少なくとも水素吸蔵合金と白金族金属やその酸
化物を含み、この他にニッケル等のめっき成分等を含有
していてもよい。本発明に使用できる水素吸蔵合金は水
素を吸蔵しかつ放出できる通常の全ての水素吸蔵合金、
例えばランタン−ニッケル系、ミッシュメタル−ニッケ
ル系、チタン−ニッケル系水素吸蔵合金等を対象とし、
そのめっき粒子の粒径は30μm以下とすることが好まし
い。又白金族金属としては、白金、パラジウム、イリジ
ウム、オスミウム、ルテニウム及びロジウムを含み、そ
の酸化物やそれらの合金であってもよく、そのめっき粒
子の粒径は10μm以下とすることが好ましい。The electrode active substance coated on the conductive substrate contains at least a hydrogen storage alloy, a platinum group metal and its oxide, and may further contain a plating component such as nickel. Hydrogen storage alloys that can be used in the present invention are all ordinary hydrogen storage alloys capable of storing and releasing hydrogen,
For example, for lanthanum-nickel based, misch metal-nickel based, titanium-nickel based hydrogen storage alloys,
The particle size of the plated particles is preferably 30 μm or less. The platinum group metal includes platinum, palladium, iridium, osmium, ruthenium and rhodium, and may be an oxide thereof or an alloy thereof, and the particle size of the plated particles is preferably 10 μm or less.
【0009】前記電極活性物質は分散めっきにより分散
めっき層として被覆形成されることが望ましく、その場
合には前記導電性基体表面に水素吸蔵合金とニッケルを
含む第1分散めっき層を、次いで該第1分散めっき層表
面に白金族金属やその酸化物あるいはこれらの合金とニ
ッケルを含む第2分散めっき層を形成することが更に望
ましい。しかし本発明の電解用陰極では、水素吸蔵合金
と白金族金属等を含む単一の分散めっき層を形成しても
よく、更に分散めっき以外の方法で前記水素吸蔵合金及
び前記白金族金属等を含む前記電極活性物質の被覆層を
形成してもよい。It is desirable that the electrode active material is coated by dispersion plating as a dispersion plating layer. In that case, a first dispersion plating layer containing a hydrogen storage alloy and nickel is formed on the surface of the conductive substrate, and then the first dispersion plating layer is formed. It is more preferable to form a second dispersion plating layer containing nickel and a platinum group metal or oxide thereof or nickel on the surface of the first dispersion plating layer. However, in the electrolysis cathode of the present invention, a single dispersion-plated layer containing a hydrogen storage alloy and a platinum group metal or the like may be formed, and the hydrogen storage alloy and the platinum group metal or the like may be formed by a method other than dispersion plating. You may form the coating layer of the said electrode active material containing.
【0010】しかしながら、水素吸蔵合金粒子と白金族
金属又はその酸化物や合金等の粒子を単一のめっき浴中
に懸濁させて分散めっきを行うと、分散粒子はそれぞれ
比重、導電率、粒径等に違いがあり、電気化学的に共析
させた場合に形成されるめっき層(被膜)中への共析量
は粒子によって異なり、それぞれの粒子の析出量を制御
することは非常に困難である。換言すると各懸濁粒子の
最適析出条件が相違するためそれぞれの粒子に最適な条
件を設定することができないのである。更に複数の粒子
をめっき浴中に懸濁させるためめっき浴の管理が複雑に
なり作業性が低下するという問題点もある。However, when the hydrogen storage alloy particles and the particles of the platinum group metal or its oxides or alloys are suspended in a single plating bath and dispersion plating is performed, the dispersed particles respectively have a specific gravity, an electric conductivity and a particle size. Due to differences in diameter, etc., the amount of eutectoid in the plating layer (coating) formed when electrochemically co-deposited differs depending on the particle, and it is very difficult to control the amount of each particle deposited. Is. In other words, it is impossible to set the optimum conditions for each particle because the optimum precipitation conditions for each suspended particle are different. Further, since a plurality of particles are suspended in the plating bath, the management of the plating bath becomes complicated and the workability is deteriorated.
【0011】従って本発明方法では、前述した通り、導
電性基体の表面に水素吸蔵合金を含む第1分散めっき層
を形成し、次いで該第1分散めっき層表面に白金族金属
等を含む第2分散めっき層を形成して電解用陰極を製造
する。これらの分散めっき層の形成は2度に分けて通常
の分散めっき法に従って行えば良い。前記第1分散めっ
き層の形成のためには、予め準備した水素吸蔵合金粒子
を懸濁させ、ニッケルを好ましくはその化合物の溶液と
して含む(例えば硫酸ニッケルや塩化ニッケル)めっき
浴に前記導電性基体を浸漬し該導電性基体を陰極として
通電すればよい。これによりニッケルマトリクス中に水
素吸蔵合金粒子を含む第1分散めっき層を形成すること
ができ、この場合にめっき条件を水素吸蔵合金粒子のめ
っきに最適な条件に設定し、被覆量及び被覆厚等を最適
値にコントロールすることができる。Therefore, in the method of the present invention, as described above, the first dispersion plating layer containing the hydrogen storage alloy is formed on the surface of the conductive substrate, and then the second dispersion plating layer containing the platinum group metal or the like is formed on the surface of the first dispersion plating layer. A dispersion plating layer is formed to manufacture an electrolysis cathode. The formation of these dispersed plating layers may be carried out in two steps according to an ordinary dispersion plating method. In order to form the first dispersed plating layer, the hydrogen storage alloy particles prepared in advance are suspended, and nickel is preferably contained as a solution of the compound (for example, nickel sulfate or nickel chloride) in a plating bath. And the conductive substrate is used as a cathode to energize. As a result, the first dispersed plating layer containing hydrogen storage alloy particles can be formed in the nickel matrix. In this case, the plating conditions are set to the optimum conditions for plating the hydrogen storage alloy particles, and the coating amount and coating thickness etc. Can be controlled to an optimum value.
【0012】該第1分散めっき層上に被覆される第2分
散めっき層の場合も同様に、予め準備した白金族金属粒
子等を懸濁させ、ニッケルを好ましくはその化合物の溶
液として含むめっき浴に、前記第1分散めっき層を形成
した前記導電性基体を浸漬し該導電性基体を陰極として
通電すればよい。これによりニッケルマトリクス中に白
金族金属粒子を含む第2分散めっき層を形成することが
でき、この場合にもめっき条件を白金族金属等のめっき
に最適な条件に設定し、被覆量及び被覆厚等を最適値に
コントロールすることができる。なおこの第2分散めっ
き層の形成時には既に被覆形成された第1分散めっき層
の特性を損なわないよう配慮することが望ましい。Similarly, in the case of the second dispersion plating layer coated on the first dispersion plating layer, the plating bath containing the platinum group metal particles and the like prepared in advance is suspended and nickel is preferably contained as a solution of the compound. Then, the conductive substrate on which the first dispersed plating layer is formed may be dipped and the conductive substrate may be used as a cathode for energization. As a result, the second dispersion plating layer containing platinum group metal particles can be formed in the nickel matrix. In this case as well, the plating condition is set to the optimum condition for plating the platinum group metal, etc., and the coating amount and coating thickness are set. Etc. can be controlled to the optimum values. When forming the second dispersed plating layer, it is desirable to give consideration so as not to impair the characteristics of the first dispersed plating layer that has already been formed by coating.
【0013】又本発明の電解用陰極は前述した白金族金
属やその酸化物及び水素吸蔵合金の他に、ポリテトラフ
ルオロエチレン粒子を前記めっき層中に含有させてガス
分離性を向上させたり、活性炭を第1分散めっき層中に
含有させて表面積の増大を図ったりすることができる。Further, in the cathode for electrolysis of the present invention, in addition to the above-mentioned platinum group metal and its oxide and hydrogen storage alloy, polytetrafluoroethylene particles are contained in the plating layer to improve the gas separability, Activated carbon can be contained in the first dispersed plating layer to increase the surface area.
【0014】[0014]
【実施例】次に本発明に係わる陰極の製造方法及び該陰
極を使用する電解の実施例を記載するが、本発明はこれ
らに限定されるものではない。EXAMPLES Examples of a method for producing a cathode and electrolysis using the cathode according to the present invention will be described below, but the present invention is not limited thereto.
【実施例1】分散めっきに先立ち、ニッケルとランタン
をアーク溶解し粉砕して平均粒径20μmのLaNi5 粒子
を、又塩化ルテニウムを480 ℃で10時間焼成し粉砕して
粒径が10μm以下の二酸化ルテニウム(RuO2)粒子を作
製した。厚さ0.5 mmで直径18mmの円形のニッケル基
体上に、次の組成を有するめっき浴を使用してLaNi5 と
ニッケルから成る複合被膜層を分散めっきした。この被
覆層中のLaNi5 は約34重量%であった。Example 1 Prior to dispersion plating, nickel and lanthanum were arc-melted and pulverized to obtain LaNi 5 particles having an average particle size of 20 μm, and ruthenium chloride was fired at 480 ° C. for 10 hours and pulverized to obtain a particle size of 10 μm or less. Ruthenium dioxide (RuO 2 ) particles were prepared. On a circular nickel substrate having a thickness of 0.5 mm and a diameter of 18 mm, a composite coating layer composed of LaNi 5 and nickel was dispersion-plated using a plating bath having the following composition. LaNi 5 in this coating layer was about 34% by weight.
【0015】Ni/LaNi5 共析条件 めっき浴組成 NiSO4 ・6H2O 1.0 モル/リットル NiCl2 ・6H2O 0.2 モル/リットル H3BO3 0.5 モル/リットル めっき電流密度 30mA/cm2 LaNi5 粒子懸濁量 5.0 g/リットル めっき温度 45℃ pH 5.0[0015] Ni / LaNi 5 eutectoid condition plating bath composition NiSO 4 · 6H 2 O 1.0 mol / l NiCl 2 · 6H 2 O 0.2 moles / liter H 3 BO 3 0.5 mol / l plating current density 30 mA / cm 2 LaNi 5 Particle suspension amount 5.0 g / liter Plating temperature 45 ℃ pH 5.0
【0016】更にこの被覆層を形成した基体に次の組成
を有するめっき浴を使用してRuO2とニッケルから成る第
2の複合被覆層を分散めっきした。この被覆層中のRuO2
は約5.4 重量%であった。 Ni/RuO2共析条件 めっき浴組成 NiSO4 ・6H2O 1.0 モル/リットル NiCl2 ・6H2O 0.2 モル/リットル H3BO3 0.5 モル/リットル めっき電流密度 30mA/cm2 RuO2粒子懸濁量 20g/リットル めっき温度 45℃ pH 4.0Further, the substrate having the coating layer formed thereon was dispersion-plated with a second composite coating layer made of RuO 2 and nickel by using a plating bath having the following composition. RuO 2 in this coating
Was about 5.4% by weight. Ni / RuO 2 eutectoid condition plating bath composition NiSO 4 · 6H 2 O 1.0 mol / l NiCl 2 · 6H 2 O 0.2 moles / liter H 3 BO 3 0.5 mol / l plating current density 30 mA / cm 2 RuO 2 particles suspended Quantity 20g / liter Plating temperature 45 ℃ pH 4.0
【0017】このように作製した電極を陰極とし、対極
及び参照極としてそれぞれ白金板及びRHEを用い、陽
極室に食塩水を供給し陰極室に1Mの希苛性ソーダ水溶
液を供給しながら100 mA/cm2 の電流密度で1時間
電解して陰極室で苛性ソーダを製造した。1時間経過後
電位を読み取り、その後電流を所定の値まで下げ、電流
設定後5分後の電位を読み取った。その結果を図1の電
流−電位曲線であるグラフに示した。図1から判るよう
に、電流密度100 mA/cm2 での陰極電位は−180 m
Vであり、回路を短絡させても陽極電流は観察されなか
った。The electrode thus prepared was used as a cathode, a platinum plate and a RHE were used as a counter electrode and a reference electrode, respectively, and a saline solution was supplied to the anode chamber and a 1 M dilute caustic soda aqueous solution was supplied to the cathode chamber at 100 mA / cm 2. Electrolysis was carried out at a current density of 2 for 1 hour to produce caustic soda in the cathode chamber. The potential was read after 1 hour, the current was then reduced to a predetermined value, and the potential was read 5 minutes after the current was set. The results are shown in the graph of FIG. 1 which is a current-potential curve. As can be seen from FIG. 1, the cathode potential at a current density of 100 mA / cm 2 is -180 m.
V, and no anodic current was observed when the circuit was short circuited.
【0018】[0018]
【比較例1】実施例1のNi/LaNi5 めっき浴のみを使用
し実施例1のニッケル基体上にLaNi5 粒子及びニッケル
を分散めっきして陰極を作製した。このように作製した
陰極を使用したこと以外は実施例1と同一条件で食塩電
解を行い実施例1と同様にして電位の読み取りを行っ
た。その結果を図2の電流−電位曲線であるグラフに示
した。この陰極では、回路を短絡させても陽極電流は観
察されなかったが、図2から、電流密度100 mA/cm
2 での陰極電位は−290 mVで実施例の陰極より陰極電
位が110 mV卑であった(過電圧が110 mV大きかっ
た)。Comparative Example 1 Using only the Ni / LaNi 5 plating bath of Example 1, LaNi 5 particles and nickel were dispersed and plated on the nickel substrate of Example 1 to prepare a cathode. Salt electrolysis was performed under the same conditions as in Example 1 except that the cathode thus produced was used, and the potential was read in the same manner as in Example 1. The results are shown in the graph of FIG. 2 which is a current-potential curve. With this cathode, no anode current was observed even if the circuit was short-circuited, but from Fig. 2, the current density was 100 mA / cm.
Cathode potential cathodic potential than the cathode of Example at -290 mV at 2 was 110 mV baser (overvoltage is greater 110 mV).
【0019】[0019]
【比較例2】実施例1のNi/RuO2めっき浴のみを使用し
実施例1のニッケル基体上にRuO2粒子及びニッケルを分
散めっきして陰極を作製した。このように作製した陰極
を使用したこと以外は実施例1と同一条件で食塩電解を
行い実施例1と同様にして電位の読み取りを行った。そ
の結果を図3の電流−電位曲線であるグラフに示した。
図3から判るように、このRuO2とニッケルを分散めっき
した陰極では電流密度100 mA/cm2 での陰極電位が
−165 mVであり実施例1の陰極より優れていたが、回
路を短絡させたときに陽極電流が流れた。Comparative Example 2 Using only the Ni / RuO 2 plating bath of Example 1, RuO 2 particles and nickel were dispersed and plated on the nickel substrate of Example 1 to prepare a cathode. Salt electrolysis was performed under the same conditions as in Example 1 except that the cathode thus produced was used, and the potential was read in the same manner as in Example 1. The results are shown in the graph of FIG. 3, which is a current-potential curve.
As can be seen from FIG. 3, the cathode in which RuO 2 and nickel were dispersion-plated had a cathode potential of −165 mV at a current density of 100 mA / cm 2 , which was superior to the cathode of Example 1, but the circuit was short-circuited. Anode current flowed when
【0020】[0020]
【実施例2】実施例1のNi/LaNi5 めっき浴中に20g/
リットルの懸濁RuO2粒子を添加し該めっき浴のみを使用
して実施例1と同一条件でLaNi5 、RuO2及びニッケルが
混在する分散めっき層をニッケル基体上に被覆して陰極
を作製した。この陰極を使用して実施例1と同様にして
食塩電解を行い実施例1と同様にして電位の読み取りを
行った。その結果電流密度100 mA/cm2 での陰極電
位は−170 mVであり、回路を短絡させても陽極電流は
観察されなかった。Example 2 20 g / in the Ni / LaNi 5 plating bath of Example 1
A cathode was prepared by adding liters of suspended RuO 2 particles and coating a dispersion plating layer containing LaNi 5 , RuO 2 and nickel mixed on a nickel substrate under the same conditions as in Example 1 using only the plating bath. . Using this cathode, salt electrolysis was performed in the same manner as in Example 1 and the potential was read in the same manner as in Example 1. As a result, the cathode potential at a current density of 100 mA / cm 2 was -170 mV, and no anode current was observed even when the circuit was short-circuited.
【0021】[0021]
【発明の効果】本発明は、導電性基体及び該導電性基体
上に形成された少なくとも水素吸蔵合金及び白金族金属
又はその酸化物を含む陰極活性物質の被覆層を含んで成
ることを特徴とする電解用陰極である。この電解用電極
の電極活性物質のうち白金族金属又はその酸化物は水素
過電圧が低く水素発生用陰極としての機能を有し、又水
素吸蔵合金はその内部に陰極で発生する水素を吸蔵し通
電停止時等に流れやすく前記白金族金属等を劣化させる
逆電流を打ち消すので、本発明により単独の陰極で高電
解効率と逆電流を打ち消す能力を兼ね備える従来にない
画期的な陰極を提供することができる。The present invention is characterized by comprising a conductive substrate and a coating layer of a cathode active material containing at least a hydrogen storage alloy and a platinum group metal or its oxide formed on the conductive substrate. It is a cathode for electrolysis. Of the electrode active substances of this electrode for electrolysis, the platinum group metal or its oxide has a low hydrogen overvoltage and functions as a cathode for hydrogen generation, and the hydrogen storage alloy occludes the hydrogen generated at the cathode and conducts electricity. The present invention provides a non-conventional epoch-making cathode having both high electrolysis efficiency and the ability to cancel reverse current by a single cathode because it cancels a reverse current that easily deteriorates the platinum group metal and the like when stopped. You can
【0022】更に前記水素吸蔵合金及び白金族金属等
は、それそれ導電性基体上の第1分散めっき層と該第1
分散めっき層上に第2分散めっき層に別れて存在するこ
とが望ましく、前記白金族金属等を二酸化ルテニウムと
すると望ましい電解効率を達成することができる。又本
発明方法は、導電性基体上に水素吸蔵合金を分散ニッケ
ルめっきして該水素吸蔵合金及びニッケルを含む第1分
散めっき層を形成し、次いで該第1分散めっき層上に白
金族金属又はその酸化物を分散ニッケルめっきして該白
金族金属又はその酸化物及びニッケルを含む第2分散め
っき層を形成することを特徴とする電解用陰極の製造方
法である。Further, the hydrogen storage alloy, the platinum group metal and the like are used for the first dispersion plating layer and the first dispersion plating layer on the conductive substrate, respectively.
It is desirable that the second dispersed plating layer is separately present on the dispersed plated layer, and if the platinum group metal or the like is ruthenium dioxide, desired electrolytic efficiency can be achieved. In the method of the present invention, a hydrogen storage alloy is plated on a conductive substrate with dispersed nickel to form a first dispersion plated layer containing the hydrogen storage alloy and nickel, and then a platinum group metal or a platinum group metal is formed on the first dispersed plated layer. A method for producing a cathode for electrolysis, which comprises subjecting the oxide to dispersion nickel plating to form a second dispersion plating layer containing the platinum group metal or its oxide and nickel.
【0023】このような本発明方法により電解用陰極を
製造すると、電極活性物質である水素吸蔵合金と白金族
金属等を別個の条件でめっきすることができるため、両
電極活性物質をそれぞれ最適のめっき条件で被覆形成す
ることができ、被覆量や被覆厚等がその用途に対する最
適値とした陰極を得ることが可能になる。When a cathode for electrolysis is manufactured by the method of the present invention as described above, it is possible to plate the hydrogen storage alloy, which is an electrode active substance, and the platinum group metal, under different conditions. It is possible to form a coating under the plating conditions, and it is possible to obtain a cathode in which the coating amount, coating thickness, etc. are optimal values for the application.
【図1】実施例1の陰極の電流−電位曲線のグラフ。FIG. 1 is a graph of a current-potential curve of a cathode of Example 1.
【図2】比較例1の陰極の電流−電位曲線のグラフ。FIG. 2 is a graph of a current-potential curve of the cathode of Comparative Example 1.
【図3】比較例2の陰極の電流−電位曲線のグラフ。FIG. 3 is a graph of a current-potential curve of the cathode of Comparative Example 2.
Claims (4)
れた少なくとも水素吸蔵合金及び白金族金属又はその酸
化物を含む陰極活性物質の被覆層を含んで成ることを特
徴とする電解用陰極。1. A cathode for electrolysis comprising a conductive substrate and a coating layer of a cathode active material containing at least a hydrogen storage alloy and a platinum group metal or an oxide thereof formed on the conductive substrate. .
素吸蔵合金及びニッケルを含む第1分散めっき層及び該
第1分散めっき層上に形成された白金族金属又はその酸
化物及びニッケルを含む第2分散めっき層を含む請求項
1に記載の電解用陰極。2. A first dispersion plating layer comprising a hydrogen storage alloy and nickel formed on a conductive substrate, and a platinum group metal or its oxide and nickel formed on the first dispersion plating layer. The cathode for electrolysis according to claim 1, further comprising a second dispersion plating layer containing
ニウムである請求項1に記載の電解用陰極。3. The cathode for electrolysis according to claim 1, wherein the platinum group metal or its oxide is ruthenium dioxide.
ケルめっきして該水素吸蔵合金及びニッケルを含む第1
分散めっき層を形成し、次いで該第1分散めっき層上に
白金族金属又はその酸化物を分散ニッケルめっきして該
白金族金属又はその酸化物及びニッケルを含む第2分散
めっき層を形成することを特徴とする電解用陰極の製造
方法。4. A first electrode containing a hydrogen storage alloy and nickel which is obtained by plating a conductive substrate with a hydrogen storage alloy by distributed nickel plating.
Forming a dispersion plating layer, and then performing a dispersion nickel plating of a platinum group metal or an oxide thereof on the first dispersion plating layer to form a second dispersion plating layer containing the platinum group metal or an oxide thereof and nickel. A method for producing a cathode for electrolysis, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32128592A JP3236682B2 (en) | 1992-11-05 | 1992-11-05 | Electrolytic cathode and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32128592A JP3236682B2 (en) | 1992-11-05 | 1992-11-05 | Electrolytic cathode and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06146046A true JPH06146046A (en) | 1994-05-27 |
JP3236682B2 JP3236682B2 (en) | 2001-12-10 |
Family
ID=18130861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32128592A Expired - Fee Related JP3236682B2 (en) | 1992-11-05 | 1992-11-05 | Electrolytic cathode and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3236682B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017188422A1 (en) * | 2016-04-27 | 2017-11-02 | デノラ・ペルメレック株式会社 | Electrolytic cell |
WO2018199025A1 (en) * | 2017-04-24 | 2018-11-01 | 住友電気工業株式会社 | Oxide-dispersed metallic porous body, electrodes for electrolysis, and hydrogen production device |
-
1992
- 1992-11-05 JP JP32128592A patent/JP3236682B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017188422A1 (en) * | 2016-04-27 | 2017-11-02 | デノラ・ペルメレック株式会社 | Electrolytic cell |
WO2017188421A1 (en) * | 2016-04-27 | 2017-11-02 | デノラ・ペルメレック株式会社 | Electrode for electrolysis, manufacturing method of electrode for electrolysis and electrolytic cell |
JPWO2017188422A1 (en) * | 2016-04-27 | 2018-06-07 | デノラ・ペルメレック株式会社 | Electrolytic cell |
JPWO2017188421A1 (en) * | 2016-04-27 | 2018-07-12 | デノラ・ペルメレック株式会社 | Electrode for electrolysis, method for producing electrode for electrolysis, and electrolytic cell |
KR20190002579A (en) * | 2016-04-27 | 2019-01-08 | 드 노라 페르멜렉 가부시키가이샤 | Electrolytic bath |
US10590551B2 (en) | 2016-04-27 | 2020-03-17 | De Nora Permelec Ltd | Electrode for electrolysis, manufacturing method of electrode for electrolysis, and electrolyzer |
WO2018199025A1 (en) * | 2017-04-24 | 2018-11-01 | 住友電気工業株式会社 | Oxide-dispersed metallic porous body, electrodes for electrolysis, and hydrogen production device |
JPWO2018199025A1 (en) * | 2017-04-24 | 2020-03-12 | 住友電気工業株式会社 | Oxide-dispersed porous metal body, electrode for electrolysis, and hydrogen production apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3236682B2 (en) | 2001-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Safizadeh et al. | Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review | |
Trasatti | Electrocatalysis of hydrogen evolution: progress in cathode activation | |
US5035779A (en) | Process for producing cathode and process for electrolysis using said cathode | |
Tilak et al. | High performance electrode materials for the hydrogen evolution reaction from alkaline media | |
US4465580A (en) | Cathode for use in electrolysis | |
KR890000179B1 (en) | Cathode having high durability and iow hydrogen overvoltage and process for the production thereof | |
JPH0790664A (en) | Low hydrogen overvoltage cathode and production thereof | |
JP2629963B2 (en) | High durability low hydrogen overvoltage cathode | |
EP0129231B1 (en) | A low hydrogen overvoltage cathode and method for producing the same | |
EP0222911B1 (en) | Highly durable low-hydrogen overvoltage cathode and a method of producing the same | |
US6972078B1 (en) | Catalytic powder and electrode made therewith | |
JP4115575B2 (en) | Activated cathode | |
JP3676554B2 (en) | Activated cathode | |
JP3236682B2 (en) | Electrolytic cathode and method for producing the same | |
EP0226291A1 (en) | Method for extending service life of a hydrogen-evolution electrode | |
US4877508A (en) | Highly durable cathode of low hydrogen overvoltage and method for manufacturing the same | |
JPS6145711B2 (en) | ||
JP3941898B2 (en) | Activated cathode and method for producing the same | |
WO1985000389A1 (en) | An electrode, processes for the manufacture thereof and use thereof | |
JPH0681182A (en) | Production of alkali hydroxide | |
JPH02104686A (en) | Cathode having low hydrogen overvoltage and high durability and production thereof | |
JPH0250992A (en) | High-durability low hydrogen overvoltage cathode and manufacture thereof | |
JPS58133387A (en) | Cathode having low hydrogen overvoltage and preparation thereof | |
JPS6112032B2 (en) | ||
JPH02310388A (en) | Low hydrogen overvoltage cathode with high durability and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |