JPH06145728A - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JPH06145728A
JPH06145728A JP4298376A JP29837692A JPH06145728A JP H06145728 A JPH06145728 A JP H06145728A JP 4298376 A JP4298376 A JP 4298376A JP 29837692 A JP29837692 A JP 29837692A JP H06145728 A JPH06145728 A JP H06145728A
Authority
JP
Japan
Prior art keywords
ore
coke
blast furnace
highly reactive
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4298376A
Other languages
Japanese (ja)
Other versions
JP3014556B2 (en
Inventor
Masaaki Naito
誠章 内藤
Asao Hatanaka
朝夫 圃中
Akihide Kisue
明秀 木末
Seiichi Yokoyama
清一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4298376A priority Critical patent/JP3014556B2/en
Publication of JPH06145728A publication Critical patent/JPH06145728A/en
Application granted granted Critical
Publication of JP3014556B2 publication Critical patent/JP3014556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To reduce raw material costs and fuel ratio in the operation method for substituting highly reactive coke for a part of ordinary coke by adjusting the amt. of the porous lumped ore and non-calcined agglomerate, etc., to be charged in such a manner that the utilization factor furnace top gaseous hydrogen attains a prescribed value or above. CONSTITUTION:The ordinary coke for metallurgy is substituted with the highly reactive coke having >=30% JIS(Japanese Industrial Standards) reactivity. The highly reactive coke is mixed with at least either of the ore or the ordinary coke for metallurgy. Further, the non-calcined agglomerate and/or the porous lumped ore, in which <=1% consists of <=3mm size adjusted to >=30% porosity and >=3% water of crystallization and the ore are mixed, and the mixture is charged into a blast furnace. The utilization factor etaH2 of the furnace top gaseous hydrogen is measured in this operation method and the amt. of the porous lumped ore and non-calcined agglomerate, etc., to be charged is adjusted in such a manner that the factor etaH2 attains the preset lower limit value or above. As a result, the temp. of a heat retaining zone is controlled to 750 to 1000 deg.C and the reaction efficiency is maintained even when the quality of the sintered ore degrades. The fuel ratio is lowered and the safe operation under high reduction efficiency is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炉頂から装入する通常
冶金用コークスの一部を反応性を高めたコークスに置換
して使用する際に、結晶水が多く、脈鉱成分の多い安価
な多孔質塊鉱石を塊状態のまま高炉に装入することによ
って、原料コスト及び燃料比の低下を図るための高炉の
操業方法に関するものである。
BACKGROUND OF THE INVENTION The present invention has a large amount of water of crystallization and a large amount of vein ore components when the coke for metallurgical charging from the furnace top is partially replaced with coke having a higher reactivity. The present invention relates to a blast furnace operating method for reducing raw material cost and fuel ratio by charging an inexpensive porous lump ore in a lump state into a blast furnace.

【0002】[0002]

【従来の技術】通常の高炉にあっては、炉頂から鉄鉱石
およびコークスを層状に装入し、この鉄鉱石を炉内で還
元した後、金属状態に還元・溶融して溶銑を製造してい
る。このとき、鉄鉱石の還元効率を高めるため、特公昭
52−43169号公報にあっては、鉄鉱石と小塊コー
クスを予め混合しておき、この混合物と通常冶金用コー
クスを層状に装入することが開示されている。このよう
に予めコークスと混合した鉄鉱石を使用することによ
り、炉内における通気性が改善され、その還元性が向上
する。
2. Description of the Related Art In an ordinary blast furnace, iron ore and coke are charged in layers from the furnace top, and after this iron ore is reduced in the furnace, it is reduced and melted into a metallic state to produce hot metal. ing. At this time, in order to improve the reduction efficiency of iron ore, in Japanese Patent Publication No. 52-43169, iron ore and small coke are premixed, and this mixture and ordinary metallurgical coke are charged in layers. It is disclosed. By using the iron ore previously mixed with the coke in this way, the air permeability in the furnace is improved and the reducing property thereof is improved.

【0003】ところで、高炉の熱保存帯温度は1000
℃程度であり、この温度はコークスのガス化開始温度に
相当する。つまり、高炉内でC+CO2 =2COのコー
クスのガス化反応が起こるために、約1000℃以上の
温度が必要となる。鉄鉱石の還元は熱保存帯より高温領
域で約70%が生じるが、温度が高くなるに伴い還元平
衡ガス組成が高CO側となること、および鉄鉱石からの
融液生成が約1100℃以上で見られ、還元ガスの浸透
が不十分になることから熱保存帯の温度が高いと鉄鉱石
の間接還元を有効に活用できず、還元効率もある値以上
に向上しない。
By the way, the heat preservation zone temperature of the blast furnace is 1000
The temperature is about ℃, and this temperature corresponds to the gasification start temperature of coke. In other words, a temperature of about 1000 ° C. or higher is necessary for the gasification reaction of coke of C + CO 2 = 2CO in the blast furnace. About 70% of the reduction of iron ore occurs in the higher temperature region than the heat preservation zone, but the reduction equilibrium gas composition becomes high CO side as the temperature rises, and the melt generation from iron ore is about 1100 ° C or more. However, if the temperature of the heat preservation zone is high, the indirect reduction of iron ore cannot be effectively utilized because the permeation of the reducing gas becomes insufficient, and the reduction efficiency does not improve beyond a certain value.

【0004】ところで、鉄鉱石と混合された小塊コーク
スは通常冶金用コークスと同じ性状であるから、粒度の
小さい分だけCO2 との反応がより活発である。しか
し、鉄鉱石と混合しているため鉄鉱石のCO還元で生成
したCO2 がコークスのより近くにあり、反応が速いと
いう有利さだけで、熱保存帯温度の低下を伴わないた
め、その還元効率向上には限界があった。
By the way, since small lump coke mixed with iron ore usually has the same properties as metallurgical coke, the reaction with CO 2 is more active due to the smaller particle size. However, since the CO 2 produced by the CO reduction of the iron ore is closer to the coke because it is mixed with the iron ore, the reduction of the heat preservation zone temperature is not accompanied only by the advantage that the reaction is fast. There was a limit to efficiency improvement.

【0005】この限界を改善するために、高反応性コー
クスを通常冶金用コークスの全量あるいは一部と置換し
て使用することが操業として行われている。この高反応
性コークスは反応性が高いことから、高炉内のCO2
コークス表面に接触してC+CO2 =2COの反応がよ
り低温から活発に行われる。またその結果として炉内に
生じたCOガスが鉄鉱石と有効に反応して低級酸化物ま
たは金属状態に還元する反応が促進される。このC+C
2 =2COの反応は吸熱反応であり、高炉における熱
保存帯温度を低下させることができる。従来法によると
き、1000℃程度の熱保存帯が生成し、その値がほと
んど変化しないのに対して、高反応性コークスを使用す
ることによって、熱保存帯温度を900〜950℃に低
下させることが可能となる。その結果、還元平衡到達点
に余裕ができるため還元がより進行することになり、還
元効率が向上しコークス比を低下させることができる。
In order to improve this limit, it has been practiced to replace the high-reactivity coke with all or part of the metallurgical coke as an operation. Since this highly reactive coke is highly reactive, CO 2 in the blast furnace comes into contact with the surface of the coke, and the reaction of C + CO 2 = 2CO is actively performed from a lower temperature. Further, as a result, the CO gas generated in the furnace effectively reacts with the iron ore to promote the reaction of reducing it to the lower oxide or metal state. This C + C
The reaction of O 2 = 2CO is an endothermic reaction and can lower the heat preservation zone temperature in the blast furnace. According to the conventional method, a heat storage zone of about 1000 ° C. is generated and its value hardly changes, whereas the temperature of the heat storage zone is lowered to 900 to 950 ° C. by using a highly reactive coke. Is possible. As a result, the reduction equilibrium point can be afforded, so that the reduction progresses further, the reduction efficiency is improved, and the coke ratio can be reduced.

【0006】高炉に装入する塊鉱石については、比較的
還元性が良く、しかも、熱割れ性の少ない優良鉄鉱石と
してのハマスレー鉱石,ニューマン鉱石などを通常、5
から20%程度使用している。また、MBR鉱石などの
熱割れ性鉱石,又は、熱割れ性の少ない鉱石であるが多
孔質で結晶水及び付着粉鉱石(3ミリメートル以下)が
多く、しかも、脈鉱成分の多い安価なローブリバー,ゴ
ア鉱石などの多孔質塊鉄鉱石は高炉シャフト部での粉化
量が多く通気不良を惹起して安定した操業を維持するこ
とが出来なくなることが懸念され、この種の鉱石は直接
高炉に装入することは行わず、破砕して焼結原料に供さ
れてきた。しかし、近年においては、特開平1−219
111号公報に見られるように、熱割れ性鉱石を炉壁側
部に、前記優良鉄鉱石を炉中心部に装入する方法が提案
されている。
Regarding the lump ore charged into the blast furnace, humusley ore, Newman ore, etc., which are excellent iron ores having relatively good reducing properties and less heat cracking, are usually used.
It uses about 20%. In addition, a heat-cracking ore such as MBR ore, or an ore with little heat-cracking property, which is porous and contains a large amount of crystal water and adhering powdered ore (3 mm or less), and an inexpensive lobe river with many vein ore components. Porous lump iron ore such as gore ore has a large amount of pulverization in the shaft part of the blast furnace and it is feared that it will not be able to maintain stable operation due to poor ventilation, and this kind of ore will be directly added to the blast furnace. It was crushed and used as a sintering raw material without charging. However, in recent years, JP-A 1-219
As can be seen in Japanese Patent Publication No. 111, a method has been proposed in which a heat cracking ore is charged in the side of the furnace wall and the excellent iron ore is charged in the center of the furnace.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記特開平1
−219111号公報で提案の熱割れ性鉱石に変えて、
上記の様に焼結原料に供されて来た多孔質塊鉄鉱石をそ
のままの状態で装入すると、高炉炉壁部であっても、粉
鉱石に起因する装入物の目詰まりが発生し、使用できた
としても精々装入する全鉄源量の1%程度と非常に少な
いものであった。また、熱保存帯温度を低下させ、高炉
の反応効率を向上させる方法として、高反応性コークス
を鉱石またはコークスと混合して使用するのが有効であ
り、燃料比の低減が達成できるが、該高炉操業において
は、熱保存帯温度の低下を確認してはいるが、熱保存帯
温度を制御するまでには至っていない。また、高反応性
コークス使用下では、熱保存帯温度の下限レベルは約9
00℃程度であった。
However, the above-mentioned Japanese Unexamined Patent Application Publication No.
-In place of the heat cracking ore proposed in Japanese Patent No. 219111,
If the porous massive iron ore that has been used as the sintering raw material is charged as it is as described above, clogging of the charge due to the powdered ore occurs even in the blast furnace wall. Even if it could be used, it was a very small amount of about 1% of the total amount of iron source charged. Further, as a method of lowering the heat preservation zone temperature and improving the reaction efficiency of the blast furnace, it is effective to use highly reactive coke mixed with ore or coke, and a reduction in the fuel ratio can be achieved. In blast furnace operation, although it has been confirmed that the temperature of the heat preservation zone decreases, the temperature of the heat preservation zone has not been controlled yet. When using highly reactive coke, the lower limit level of the heat storage zone temperature is about 9
It was about 00 ° C.

【0008】また、焼結鉱性状変化が高炉操業に及ぼす
影響については、Al23 成分などの原料条件によっ
て、焼結鉱被還元性が変化し、還元指標であるJIS−
RIが低下するような場合、高炉操業が不安定化し、燃
料比が上昇する問題があった。そのため、焼結鉱品質悪
化時にも反応効率を維持し、燃料比上昇量を極力少なく
することが課題である。本発明は、原料コスト、燃料比
を低減するために、上記多孔質塊鉄鉱石を多量に、しか
も炉内のいずれの位置に装入しても安定した高炉操業の
維持を可能とするだけでなく、非焼成塊成鉱との混合使
用を考慮することにより、熱保存帯温度を750〜10
00℃の範囲内に調整し、高い反応効率下で、高生産性
で安定的に溶銑を製造することを目的とする。
Regarding the effect of changes in the properties of the sinter on the operation of the blast furnace, the reducibility of the sinter changes depending on the raw material conditions such as the Al 2 O 3 component, and the reduction index JIS-
When the RI decreases, the operation of the blast furnace becomes unstable and the fuel ratio increases. Therefore, it is an issue to maintain the reaction efficiency and reduce the fuel ratio increase amount as much as possible even when the quality of the sintered ore deteriorates. In order to reduce the raw material cost and the fuel ratio, the present invention can maintain a stable blast furnace operation even if a large amount of the above-mentioned porous lump iron ore is charged, and at any position in the furnace. In consideration of the mixed use with the non-calcined agglomerated ore, the heat preservation zone temperature is set to 750 to 10
The purpose is to adjust the temperature within the range of 00 ° C. and to stably produce hot metal with high productivity under high reaction efficiency.

【0009】[0009]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、通常冶金用コークスの一部をJIS
反応性が30%以上の高反応性コークスに置き換え、該
高反応性コークスを鉱石または通常冶金用コークスの少
なくとも一方と混合し、さらに3mm以下を1%以下に
した気孔率30%以上の高結晶水(3%以上)含有多孔
質塊鉱石および/または非焼成塊成鉱を鉱石と混合し、
高炉に装入する高炉操業法において、炉頂水素ガス利用
率ηH2を測定し、該ηH2が予め設定した下限値以上とな
るように、高結晶水(3%以上)含有多孔質塊鉱石およ
び/または非焼成塊成鉱の装入量もしくは高反応性コー
クスの使用量を調整することにより、熱保存帯温度を7
50〜1000℃の範囲内に制御し、高炉の反応効率を
より向上させることを特徴とする。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, in which a part of coke for metallurgy is usually JIS.
High reactivity coke having reactivity of 30% or more, mixing the high reactivity coke with at least one of ore and ordinary metallurgical coke, and further reducing 3 mm or less to 1% or less, high crystal with porosity of 30% or more Mixing water (3% or more) -containing porous lump ore and / or uncalcined agglomerated ore with the ore;
In the blast furnace operation method of charging into a blast furnace, the furnace top hydrogen gas utilization rate ηH 2 is measured, and high crystallization water (3% or more) -containing porous lump ore is set so that the ηH 2 is equal to or higher than a preset lower limit value. And / or adjusting the amount of uncalcined agglomerate charge or the amount of highly reactive coke used to increase the thermal storage zone temperature to 7
It is characterized in that it is controlled within the range of 50 to 1000 ° C. to further improve the reaction efficiency of the blast furnace.

【0010】[0010]

【作用】本発明で使用する高反応性コークスはJIS
K2151−1977の反応性試験方法で測定したとき
のJIS反応性が30%以上であることが必要である。
30%以上という数値限定は特開平1−36710号公
報に示すように、実炉試験結果より30%未満ではほと
んどその効果が見られないことによる。特開平1−36
710号公報では高反応性コークスの調整法として、冶
金用コークス製造に適さない反応性の高い微非粘結炭,
一般炭を原料炭に一部配合するか、反応を促進する触媒
としての役割をもつ石灰石、アルカリ類を少量、原料炭
に配合する方法を開示した。成型コークスもこれに属す
る。高反応性コークスを通常冶金用コークスの一部と置
き換えて高炉に装入すると、熱保存帯温度が低下し還元
平衡到達点に余裕ができるため、還元がより進行し還元
効率が向上するから、結果としてC+CO2 =2COの
ソルーションロス反応(吸熱反応)が抑制される。この
ため高炉の炉熱に余裕ができ、高炉のシャフト下部から
炉腹部にかけての還元効率低下を防止することができ
る。
[Function] The highly reactive coke used in the present invention is JIS
It is necessary that the JIS reactivity as measured by the reactivity test method of K2151-1977 is 30% or more.
The numerical limitation of 30% or more is because, as shown in Japanese Patent Laid-Open No. 1-36710, when the actual furnace test result is less than 30%, the effect is hardly seen. Japanese Patent Laid-Open No. 1-36
No. 710 discloses a highly reactive coke that is not suitable for the production of coke for metallurgy, as a method for adjusting highly reactive coke,
A method has been disclosed in which steam coal is partially blended with raw coal or a small amount of limestone and alkalis which play a role of a catalyst for accelerating the reaction is blended with raw coal. Molded coke also belongs to this category. When the high-reactivity coke is replaced with a part of normal metallurgical coke and charged into the blast furnace, the heat preservation zone temperature decreases and a reduction equilibrium point can be afforded, so that the reduction progresses further and the reduction efficiency improves. As a result, the solution loss reaction (endothermic reaction) of C + CO 2 = 2CO is suppressed. Therefore, the furnace heat of the blast furnace has a margin, and it is possible to prevent reduction of the reduction efficiency from the lower part of the shaft of the blast furnace to the furnace belly.

【0011】まず、熱保存帯温度を低下させる方法につ
いて述べる。熱保存帯温度はコークスの反応開始点に相
当し、現行のコークス性状では熱保存帯温度は約100
0℃であるが、特願昭62−193457号に示す高反
応性コークス使用下では、熱保存帯温度の下限値は約9
00℃である。図1は高反応性コークスの使用方法、粒
度、使用比率と熱保存帯温度の低下幅との関係を示した
ものであるが、熱保存帯温度の低下幅は高反応性コーク
スの使用比率と粒度によって変化し、高反応性コークス
使用比率の増大もしくは細粒化により、熱保存帯温度は
低下する。言い換えれば、高反応性コークスの反応性、
粒度、使用比率を調整することにより、900〜100
0℃の範囲内の熱保存帯温度の制御が可能である。
First, a method for lowering the heat storage zone temperature will be described. The heat preservation zone temperature corresponds to the reaction start point of the coke, and in the current coke properties, the heat preservation zone temperature is about 100.
Although the temperature is 0 ° C, the lower limit of the thermal storage zone temperature is about 9 when the highly reactive coke as shown in Japanese Patent Application No. 62-193457 is used.
It is 00 ° C. Fig. 1 shows the relationship between the usage method, particle size and usage ratio of the highly reactive coke and the decrease width of the heat storage zone temperature. The thermal storage zone temperature decreases depending on the particle size, and due to the increase in the proportion of highly reactive coke used or the reduction in particle size. In other words, the reactivity of highly reactive coke,
By adjusting the particle size and usage ratio, 900-100
It is possible to control the heat storage zone temperature within the range of 0 ° C.

【0012】900℃以下に熱保存帯温度を低下させる
手段として、高反応性コークス使用に加え、3%以上の
結晶水を含有した塊鉄鉱石(塊鉄鉱石の使用技術につい
ては、特願平3−42406号に提案した)および/ま
たは非焼成塊成鉱を使用した。これは、塊鉄鉱石中なら
びに非焼成塊成鉱中に含まれる結晶水の分解吸熱反応が
750℃前後で生じること、非焼成塊成鉱に含まれるセ
メント中のCaCO3の分解吸熱反応が約850℃付近
で生じること、非焼成塊成鉱中の内装炭素の吸熱反応が
約800〜850℃付近で生じることを利用している。
このように、高反応性コークス使用下では、シャフト部
で750〜850℃付近で吸熱反応を生じる物体を混入
することにより、熱保存帯温度の低下が可能となる。熱
保存帯温度の制御範囲については、750〜1000℃
の範囲が有効である。1000℃が現状の熱保存帯温度
レベルに相当し、1000℃以上では反応の効率が落
ち、燃料比低減に繋がらない。また750℃以下では、
焼結鉱の還元粉化が顕著で、安定操業継続に支障とな
る。
As a means for lowering the heat storage zone temperature to 900 ° C. or lower, in addition to the use of highly reactive coke, lump iron ore containing 3% or more of water of crystallization (for the technique of using lump iron ore, see Japanese Patent Application No. 3-42406) and / or uncalcined agglomerates. This is because the decomposition endothermic reaction of the crystal water contained in the agglomerated iron ore and the non-calcined agglomerated ore occurs at around 750 ° C., and the decomposition and endothermic reaction of CaCO 3 in the cement contained in the uncalcined agglomerated ore is about It takes advantage of the fact that the endothermic reaction of the internal carbon in the non-calcined agglomerate occurs at around 800 to 850 ° C, and that it occurs near 850 ° C.
As described above, when a highly reactive coke is used, the temperature of the heat preservation zone can be lowered by mixing an object that causes an endothermic reaction at around 750 to 850 ° C. in the shaft portion. About the control range of heat preservation zone temperature,
The range is valid. 1000 ° C. corresponds to the current heat preservation zone temperature level, and at 1000 ° C. or higher, the reaction efficiency decreases and the fuel ratio cannot be reduced. Also, below 750 ° C,
Reduction powder of sinter is remarkable, which hinders stable operation.

【0013】つぎに、特公平3−27604号,特公昭
63−61366号公報に提案した炉頂水素ガス利用率
ηH2の管理の必要性について述べる。高炉内半径方向の
一部に、400〜700℃領域が長くなると、焼結鉱の
還元粉化が生じ、高炉シャフト部のガス流れを偏流化さ
せるとともに、前記低温領域での還元遅れにより、高炉
の反応効率を低下させ、高炉操業を不安定化させる要因
となる。前記低温領域が長くなると、その領域内で水性
ガスシフト反応(H2O+CO=CO2 +H2 )が生
じ、ηH2が低下するため、炉頂ガス利用率ηH2を常時測
定することにより、400〜700℃領域の長さを監視
できる。通常操業では、半径方向の一部に高熱流比部位
が存在し、中心部あるいは周辺部からのクロスフロー
で、炉上部が熱せられることにより、400〜700℃
の低温領域が長くなることが知られているが、本発明で
指向するように、熱保存帯温度を低下させる場合にも、
前記低温領域が長くなる可能性がある。そのため、高炉
操業を安定化させるためにも、ηH2の管理が必要とな
る。
Next, the necessity of controlling the furnace top hydrogen gas utilization rate η H 2 proposed in Japanese Examined Patent Publication No. 3-27604 and Japanese Examined Patent Publication No. 63-61366 will be described. When the temperature range of 400 to 700 ° C. becomes long in a part of the radial direction in the blast furnace, reduction pulverization of the sinter occurs, the gas flow in the shaft portion of the blast furnace is diverted, and the reduction delay in the low temperature region causes the blast furnace It reduces the reaction efficiency of and causes instability in blast furnace operation. When the low temperature region becomes long, a water gas shift reaction (H 2 O + CO = CO 2 + H 2 ) occurs in that region, and ηH 2 decreases. Therefore, by constantly measuring the furnace top gas utilization ratio ηH 2 , The length of the 700 ° C region can be monitored. In normal operation, there is a high heat flow ratio part in a part of the radial direction, and the upper part of the furnace is heated by the cross flow from the central part or the peripheral part to 400 to 700 ° C.
It is known that the low temperature region of becomes long, but as directed in the present invention, when the heat preservation zone temperature is lowered,
The low temperature region may become long. Therefore, in order to stabilize the operation of the blast furnace, it is necessary to control ηH 2 .

【0014】つぎに、熱保存帯温度の制御方法について
述べる。熱保存帯温度は高反応性コークスの反応性、使
用比率、粒度によって、900〜1000℃の範囲内の
制御が可能である。900℃以下の熱保存帯温度制御に
ついては、高反応性コークスの使用に加え、3%以上の
結晶水を含有した塊鉄鉱石および/または非焼成塊成鉱
の使用量を調節することによって、制御可能である。本
発明における高炉操業においては、高炉炉頂水素ガス利
用率ηH2を監視し、この値が予め設定した下限値を下回
ったときは、高炉半径方向の一部に400〜700℃の
低温領域が拡がり、焼結鉱の還元速度の低下ならびに還
元粉化が助長され、この現象が炉内通気性悪化、炉況不
調へと繋がっていくため、その繋がりを断ち切るべく、
3%以上の結晶水を含有した前記塊鉄鉱石,非焼成塊成
鉱,高反応性コークスの使用量を調節する。
Next, a method of controlling the heat preservation zone temperature will be described. The heat storage zone temperature can be controlled within the range of 900 to 1000 ° C. depending on the reactivity of the highly reactive coke, the use ratio, and the particle size. For heat storage zone temperature control of 900 ° C. or less, in addition to the use of highly reactive coke, by adjusting the amount of agglomerated iron ore and / or uncalcined agglomerated ore containing 3% or more water of crystallization, It is controllable. In the blast furnace operation in the present invention, the blast furnace top hydrogen gas utilization rate ηH 2 is monitored, and when this value is below a preset lower limit, a low temperature region of 400 to 700 ° C. is present in a part of the blast furnace radial direction. Spreading, the reduction rate of sinter ore is promoted and reduction powdering is promoted, and this phenomenon leads to deterioration of the air permeability in the furnace and poor condition of the furnace, so to cut off the connection,
The amounts of the agglomerated iron ore, uncalcined agglomerated ore, and highly reactive coke containing 3% or more of water of crystallization are adjusted.

【0015】高炉内で400〜700℃の低温領域が拡
がり、還元粉化を助長する高炉炉頂水素ガス利用率ηH2
は、操業条件によって異なるため、予め操業試験によっ
て求めておき、また、この下限値を下回った度合に応じ
て必要とされる3%以上の結晶水を含有した前記塊鉄鉱
石,非焼成塊成鉱,高反応性コークスの使用変化量の関
係も、予め操業試験によって求めておく。図2はこうし
て操業試験によって求めた高炉炉頂水素ガス利用率ηH2
の下限値よりの低下幅と下限値に回復させるために必要
な前記塊鉄鉱石,非焼成塊成鉱,高反応性コークスの装
入量の変化幅の関係を示す。図3は重量比で通常コーク
スの20%をJIS反応性70、粒度10mmの高反応
性コークスに置換した操業下での、非焼成塊成鉱および
/または3%以上の結晶水を含有した塊鉄鉱石の使用量
と熱保存帯温度の低下幅との関係を示す。
The spread is a low temperature region of 400 to 700 ° C. in a blast, blast furnace top hydrogen gas utilization rate ItaH 2 for promoting reduction degradation
Varies depending on the operating conditions, so it is obtained in advance by an operating test, and the agglomerated iron ore containing 3% or more of water of crystallization required depending on the degree of falling below this lower limit, uncalcined agglomerated The relationship between changes in the use of ore and highly reactive coke should also be obtained in advance by operation tests. Fig. 2 shows the hydrogen gas utilization rate ηH 2 at the top of the blast furnace determined by the operation test.
Fig. 3 shows the relationship between the range of decrease from the lower limit and the range of change in the amounts of the aforementioned massive iron ore, non-calcined agglomerated ore, and highly reactive coke required for recovering to the lower limit. FIG. 3 is a lump containing uncalcined agglomerated ore and / or 3% or more of water of crystallization under the operation in which 20% of the normal coke by weight is replaced with highly reactive coke having a JIS reactivity of 70 and a particle size of 10 mm. The relationship between the amount of iron ore used and the width of decrease in the temperature of the heat storage zone is shown.

【0016】[0016]

【実施例】以下、実施例により本発明の特徴を具体的に
説明する。表1に、高反応性コークス、3mm以下を1
%以下にした気孔率30%以上、結晶水3%以上を有す
る多孔質塊鉄鉱石,非焼成塊成鉱を使用した高炉操業を
従来法と比較して示す。対象高炉は内容積3000m3
の中型高炉であり、炉頂からO/C=4.2の割合で鉄
鉱石と通常冶金用コークス(JIS反応性20%)を層
状に装入し、通常冶金用コークスの小塊(JIS反応性
20%,平均粒度20mm,鉄鉱石と混合)を20kg
/t装入していた。通常塊鉱石使用比率は13%,ペレ
ット使用比率は9%である。羽口前フレーム温度を21
80℃(送風温度1200℃、添加湿分25g/Nm
3 ,酸素富化量0.013Nm3 /Nm3 −air,微
粉炭吹き込み量100g/Nm3 −air)に維持しな
がら溶銑を6000t/日製造していた(比較例1)。
焼結鉱品質はJIS−RI68%である。
EXAMPLES The features of the present invention will be specifically described below with reference to examples. Table 1 shows highly reactive coke with 3 mm or less as 1
A blast furnace operation using a porous agglomerated iron ore and a non-calcined agglomerated ore having a porosity of 30% or more and a water of crystallization of 3% or more, which are made less than or equal to%, is shown in comparison with a conventional method. The target blast furnace has an internal volume of 3000 m 3.
This is a medium-sized blast furnace in which iron ore and normal metallurgical coke (JIS reactivity 20%) are charged in layers at a ratio of O / C = 4.2 from the furnace top, and a small lump of normal metallurgical coke (JIS reaction) 20%, average particle size 20 mm, mixed with iron ore)
/ T was charged. The normal lump ore usage ratio is 13% and the pellet usage ratio is 9%. Hue front frame temperature 21
80 ° C (Blower temperature 1200 ° C, added moisture 25g / Nm
3 , the oxygen enrichment amount was 0.013 Nm 3 / Nm 3 -air, and the pulverized coal blowing amount was 100 g / Nm 3 -air), and hot metal was produced at 6000 t / day (Comparative Example 1).
The quality of sinter is JIS-RI 68%.

【0017】通常操業時の熱保存帯温度は980℃であ
った。この状態から、重量比で通常コークスの20%を
JIS反応性70、粒度5〜10mmの高反応性コーク
スに置換し、該高反応性コークスを鉄鉱石と混合して装
入した(比較例2)。高炉シャフト部において400〜
700℃に低温領域が生成し、高炉操業を不安定化させ
る時の高炉炉頂水素ガス利用率ηH2の下限値は42%で
あった。ここで、結晶水8.1%、3mm以下を1%以
下にした多孔質塊鉄鉱石をA塊鉱石として表示し、結晶
水8.1%、3mm以下を1%以下にした多孔質塊鉄鉱
石をB塊鉱石として表示する。
The heat preservation zone temperature during normal operation was 980 ° C. From this state, 20% of the normal coke in weight ratio was replaced with highly reactive coke having a JIS reactivity of 70 and a particle size of 5 to 10 mm, and the highly reactive coke was mixed with iron ore and charged (Comparative Example 2). ). 400-in the shaft part of the blast furnace
The lower limit of the blast furnace top hydrogen gas utilization rate ηH 2 when the low temperature region was generated at 700 ° C. and destabilized the operation of the blast furnace was 42%. Here, the porous lump iron ore having crystal water of 8.1% and 3 mm or less made 1% or less is indicated as A lump ore, and the crystal water of 8.1%, 3 mm or less and porous lump iron ore made 1% or less Display the stone as a B block ore.

【0018】実施例1は、比較例2に示す高反応性コー
クス使用下で、通常使用塊鉱石の全量ならびに焼結鉱の
一部にかえて、A塊鉱石を使用し、その使用量を順次増
加させて使用量16%に至った時に、ηH2が40%とな
り下限値42%を下回ったため、図1にしたがって、該
塊鉱石の使用量を4%低減し、ηH2を42〜43%に回
復させた時の操業例である。熱保存帯温度は約860℃
で安定した。高炉の反応効率は比較例2に比べ改善され
ており、燃料比は低減した。
In Example 1, under the use of the highly reactive coke shown in Comparative Example 2, the A mass ore was used in place of the total amount of the normally used mass ore and a part of the sintered ore, and the usage amounts were sequentially. When the amount of use increased to 16%, ηH 2 was 40%, which was below the lower limit value of 42%. Therefore, according to FIG. 1, the amount of the lump ore used was reduced by 4%, and ηH 2 was 42 to 43%. It is an example of the operation when it was restored to. Heat preservation zone temperature is about 860 ℃
Stable in. The reaction efficiency of the blast furnace was improved compared to Comparative Example 2, and the fuel ratio was reduced.

【0019】実施例2は、比較例2に示す高反応性コー
クスを使用し、かつペレットの全量を非焼成塊成鉱(9
%)に置換した操業下で、通常使用塊鉱石の全量ならび
に焼結鉱の一部にかえて、A塊鉱石を使用し、その使用
量を順次増加させて使用量14%に至った時に、ηH2
40%となり下限値42%を下回ったため、図1にした
がって、該塊鉱石の使用量を4%低減し、ηH2を42〜
43%に回復させた時の操業例である。熱保存帯温度は
850℃で安定した。操業は比較例2に比べると反応効
率は向上しており、燃料比は低減している。
In Example 2, the highly reactive coke shown in Comparative Example 2 was used, and the entire amount of the pellets was used in the non-calcined agglomerated ore (9
%), Under the operation of replacing the whole amount of the normally used lump ore and part of the sintered ore with A lump ore, the usage amount is gradually increased until the usage amount reaches 14%, since ItaH 2 is below 42% 40% becomes the lower limit value, according to FIG. 1, to reduce the amount of該塊ore 4%, the ηH 2 42~
It is an example of operation when it is recovered to 43%. The heat storage zone temperature was stable at 850 ° C. In operation, the reaction efficiency is improved and the fuel ratio is reduced as compared with Comparative Example 2.

【0020】実施例3は、比較例2に示す高反応性コー
クスを使用し、ペレットの全量と焼結鉱の一部を非焼成
塊成鉱に置き換え、非焼成塊成鉱の使用割合を15%に
し、かつ、通常使用塊鉱石の全量と焼結鉱の一部を、A
塊鉱石10%、B塊鉱石7%に置き換え、使用割合を1
5%とした時に、ηH2が40%となり下限値を下回った
ため、図1にしたがって、A塊鉱石を4%低減し、ηH2
を42〜43%に回復させた時の操業例である。炉周辺
部の熱保存帯温度は約825℃まで低下した。
In Example 3, the highly reactive coke shown in Comparative Example 2 was used, the whole amount of pellets and a part of the sintered ore were replaced with non-calcined agglomerated ore, and the use ratio of the non-calcined agglomerated ore was 15 %, And the total amount of normally used lump ore and part of the sinter ore
Replaced lump ore 10% and B lump ore 7%, and changed the usage rate to 1
When it was set to 5%, ηH 2 was 40%, which was below the lower limit. Therefore, according to Fig. 1, A lump ore was reduced by 4% and ηH 2
Is an example of operation when it is recovered to 42 to 43%. The temperature of the heat preservation zone around the furnace dropped to about 825 ° C.

【0021】実施例4は、実施例3の操業継続中に、焼
結鉱RDIが上昇し、その影響でηH2が41%と下限値
である42%を下回り、高炉操業が不安定化し始めたた
め、図1にしたがって、高反応性コークスの使用比率を
3%低減させ、ηH2を42%まで回復させた操業例であ
る。周辺部の熱保存帯温度は約840℃に上昇して、操
業は安定化した。
In Example 4, while the operation of Example 3 was continued, the sinter ore RDI increased, and due to the effect, ηH 2 was 41%, which was below the lower limit of 42%, and blast furnace operation began to become unstable. Therefore, according to FIG. 1, this is an operation example in which the usage ratio of highly reactive coke is reduced by 3% and η H 2 is recovered to 42%. The heat preservation zone temperature of the peripheral part rose to about 840 ° C, and the operation was stabilized.

【0022】実施例5は、比較例1の操業から、重量比
で通常コークスの20%をJIS反応性60、粒度10
〜15mmの高反応性コークスに置換し、該高反応性コ
ークスを鉄鉱石と混合して装入した。この操業状態から
通常使用塊鉱石の全量を、A塊鉱石に置換した時(使用
量13%)の操業例である。ηH2は44%と下限に近い
が、高炉操業は安定しており、炉周辺部の熱保存帯温度
は約910℃となった。燃料比は比較例1に比べて低
い。
In Example 5, from the operation of Comparative Example 1, 20% by weight of normal coke was JIS reactive 60 and particle size 10.
Replaced with ~ 15 mm highly reactive coke, which was mixed and charged with iron ore. This is an operation example when the entire amount of the normally used lump ore is replaced with the A lump ore from this operating state (used amount 13%). Although η H 2 was 44%, which was close to the lower limit, the blast furnace operation was stable, and the temperature of the heat preservation zone around the furnace was about 910 ° C. The fuel ratio is lower than in Comparative Example 1.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】以上に説明したように、本発明において
は、高反応性コークス、結晶水3%以上の多孔質塊鉄鉱
石、非焼成塊成鉱を使用するに際し、炉頂水素ガス利用
率ηH2を監視し、このηH2が予め設定した下限値を下回
り、還元粉化助長に伴う通気変動に至る前に、上記多孔
質塊鉄鉱石、非焼成塊成鉱の使用比率もしくは高反応性
コークスの使用量を調整する。この操業法は、高反応性
コークス使用・上記多孔質塊鉄鉱石・非焼成塊成鉱を使
用することにより、熱保存帯温度を750〜1000℃
に制御可能であり、高い還元効率のもとで、燃料比が低
下でき、安定的に高炉を操業できる。
As described above, in the present invention, when using highly reactive coke, porous lump iron ore with 3% or more of water of crystallization, or non-calcined agglomerate, the hydrogen gas utilization rate at the top of the furnace ηH 2 is monitored, and before this ηH 2 falls below the preset lower limit value and aeration fluctuation due to promotion of reduction powdering is reached, the above-mentioned porous lump iron ore, uncalcined agglomerated ore use ratio or high reactivity Adjust coke usage. This operation method uses a highly reactive coke, the above-mentioned porous lump iron ore, and non-calcined agglomerated ore to keep the heat preservation zone temperature at 750 to 1000 ° C.
The fuel ratio can be reduced and the blast furnace can be operated stably under high reduction efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】高反応性コークスの使用方法、粒度、使用比率
と熱保存帯温度の低下幅との関係を示す図、
FIG. 1 is a diagram showing a relationship between a method of using highly reactive coke, a particle size, a usage ratio, and a decrease width of a heat preservation zone temperature

【図2】高炉炉頂水素ガス利用率ηH2の下限値よりの低
下幅と下限値に回復させるために必要な3%以上の結晶
水を含有した塊鉄鉱石,非焼成塊成鉱,高反応性コーク
スの装入量の変化幅の関係を示す図、
[Fig. 2] Amount of decrease in the hydrogen gas utilization rate ηH 2 from the top of the blast furnace and an agglomerated iron ore containing 3% or more of crystallization water necessary for recovering to the lower limit, uncalcined agglomerated ore, high The figure which shows the relationship of the variation width of the charging amount of the reactive coke,

【図3】重量比で通常コークスの20%をJIS反応性
70、粒度10mmの高反応性コークスに置換した操業
下での、非焼成塊成鉱ならびに3%以上の結晶水を含有
した塊鉄鉱石の使用量と熱保存帯温度の低下幅との関係
を示す図である。
FIG. 3 is an uncalcined agglomerated ore and an agglomerated iron ore containing 3% or more of crystallization water under the operation in which 20% of normal coke by weight is replaced with highly reactive coke having a JIS reactivity of 70 and a particle size of 10 mm. It is a figure which shows the relationship between the usage amount of stones and the fall width of heat preservation zone temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 清一 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiichi Yokoyama 1 Nishinosu, Oita City, Oita Prefecture Nippon Steel Co., Ltd. Oita Steel Works Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 通常冶金用コークスの一部をJIS反応
性が30%以上の高反応性コークスに置き換え、該高反
応性コークスを鉱石または通常冶金用コークスの少なく
とも一方と混合し、さらに非焼成塊成鉱および/または
3mm以下を1%以下にした気孔率30%以上、結晶水
3%以上を有する多孔質塊鉄鉱石を鉱石と混合し、高炉
に装入する高炉操業法において、炉頂水素ガス利用率η
H2を測定し、該ηH2が予め設定した下限値以上となるよ
うに、該多孔質塊鉄鉱石および/または非焼成塊成鉱の
装入量を調整することを特徴とする高炉操業法。
1. A part of the ordinary metallurgical coke is replaced with a highly reactive coke having a JIS reactivity of 30% or more, the highly reactive coke is mixed with at least one of ore and ordinary metallurgical coke, and further unfired. In a blast furnace operating method in which agglomerated ore and / or a porous lump iron ore having a porosity of 30% or more and water of crystallization of 3% or more in which 1% or less is 3 mm or less is mixed with ore and charged into a blast furnace, the furnace top is Hydrogen gas utilization rate η
Of H 2 were measured, as the ItaH 2 is equal to or greater than the lower limit value set in advance, blast furnace operation method characterized by adjusting the charging amount of the porous mass of iron ore and / or uncalcined masses Naruko .
【請求項2】 通常冶金用コークスの一部をJIS反応
性が30%以上の高反応性コークスに置き換え、該高反
応性コークスを鉱石または通常冶金用コークスの少なく
とも一方と混合し、さらに非焼成塊成鉱および/または
3mm以下を1%以下にした気孔率30%以上、結晶水
3%以上を有する多孔質塊鉄鉱石を鉱石と混合し、高炉
に装入する高炉操業法において、炉頂水素ガス利用率η
H2を測定し、該ηH2が予め設定した下限値以上となるよ
うに、高反応性コークスの装入量を調整することを特徴
とする高炉操業法。
2. A part of the ordinary metallurgical coke is replaced with a highly reactive coke having a JIS reactivity of 30% or more, the highly reactive coke is mixed with at least one of ore and ordinary metallurgical coke, and further unfired. In a blast furnace operating method in which agglomerated ore and / or a porous lump iron ore having a porosity of 30% or more and water of crystallization of 3% or more in which 1% or less is 3 mm or less is mixed with ore and charged into a blast furnace, the furnace top is Hydrogen gas utilization rate η
Of H 2 were measured, as in the ItaH 2 is equal to or greater than the lower limit value set in advance, blast furnace operation method characterized by adjusting the charging amount of the highly reactive coke.
JP4298376A 1992-11-09 1992-11-09 Blast furnace operation method Expired - Lifetime JP3014556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4298376A JP3014556B2 (en) 1992-11-09 1992-11-09 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4298376A JP3014556B2 (en) 1992-11-09 1992-11-09 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH06145728A true JPH06145728A (en) 1994-05-27
JP3014556B2 JP3014556B2 (en) 2000-02-28

Family

ID=17858894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4298376A Expired - Lifetime JP3014556B2 (en) 1992-11-09 1992-11-09 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3014556B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280926A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2015074799A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Blast furnace operation method
JP2016196681A (en) * 2015-04-03 2016-11-24 新日鐵住金株式会社 Method for determining charge rate of carbon-containing highly reactive charging material, and blast furnace operation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280926A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2015074799A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Blast furnace operation method
JP2016196681A (en) * 2015-04-03 2016-11-24 新日鐵住金株式会社 Method for determining charge rate of carbon-containing highly reactive charging material, and blast furnace operation method

Also Published As

Publication number Publication date
JP3014556B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
RU2613007C2 (en) Method of blast furnace operation and method of molten cast iron production
US4231797A (en) Fired iron-ore pellets having macro pores
JP3731361B2 (en) Method for producing sintered ore
WO1996015277A1 (en) Method of operating blast furnace
JP3014556B2 (en) Blast furnace operation method
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP3068967B2 (en) Blast furnace operation method
WO2022049781A1 (en) Iron ore pellets and manufacturing method of iron ore pellets
JP4529838B2 (en) Sinter ore and blast furnace operation method
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JPH1143710A (en) Operation of blast furnace when injecting a large quantity of pulverized fine coal
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP2019127628A (en) Method of charging raw materials into blast furnace
JP3061965B2 (en) Blast furnace operation method
JP3829516B2 (en) Blast furnace operation method
JP2018070932A (en) Method of charging raw material into blast furnace
JP3014549B2 (en) Blast furnace operation method
JPH0364563B2 (en)
JP2733566B2 (en) Blast furnace operation method
JP2002020810A (en) Blast furnace operating method
JP4598256B2 (en) Blast furnace operation method
KR900001093B1 (en) Making process of sintered ore
JPH0867919A (en) Production of sintered ore made of limonite based ore
JP3590543B2 (en) How to inject iron-containing powder into the blast furnace
JPS60141810A (en) Method for controlling operation of blast furnace using iron ore pellet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13

EXPY Cancellation because of completion of term