JPH06145872A - Mg alloy excellent in creep strength and its production - Google Patents

Mg alloy excellent in creep strength and its production

Info

Publication number
JPH06145872A
JPH06145872A JP29714492A JP29714492A JPH06145872A JP H06145872 A JPH06145872 A JP H06145872A JP 29714492 A JP29714492 A JP 29714492A JP 29714492 A JP29714492 A JP 29714492A JP H06145872 A JPH06145872 A JP H06145872A
Authority
JP
Japan
Prior art keywords
alloy
creep strength
cast
present
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29714492A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
博幸 内田
Tomohiko Shintani
智彦 新谷
Mutsumi Abe
睦 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29714492A priority Critical patent/JPH06145872A/en
Publication of JPH06145872A publication Critical patent/JPH06145872A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Mg alloy excellent in creep strength and which is widely applicable at a low cost by improving its proof stress. CONSTITUTION:6-10% Al or <=4.0% Zn or both are compositely added to an Mg alloy. The cooling rate in the solidification section is controlled to <=10 deg.C/sec when the Mg alloy is cast, and the cast alloy is used as it is. The cast Mg alloy is further homogenized at 350-420 deg.C and cooled to room temp., and the size of the grain of the compd. deposited in the succeeding ageing treatment is controlled to >=1mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車用部品,
コンピュータ用部品,精密機械用部品等に採用されるM
g合金及びその製造方法に関し、詳細には軽量化及び耐
熱性の向上を図ることにより、用途を拡大できるように
したAl−Zn系Mg合金に関する。
BACKGROUND OF THE INVENTION The present invention relates to, for example, automobile parts,
M used for computer parts, precision machine parts, etc.
The present invention relates to a g-alloy and a method for producing the same, and more particularly to an Al-Zn-based Mg alloy that can be used for a wide range of purposes by reducing weight and improving heat resistance.

【0002】[0002]

【従来の技術】Mg合金は、実用されている金属のなか
で最も密度が低く、軽量化に貢献でき、しかも材料の減
衰能力が大きいことから、振動,騒音等が生じ易い自動
車部品,コンピュータ部品,精密機械部品等として、そ
の用途が注目されている。
2. Description of the Related Art Mg alloys have the lowest density of practically used metals, can contribute to weight reduction, and have a large damping capacity of materials, so that automobile parts and computer parts are apt to generate vibration and noise. , Its use is drawing attention as a precision machine part.

【0003】ところで上記Mg合金の最大の欠点は耐熱
性に劣り、高温での耐力が低いという点である。例え
ば、Mg合金の主流をなすAl−Zn系Mg合金では8
0℃以上の高温で使用すると、該Mg合金製部品を締め
付け固定しているボルトが弛み易くなる点が指摘されて
おり、用途が限定されるという問題がある。このような
ボルトの弛みを防止するために、従来、上記Mg合金に
レアアースを添加して高温での耐力を向上させることが
提案されている。
By the way, the biggest drawback of the above Mg alloy is that it is inferior in heat resistance and has a low yield strength at high temperatures. For example, in the case of Al-Zn-based Mg alloy, which is the mainstream of Mg alloys, it is 8
It has been pointed out that when used at a high temperature of 0 ° C. or higher, the bolts that fasten and fix the Mg alloy parts are likely to loosen, and there is a problem that applications are limited. In order to prevent such loosening of the bolt, it has been conventionally proposed to add rare earth to the Mg alloy to improve the yield strength at high temperature.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記レアアー
スを添加したMg合金では、材料コストが上昇するとい
う問題がある。このような合金を上述の各種部品として
使用する場合、その使用量が多いことから低コストの要
求に応えることができず、またリサイクルの点からも不
利である。従って、現在多量に使用されているAl−Z
n系Mg合金での耐熱性の改善が期待されている。
However, the Mg alloy to which the rare earth is added has a problem that the material cost increases. When such an alloy is used as the above-mentioned various parts, it is not possible to meet the demand for low cost because of the large amount used, and it is also disadvantageous in terms of recycling. Therefore, Al-Z, which is currently used in large quantities,
It is expected that the heat resistance of the n-based Mg alloy will be improved.

【0005】本発明は上記従来の状況に鑑みてなされた
もので、コストを上昇させることなく耐熱性を改善で
き、ひいては用途を拡大できるMg合金及びその製造方
法を提供することを目的としている。
The present invention has been made in view of the above conventional circumstances, and an object of the present invention is to provide a Mg alloy which can improve the heat resistance without increasing the cost and can be expanded in its use, and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】本件発明者らは、上記目
的を達成するために従来のAl−Zn系Mg合金の製造
条件を検討した。それによると従来では、ボルトの弛み
を改善するには高温での耐力の高いものを得るという観
点から、熱処理としては均質化処理+時効処理を施し、
この時効処理をできるだけ低温(190℃以下)で行う
ことにより高耐力化を図るという方法が用いられてい
る。つまりボルトの弛みが生じる原因は上記Mg合金の
高温での耐力低下による変形であると考えられていた。
この観点は誤りではなく、このような方法で耐弛み性を
改善できる合金も存在する。
DISCLOSURE OF THE INVENTION The inventors of the present invention have examined the manufacturing conditions of conventional Al—Zn based Mg alloys in order to achieve the above object. According to it, in order to improve the slack of the bolt, in the conventional method, from the viewpoint of obtaining a material having high yield strength at high temperature, as heat treatment, homogenization treatment + aging treatment,
A method is used in which the aging treatment is performed at a temperature as low as possible (190 ° C. or less) to achieve high yield strength. That is, it has been considered that the cause of the slack of the bolt is the deformation of the Mg alloy due to the decrease in proof stress at high temperature.
This viewpoint is not wrong, and there are alloys that can improve the sag resistance by such a method.

【0007】上述のような観点をふまえ、Mg合金によ
るボルトの弛みについてさらに詳細な解析を行ったとこ
ろ、高温での耐力の改善は副次的な要因であり、主要な
要因はクリープ強度にあること、またクリープ強度が略
同じであれば、高耐力のほうがさらに耐弛み性に対して
効果があることを見出した。さらに、最も大きな知見
は、Al−Zn系Mg合金の場合、上述の高耐力化の方
法はクリープ強度の点から不利な方法であり、これがボ
ルトの弛みを大きくしている最大の原因であることが判
明したことである。
Based on the above point of view, a more detailed analysis of the slack of the bolt due to the Mg alloy was carried out. As a result, the improvement of the yield strength at high temperature was a secondary factor, and the major factor was the creep strength. It was also found that high yield strength is more effective for sagging resistance if the creep strengths are substantially the same. Furthermore, the biggest finding is that, in the case of Al-Zn-based Mg alloy, the above-mentioned method of increasing the yield strength is a disadvantageous method from the viewpoint of creep strength, and this is the largest cause of increasing the slack of the bolt. Has been found.

【0008】本件発明者らは、これらの点に鑑みてクリ
ープ強度を重視し、鋭意検討を行った。その結果、クリ
ープ強度を改善するには第1に化合物の析出速度を速め
ること、第2に時効処理により化合物を析出させる場合
にその粒子の大きさを制御する必要があることを見出し
た。そして、そのためにはAl,Znの添加量を所定範
囲に規定することが重要であり、このようにして製造さ
れたMg合金は、従来の耐用温度より50℃程度向上で
き、ひいては高温における耐力を向上できることに想到
し、本発明を成したものである。
[0008] In view of these points, the inventors of the present invention attach great importance to creep strength and have conducted earnest studies. As a result, they have found that in order to improve the creep strength, it is necessary to first increase the precipitation rate of the compound and secondly to control the particle size of the compound when precipitating the compound by aging treatment. For that purpose, it is important to regulate the added amounts of Al and Zn within a predetermined range, and the Mg alloy produced in this way can be improved by about 50 ° C. from the conventional service temperature, and by extension, the yield strength at high temperature. The present invention has been made with the idea that it can be improved.

【0009】そこで請求項1の発明は、Al:6〜10
%,Zn:4.0%以下のいずれか一方、又は両方を複
合添加したことを特徴とするクリープ強度に優れたMg
合金である。また請求項2の発明は、上記Mg合金を鋳
造のままで使用することを特徴としている。
Therefore, the invention of claim 1 is: Al: 6 to 10
%, Zn: 4.0% or less, either or both of them are added in combination, and Mg having excellent creep strength is characterized.
It is an alloy. The invention of claim 2 is characterized in that the Mg alloy is used as cast.

【0010】また、請求項3の発明は、上記Mg合金の
製造方法であって、Al:6〜10%,Zn:4.0%
以下のいずれか一方、又は両方を複合添加してなるMg
合金を鋳造する際に、凝固区間における冷却速度が10
℃/sec以下になるように鋳型に鋳込み、この鋳造後
そのままで使用することを特徴としている。さらに請求
項4の発明は、上記鋳造したMg合金を350〜420
℃の温度で均質化処理した後、室温まで冷却し、この後
時効処理を施して析出される化合物粒子の大きさを1μ
m 以上としたことを特徴としている。
A third aspect of the present invention is a method for producing the Mg alloy, wherein Al: 6-10% and Zn: 4.0%.
Mg obtained by adding one or both of the following
When casting the alloy, the cooling rate in the solidification zone is 10
It is characterized in that it is cast into a mold so that the temperature is not higher than ° C / sec and that it is used as it is after this casting. Furthermore, the invention of claim 4 is characterized in that the cast Mg alloy is 350-420.
After homogenizing at a temperature of ℃, cool to room temperature, and then perform aging treatment to reduce the size of the precipitated compound particles to 1 μm.
The feature is that it is m or more.

【0011】以下、本発明の構成について詳細に説明す
る。 I.まず、Al量を6〜10%とした理由 Al量を6%以上としたのは、析出速度を速める手段と
して鋳造中に生じる偏析を利用し、クリープ強度を改善
するためのもので、充分な偏析を生じさせるに必要な最
小添加量が6%であるからである。また、Al量を10
%以下としたのは、これを越えると偏析の点では有利で
あるが、延性が極端に低下し、クリープ強度が逆に低下
するからである。
The structure of the present invention will be described in detail below. I. First, the reason why the amount of Al is set to 6 to 10% The amount of Al is set to 6% or more in order to improve the creep strength by utilizing the segregation that occurs during casting as a means to accelerate the precipitation rate. This is because the minimum amount of addition required to cause sufficient segregation is 6%. Further, the amount of Al is 10
% Or less is because if it exceeds this value, it is advantageous in terms of segregation, but the ductility extremely decreases and the creep strength decreases conversely.

【0012】II. Zn量を4%以下とした理由 Znは延性を改善するとともに、化合物の析出速度を速
める効果をもつことから、これを添加するのは有効であ
る。しかしながらZnの添加量が4%を越えると共晶温
度が著しく低下し、共晶化合物を固溶させるのに長時間
必要となるため、最適添加量は4%以下とした。
II. Reason for Zn content of 4% or less Zn is effective in improving the ductility and accelerating the precipitation rate of the compound. Therefore, addition of Zn is effective. However, when the addition amount of Zn exceeds 4%, the eutectic temperature is remarkably lowered, and it takes a long time to form a solid solution of the eutectic compound. Therefore, the optimum addition amount is 4% or less.

【0013】III.Mg合金を鋳造のままで使用する理由 上記合金を鋳造のまま(As−cast)の状態で、つ
まり熱処理等を施すことなく使用するのは以下の理由に
よる。上述のようにクリープ強度の改善には固溶元素の
偏析を利用して化合物の析出を速くすることが有効であ
る。このような化合物の折出はAs−castの状態で
最も効果的に得られるからである。
III. Reasons for using the Mg alloy as it is cast The above alloys are used in the as-cast state (As-cast), that is, without heat treatment, for the following reasons. As described above, in order to improve the creep strength, it is effective to accelerate the precipitation of the compound by utilizing the segregation of the solid solution element. This is because such compound protrusion is most effectively obtained in the As-cast state.

【0014】IV. 冷却速度を10℃/sec以下とした
理由 上記合金を鋳造する場合、冷却速度が10℃/sを越え
るとデントライト組織となり、その結果クリープ強度が
低下するからである。
IV. Reason for cooling rate of 10 ° C./sec or less When casting the above alloy, if the cooling rate exceeds 10 ° C./s, a dendritic structure is formed, and as a result, the creep strength decreases.

【0015】V.時効処理による折出物粉子の大きさを1
μm 以上とした理由 Mg合金は析出が生じると寸法変化を生じ易いことか
ら、寸法変化を嫌うような用途に対しては充分析出させ
て使用する必要があり、このような用途には時効処理を
行うことが有効である。従来では微細な化合物を析出さ
せて耐力を向上させる方法が採用されているが、この方
法はボルトの耐弛み性の改善には有効でない。この点に
ついて検討したところ、ボルトの弛みは応力緩和現象に
より生じることから、これを抑制するには低応力側のク
リープ強度を高めることが必要であり、これには析出物
が大きいほど有効であることを見出した。
V. The size of the dust particles produced by aging treatment is 1
Reasons for setting μm or more Since Mg alloys are prone to dimensional changes when precipitation occurs, it is necessary to use them after sufficient precipitation for applications where dimensional changes are unfavorable. It is effective to do. Conventionally, a method of precipitating a fine compound to improve the yield strength has been adopted, but this method is not effective for improving the slack resistance of the bolt. As a result of studying this point, loosening of the bolt is caused by a stress relaxation phenomenon. Therefore, it is necessary to increase the creep strength on the low stress side to suppress this, and the larger the precipitate, the more effective it is. I found that.

【0016】即ち、低応力側となる本件Mg合金のクリ
ープメカニズムは転位の上昇運動に支配されることか
ら、この転位が粒子を通過するには析出物を乗り越えな
ければならず、クリープ速度は粒子の大きさに反比例す
ることによるものである。このことから、ボルトの弛み
に対しては粒子の形状を大きくすることが必要であり、
その大きさは実験の結果、長片の長さを1μm 以上とす
るのが望ましいことが判明したからである。
That is, since the creep mechanism of the Mg alloy of the present invention, which is on the low stress side, is governed by the dislocation rising motion, the dislocation must overcome the precipitate in order to pass through the grain, and the creep rate is the grain speed. This is because it is inversely proportional to the size of. From this, it is necessary to make the particle shape larger for the slack of the bolt,
This is because, as a result of experiments, it was found that it is desirable to set the length of the long piece to 1 μm or more.

【0017】[0017]

【作用】本発明に係るクリープ強度に優れたMg合金及
びその製造方法によれば、上述の構成で説明したように
Al:6〜10%,Zn:4%以下を添加したMg合金
を鋳造のままで使用したので、クリープ強度を改善で
き、ひいては高温での耐力を向上できる。従って、本発
明のAl−Zn系Mg合金を自動車用部品,コンピュー
タ用部品等として採用した場合に高温でのボルトの弛み
を防止でき、従来では困難であった高温域での使用が可
能となり、それだけ用途を拡大できる。また現在多用さ
れているAl−Zn系Mg合金の添加量を規制するだけ
で実現できることから、レアアースを添加した合金の場
合に比べてコストを低減でき、この点からも用途を拡大
できる。
According to the Mg alloy excellent in creep strength and the method for producing the same according to the present invention, as described in the above-mentioned constitution, the Mg alloy added with Al: 6 to 10% and Zn: 4% or less can be cast. Since it has been used up to now, it is possible to improve the creep strength and eventually the yield strength at high temperatures. Therefore, when the Al-Zn-based Mg alloy of the present invention is adopted as parts for automobiles, parts for computers, etc., it is possible to prevent slackening of bolts at high temperature, and it becomes possible to use it in a high temperature range which was difficult in the past. The applications can be expanded accordingly. Further, since it can be realized only by controlling the addition amount of the Al-Zn-based Mg alloy which is widely used at present, the cost can be reduced as compared with the case of the alloy to which rare earth is added, and the application can be expanded also from this point.

【0018】[0018]

【実施例】以下、本発明の実施例を説明する。本実施例
では、本発明のMg合金の効果を確認するために行った
試験について説明する。まず、本試験に採用した試料に
ついて説明する。Al:8.5%−Zn:0.7%を複
合添加してなるAZ91材を準備し、これを冷却速度が
10℃/sec以下となるよう鋳造し、この鋳造のまま
の状態の試料を作成した(以下、本発明合金Aと称す
る)。また、上記鋳造したAZ91材を420℃×24
時間で均質化処理した後、250℃×10時間で時効処
理を施し、これにより析出粒子の大きさが1.2μm 以
上の試料を作成した(以下、本発明合金Bと称する)。
EXAMPLES Examples of the present invention will be described below. In this example, a test conducted to confirm the effect of the Mg alloy of the present invention will be described. First, the samples used in this test will be described. An AZ91 material prepared by adding Al: 8.5% -Zn: 0.7% in combination is prepared, and is cast at a cooling rate of 10 ° C./sec or less. It was prepared (hereinafter, referred to as alloy A of the present invention). Moreover, the cast AZ91 material is 420 ° C. × 24
After homogenizing treatment for a period of time, aging treatment was performed at 250 ° C. for 10 hours to prepare a sample in which the size of precipitated particles was 1.2 μm or more (hereinafter, referred to as alloy B of the present invention).

【0019】また、比較するために、均質化処理+時効
処理を施し、これにより析出粒子の大きさが0.2μm
のAZ91−T6材を従来材として採用した。さらに、
レアアースを添加してなるZE41合金(Zn4%−R
E1.25%−Zr0.6%)を比較材として採用し
た。
For comparison, a homogenizing treatment and an aging treatment were performed, whereby the size of the precipitated particles was 0.2 μm.
The conventional AZ91-T6 material was used. further,
ZE41 alloy (Zn4% -R added with rare earth
E1.25% -Zr0.6%) was adopted as a comparative material.

【0020】次に、本試験方法について説明する。この
試験は、図1に示すように、ボルトの弛み試験で行っ
た。これは、上記本発明合金A,Bからなる厚さ20m
mの板状ブロック1に12φの孔1aを形成し、該孔1
a内に軸径8φの鋼ボルト2を挿入するとともに、該ボ
ルト2に座金3,3及びばね座金4を介在させてナット
5を螺装して所定のトルクでもって締め付け固定し、こ
のボルト2に取付けられた歪ゲージ6で歪を測定した。
そして、昇温中,及び加熱中の面圧(MPa)の変化を
調べるとともに、170時間加熱後の面圧の低下量につ
いても調べた。また上記従来材,比較材についても同様
の試験を行った。
Next, the test method will be described. This test was performed by a bolt slack test as shown in FIG. This has a thickness of 20 m consisting of the alloys A and B of the present invention.
12φ holes 1a are formed in the plate-shaped block 1 of m.
A steel bolt 2 having a shaft diameter of 8φ is inserted into a, and a nut 5 is screwed into the bolt 2 with washers 3 and 3 and a spring washer 4 interposed therebetween and tightened and fixed with a predetermined torque. The strain was measured with a strain gauge 6 attached to the.
Then, the changes in the surface pressure (MPa) during the temperature rise and the heating were examined, and the decrease amount of the surface pressure after heating for 170 hours was also examined. The same test was conducted on the conventional material and the comparative material.

【0021】図2及び図4は、それぞれ上記試験結果を
説明するための特性図である。図2は、室温から約15
0℃に昇温し、この昇温中における面圧の変化を示す特
性図である(締め付けトルクは3.5Kgmとした)。
同図からも明らかなように、従来材の場合、80℃を越
えると面圧が急激に低下しており、弛みが生じ易くなっ
ている。これに対して本発明合金A,Bの場合は、11
0℃程度まで面圧の低下は全く生じておらず、130℃
程度まで充分な面圧が得られており、比較材と略同等の
耐力が得られていることがわかる。
2 and 4 are characteristic diagrams for explaining the above test results, respectively. Figure 2 shows about 15
FIG. 9 is a characteristic diagram showing a change in surface pressure during the temperature increase to 0 ° C. (tightening torque was 3.5 Kgm).
As is clear from the figure, in the case of the conventional material, the surface pressure sharply decreases when the temperature exceeds 80 ° C., and slack easily occurs. On the other hand, in the case of the alloys A and B of the present invention, 11
No decrease in surface pressure occurred up to about 0 ℃, 130 ℃
It can be seen that a sufficient surface pressure has been obtained to a certain extent, and a proof stress that is substantially the same as that of the comparative material has been obtained.

【0022】図3は、130℃に加熱した状態で10〜
105 min保持し、この加熱中における面圧の変化を
示す特性図である(締め付けトルクは2.5Kgm,及
び4Kgmとした)。同図からも明らかなように、従来
材の場合、時間の経過とともに面圧の低下速度が速くな
っているのに対して、本発明合金A,Bの場合は低下速
度が小さい。また締め付けトルクを2.5Kgmとした
本発明合金A,Bでは、面圧はほとんど変化していない
ことがわかる。
FIG. 3 shows that when heated to 130.degree.
FIG. 10 is a characteristic diagram showing changes in surface pressure during heating for 10 5 min (tightening torques of 2.5 Kgm and 4 Kgm). As is clear from the figure, in the case of the conventional material, the decrease rate of the surface pressure increases with the passage of time, whereas in the case of the alloys A and B of the present invention, the decrease rate is small. Further, it can be seen that in the alloys A and B of the present invention in which the tightening torque is 2.5 kgm, the surface pressure hardly changes.

【0023】図4は、試験温度と170時間加熱後のピ
ーク面圧からの低下量%とを示す特性図である。同図か
らも明らかなように、本発明合金A,Bでは、130℃
における低下量は20%程度となっており、比較材に匹
敵するボルトの耐弛み性を有していることがわかる。
FIG. 4 is a characteristic diagram showing the test temperature and the decrease amount% from the peak surface pressure after heating for 170 hours. As is clear from the figure, the alloys A and B of the present invention have a temperature of 130 ° C.
The amount of decrease is about 20%, which shows that the bolt has slack resistance comparable to that of the comparative material.

【0024】このように本発明合金A,Bによれば、A
l,Zn量を限定するとともに鋳造のままの状態で使用
し、さらには時効処理における析出粒子の大きさを1μ
m 以上としたので、上述の試験結果が示すように、レア
アースを添加してなるZE41合金と略同等のクリープ
強度,及び耐ボルトの弛み性が得られる。従って、自動
車用部品,コンピュータ用部品,あるいは精密機械用部
品として採用した場合に高温での耐熱性を向上でき、そ
れだけ用途を拡大できる。
Thus, according to the alloys A and B of the present invention, A
l, Zn amount is limited, and it is used in the as-cast state. Furthermore, the size of precipitated particles in the aging treatment is 1 μm.
Since it is set to m or more, as shown by the above-mentioned test results, it is possible to obtain the creep strength and the slack resistance of the bolt that are substantially the same as those of the ZE41 alloy to which rare earth is added. Therefore, when it is used as an automobile part, a computer part, or a precision machine part, the heat resistance at high temperatures can be improved, and the application can be expanded accordingly.

【0025】また、本発明合金A,Bでは、Al−Zn
系Mg合金におけるAl,Znの添加量を規制するとと
もに、製造条件を設定するだけで得られることから、上
記レアアースを添加した合金の場合に比べてコストを低
減でき、部品点数の増大についても低コストで対応でき
る。
In the alloys A and B of the present invention, Al--Zn
Since the amount of Al and Zn added to the Mg-based alloy can be regulated and the production conditions can be set, the cost can be reduced and the number of parts can be increased as compared with the alloy containing rare earth. Can be handled at cost.

【0026】[0026]

【発明の効果】以上のように本発明に係るクリープ強度
に優れたMg合金及びその製造方法によれば、Al:6
〜10%,Zn:4%以下を複合添加したので、また冷
却速度,析出粒子の大きさ等を規定したので、低コスト
でかつ高温での耐力を向上でき、ひいては用途を拡大で
きる効果がある。
As described above, according to the Mg alloy excellent in creep strength and the method for producing the same according to the present invention, Al: 6
-10%, Zn: 4% or less are added in combination, and the cooling rate, the size of precipitated particles, etc. are specified, so that the yield strength can be improved at low cost and at high temperature, and the application can be expanded. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるMg合金の試験方法を説
明するための図である。
FIG. 1 is a diagram illustrating a method for testing a Mg alloy according to an example of the present invention.

【図2】上記試験による昇温中の面圧変化を示す特性図
である。
FIG. 2 is a characteristic diagram showing a change in surface pressure during temperature increase by the above test.

【図3】上記試験による加熱中の面圧変化を示す特性図
である。
FIG. 3 is a characteristic diagram showing changes in surface pressure during heating by the above test.

【図4】上記試験による残留面圧と温度との関係を示す
特性図である。
FIG. 4 is a characteristic diagram showing the relationship between the residual surface pressure and temperature in the above test.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Al:6〜10%,Zn:4.0%以下
のいずれか一方、又は両方を複合添加したことを特徴と
するクリープ強度に優れたMg合金。
1. An Mg alloy having excellent creep strength, which is characterized in that one or both of Al: 6 to 10% and Zn: 4.0% or less is added in combination.
【請求項2】 請求項1において、鋳造のままで使用さ
れることを特徴とするクリープ強度に優れたMg合金。
2. The Mg alloy having excellent creep strength according to claim 1, which is used as it is cast.
【請求項3】 Al:6〜10%,Zn:4.0%以下
のいずれか一方、又は両方を複合添加してなるMg合金
を鋳造する際に、凝固区間における冷却速度が10℃/
sec以下になるように鋳型に鋳込み、この鋳造後その
ままで使用することを特徴とするクリープ強度に優れた
Mg合金の製造方法
3. When casting a Mg alloy formed by adding one or both of Al: 6 to 10% and Zn: 4.0% or less, the cooling rate in the solidification zone is 10 ° C. /
A method for producing a Mg alloy having excellent creep strength, which comprises casting into a mold so as to be less than or equal to sec and using the casting as it is.
【請求項4】 請求項3において、上記鋳造したMg合
金を350〜420℃の温度で均質化処理した後、室温
まで冷却し、その後時効処理を施することにより析出さ
れる化合物粒子の大きさを1μm 以上としたことを特徴
とするクリープ強度に優れたMg合金の製造方法
4. The size of compound particles precipitated according to claim 3, wherein the cast Mg alloy is homogenized at a temperature of 350 to 420 ° C., cooled to room temperature, and then aged. Of Mg alloy having excellent creep strength, characterized in that
JP29714492A 1992-11-06 1992-11-06 Mg alloy excellent in creep strength and its production Withdrawn JPH06145872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29714492A JPH06145872A (en) 1992-11-06 1992-11-06 Mg alloy excellent in creep strength and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29714492A JPH06145872A (en) 1992-11-06 1992-11-06 Mg alloy excellent in creep strength and its production

Publications (1)

Publication Number Publication Date
JPH06145872A true JPH06145872A (en) 1994-05-27

Family

ID=17842779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29714492A Withdrawn JPH06145872A (en) 1992-11-06 1992-11-06 Mg alloy excellent in creep strength and its production

Country Status (1)

Country Link
JP (1) JPH06145872A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327231A (en) * 2001-03-02 2002-11-15 Mitsubishi Alum Co Ltd Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
KR20030039829A (en) * 2001-11-15 2003-05-22 박영철 Light alloy which magnesium is used as main raw naterials and casting products by using the light alloy
JP2008093335A (en) * 2006-10-16 2008-04-24 Bridgestone Sports Co Ltd Metallic golf club head
JPWO2010047045A1 (en) * 2008-10-22 2012-03-15 住友電気工業株式会社 Magnesium alloy compact and magnesium alloy sheet
CN113930698A (en) * 2021-08-03 2022-01-14 湖南科技大学 Twin crystal multi-scale tissue reinforced plasticized magnesium alloy wide plate and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327231A (en) * 2001-03-02 2002-11-15 Mitsubishi Alum Co Ltd Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
KR20030039829A (en) * 2001-11-15 2003-05-22 박영철 Light alloy which magnesium is used as main raw naterials and casting products by using the light alloy
JP2008093335A (en) * 2006-10-16 2008-04-24 Bridgestone Sports Co Ltd Metallic golf club head
JPWO2010047045A1 (en) * 2008-10-22 2012-03-15 住友電気工業株式会社 Magnesium alloy compact and magnesium alloy sheet
CN113930698A (en) * 2021-08-03 2022-01-14 湖南科技大学 Twin crystal multi-scale tissue reinforced plasticized magnesium alloy wide plate and preparation method thereof
CN113930698B (en) * 2021-08-03 2022-06-10 湖南科技大学 Twin crystal multi-scale tissue reinforced plasticized magnesium alloy wide plate and preparation method thereof

Similar Documents

Publication Publication Date Title
US4021271A (en) Ultrafine grain Al-Mg alloy product
US9068252B2 (en) Methods for strengthening slowly-quenched/cooled cast aluminum components
JPH07145441A (en) Superplastic aluminum alloy and its production
US4618382A (en) Superplastic aluminium alloy sheets
US6582538B1 (en) Method for producing an amorphous alloy having excellent strength
WO2007106772A2 (en) Method and process of non-isothermal aging for aluminum alloys
EP4253584A1 (en) Aluminum alloy and aluminum alloy structural member
JPH093610A (en) Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production
JPH06145872A (en) Mg alloy excellent in creep strength and its production
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
US5415710A (en) Heat-resistant aluminum alloy having high fatigue strength
JP3324444B2 (en) Manufacturing method of extruded aluminum material with excellent bending workability
JPH11286758A (en) Production of forged product using aluminum casting material
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
JPH1112673A (en) Aluminum alloy casting and its production
JPH11246925A (en) Aluminum alloy casting with high toughness, and its manufacture
JP2857282B2 (en) Aluminum alloy extruded material excellent in bending workability and shock absorption and method for producing the same
JPH07145440A (en) Aluminum alloy forging stock
US20070267113A1 (en) Method and process of non-isothermal aging for aluminum alloys
JPH0447019B2 (en)
JP2000087199A (en) Manufacture of rolled product of magnesium alloy, method of press working magnesium alloy, and press worked product
JP3164252B2 (en) Manufacturing method of heat-resistant magnesium alloy
US20210332462A1 (en) Aluminum alloy and manufacturing method thereof
JP6967437B2 (en) A method for manufacturing an aluminum die-cast alloy, an automobile member using an aluminum die-cast alloy, and an aluminum die-cast alloy.

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201