JPH06145561A - Coating film having heat-insulation property - Google Patents
Coating film having heat-insulation propertyInfo
- Publication number
- JPH06145561A JPH06145561A JP32243892A JP32243892A JPH06145561A JP H06145561 A JPH06145561 A JP H06145561A JP 32243892 A JP32243892 A JP 32243892A JP 32243892 A JP32243892 A JP 32243892A JP H06145561 A JPH06145561 A JP H06145561A
- Authority
- JP
- Japan
- Prior art keywords
- coating film
- vol
- thermal expansion
- powder particles
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Paints Or Removers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は断熱性を有する塗膜に関
する。この塗膜は、例えば、内燃機関で用いられるエキ
ゾーストマニホールド等の排気系機器の様に高温域で使
用される機器に適用できる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating coating film. This coating film can be applied to equipment used in a high temperature range such as exhaust system equipment such as an exhaust manifold used in an internal combustion engine.
【0002】[0002]
【従来の技術】特開昭58−99180号公報には、ジ
ルコニアの粉末粒子とコロイダルシリカ等の無機系バイ
ンダーとフリットとの混和物からなるスラリーを用い、
高温の排気ガスに触れる鋳鉄等の金属製機器の内面にス
ラリー膜を形成し、そのスラリー膜を固化して、断熱性
をもつ塗膜を形成する事項が開示されている。2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 58-99180 uses a slurry composed of a mixture of zirconia powder particles, an inorganic binder such as colloidal silica and a frit.
It is disclosed that a slurry film is formed on the inner surface of a metal device such as cast iron that is exposed to high-temperature exhaust gas, and the slurry film is solidified to form a heat-insulating coating film.
【0003】また、従来より、Fe2 O3 の粉末粒子と
水ガラス等のバインダーとを混合したベンガラと呼ばれ
る液状塗料が用いられ、その液状塗料を鋼材の表面に塗
布し、固化させ、塗膜を形成し、これにより鋼材の表面
の耐食性を確保することにしている。Further, conventionally, a liquid paint called red iron oxide, which is a mixture of powder particles of Fe 2 O 3 and a binder such as water glass, has been used. The liquid paint is applied to the surface of a steel material and solidified to form a coating film. Is formed to secure the corrosion resistance of the surface of the steel material.
【0004】[0004]
【発明が解決しようとする課題】ところで、高温域で用
いられる膜は、母材との熱膨張差が小さい方が好まし
い。ここで20〜800°Cの領域におけるジルコニア
の熱膨張率は10×10-6であり、アルミナの9×10
-6よりも大きいものの、金属(鋼、鋳鉄:11×10-6
〜14×10-6)に比べて小さい。そのため、塗膜と母
材との熱膨張差が不可避的に生じる。この場合、昇温、
冷却が繰り返して行われると、塗膜の損傷、剥離が生じ
易い。特に、内燃機関で用いられる排気系機器では、昇
温、冷却が繰り返して行われるので、塗膜の損傷、剥離
が生じ易い。By the way, it is preferable that the film used in a high temperature range has a small difference in thermal expansion from the base material. Here, the thermal expansion coefficient of zirconia in the region of 20 to 800 ° C. is 10 × 10 −6 , and that of alumina is 9 × 10 −6.
Larger than -6 , but metal (steel, cast iron: 11 x 10 -6
It is small compared to ~ 14 × 10 -6 ). Therefore, a difference in thermal expansion between the coating film and the base material is inevitably generated. In this case, the temperature rise,
When cooling is repeated, the coating film is likely to be damaged or peeled off. In particular, in an exhaust system device used in an internal combustion engine, since temperature rising and cooling are repeatedly performed, damage and peeling of the coating film are likely to occur.
【0005】また、前記したベンガラ塗料で形成された
塗膜は、常温域において用いられるものにすぎない。更
に、ベンガラ塗料で形成された塗膜の構成要素であるF
e2 O3 の熱膨張率は13×10-6と高く、金属母材に
近いが、この塗膜に占めるFe2 O3 の粉末粒子の体積
割合は、小さい。その理由は、塗料の塗り易さ、長期の
保管性を追求するため、液状塗料中の粉体比を10vo
l%以下に抑え、塗料の粘度の上昇や硬化速度の上昇を
抑止しており、固化後の塗膜でも粉体比は20vol%
以下である。図3は、ベンガラ塗料で形成された塗膜
(粉体比は20vol%)の組織を模式的に示す。図3
から理解できる様に、バインダーに白抜きで描かれた粒
子が島状に配置されている。なお、図3において島状の
黒色部分は気孔を示す。Further, the coating film formed of the above-mentioned red iron oxide paint is only used at room temperature. Furthermore, F which is a constituent of a coating film formed from red iron oxide paint
The coefficient of thermal expansion of e 2 O 3 is as high as 13 × 10 −6, which is close to that of a metal base material, but the volume ratio of Fe 2 O 3 powder particles in this coating film is small. The reason is that the powder ratio in the liquid paint is 10 vo
It is kept below 1% to prevent the viscosity of the paint and the curing rate from rising, and the powder ratio is 20 vol% even in the coating film after solidification.
It is the following. FIG. 3 schematically shows the structure of a coating film (powder ratio is 20 vol%) formed of red iron oxide paint. Figure 3
As can be seen from the above, the white particles on the binder are arranged in islands. In addition, in FIG. 3, island-shaped black portions indicate pores.
【0006】上記した様にベンガラ塗料で形成された塗
膜は、粉体比が小さいため、Fe2O3 の高熱膨張性が
十分に期待できず、塗膜の熱膨張率を金属母材の熱膨張
率に適合させるのは期待できない。また、塗膜固化の際
に、塗料中に大量に占めるバインダーが収縮するために
塗膜の内部に亀裂が生じ、使用の際に、この亀裂が起点
となり塗膜の剥離が発生し易い。As described above, since the coating film formed of red iron oxide paint has a small powder ratio, the high thermal expansion property of Fe 2 O 3 cannot be expected sufficiently, and the thermal expansion coefficient of the coating film is set to that of the metal base material. It cannot be expected to match the coefficient of thermal expansion. Further, when the coating film is solidified, a large amount of the binder in the coating material shrinks, so that a crack is generated inside the coating film, and when the coating film is used, the crack easily becomes a starting point and peels the coating film.
【0007】本発明は上記した実情に鑑みなされたもの
であり、その目的は、金属母材に熱膨張率を適合でき、
耐剥離性を高め得る、高温域で使用される、断熱性を有
する塗膜を提供することにある。The present invention has been made in view of the above situation, and an object thereof is to adapt a coefficient of thermal expansion to a metal base material,
An object of the present invention is to provide a coating film having a heat insulating property, which can be used in a high temperature region and which can enhance peeling resistance.
【0008】[0008]
【課題を解決するための手段】本発明者は上記した目的
のもとに鋭意開発を進め、FeO、Fe2 O3 及びFe
3 O4 の酸化鉄は熱伝達率が小さく塗膜の断熱性を期待
できること、FeO、Fe2 O3 及びFe3 O4 の酸化
鉄の粉末粒子を主要成分とするセラミックス粉末の塗膜
における体積割合を高めれば、塗膜の熱膨張率を金属母
材の熱膨張率に適合させ易いことに着目し、本発明の塗
膜を完成したものである。The inventor of the present invention has made intensive efforts to achieve the above-mentioned object, and has been developing FeO, Fe 2 O 3 and Fe.
3 O 4 iron oxide has a small heat transfer coefficient and can be expected to have heat insulating properties of the coating film, and the volume of the coating of ceramic powder containing iron oxide powder particles of FeO, Fe 2 O 3 and Fe 3 O 4 as the main component. The coating film of the present invention has been completed, paying attention to the fact that if the ratio is increased, the thermal expansion coefficient of the coating film is easily adapted to the thermal expansion coefficient of the metal base material.
【0009】本発明に係る断熱性を有する塗膜は、Fe
O、Fe2 O3 及びFe3 O4 の少なくとも1種からな
る酸化鉄の粉末粒子を主要成分とするセラミックス粉末
と、残部実質的にバインダーとで構成された高温域で使
用される塗膜であり、塗膜の体積を100vol%とし
たとき、セラミックス粉末粒子は30vol%以上であ
ることを特徴とするものである。The heat-insulating coating film according to the present invention is made of Fe.
A coating film used in a high temperature range, which is composed of a ceramic powder containing iron oxide powder particles of at least one of O, Fe 2 O 3 and Fe 3 O 4 as a main component, and the remainder substantially a binder. If the volume of the coating film is 100 vol%, the ceramic powder particles are characterized by being 30 vol% or more.
【0010】セラミックス粉末は、FeO、Fe2 O3
及びFe3 O4 の少なくとも1種からなる酸化鉄の粉末
粒子を主要成分とする。塗膜の体積を100vol%と
したとき、セラミックス粉末粒子が占める体積割合は3
0vol%以上、好ましくは50vol%以上が好まし
い。ここで、セラミックス粉末粒子を混ぜただけでは、
ベンガラ塗料で形成された塗膜と同様に、塗膜に占める
セラミックス粉末粒子の体積割合は30vol%を越え
ず、せいぜい20vol%程度である。体積割合を高め
る有効な手段は、例えば、粒径が小さなセラミックス粉
末粒子を混ぜて用いたり、界面活性剤等の分散剤を用い
て粉末粒子を分散させ、その凝集を防止することであ
る。Ceramic powders are FeO, Fe 2 O 3
And iron oxide powder particles containing at least one of Fe 3 O 4 as a main component. When the volume of the coating film is 100 vol%, the volume ratio of the ceramic powder particles is 3
It is preferably 0 vol% or more, and more preferably 50 vol% or more. Here, just by mixing the ceramic powder particles,
Like the coating film formed from red iron oxide paint, the volume ratio of the ceramic powder particles in the coating film does not exceed 30 vol% and is at most about 20 vol%. Effective means of increasing the volume ratio are, for example, to mix and use ceramic powder particles having a small particle diameter, or to disperse the powder particles by using a dispersant such as a surfactant to prevent the aggregation thereof.
【0011】また本発明では、セラミックス粉末中で酸
化鉄が占める割合は、セラミックス粉末粒子全体を10
0vol%としたとき、酸化鉄の粉末粒子が占める体積
割合は20vol%以上が好ましい。Further, in the present invention, the proportion of iron oxide in the ceramic powder is 10% of the whole ceramic powder particle.
When it is 0 vol%, the volume ratio of the iron oxide powder particles is preferably 20 vol% or more.
【0012】[0012]
【作用】本発明に係る塗膜は粉体比が高いので、塗膜に
おける粉体粒子の接合性が増し、塗膜の熱膨張率は金属
母材の熱膨張率に近づく。Since the coating film according to the present invention has a high powder ratio, the bondability of the powder particles in the coating film increases and the thermal expansion coefficient of the coating film approaches that of the metal base material.
【0013】[0013]
〔試験例1〕 (母材)母材としては、鋳鉄製テストピース(径30m
m、長さ20mm)を用い、ショットブラスト処理によ
り粗面化し、表面粗さRz70μとし、テストピースの
頂面をコ−ティング面とする。なお、ショットブラスト
処理は、100μのアルミナグリッド材を用いた。[Test Example 1] (Base material) As a base material, a cast iron test piece (diameter: 30 m)
m, length 20 mm), the surface is roughened by shot blasting to a surface roughness Rz of 70 μ, and the top surface of the test piece is used as the coating surface. The shot blasting treatment was performed using 100 μ alumina grid material.
【0014】(塗料)セラミックス粉末として、粒度が
1〜2μmのFe2 O3 の微粉末と、粒度が20〜40
μmのFe2 O3 の粗粉末とを用いた。そして、微粉
末:粗粉末が重量比で30:70となる様にV型混粉機
で混粉したものを原料骨材とした。また、Na2 O・S
iO2 を蒸留水により溶かした水ガラス水溶液(濃度3
0wt%)を準備し、これをバインダー溶液とした。(Paint) As the ceramic powder, a fine powder of Fe 2 O 3 having a particle size of 1 to 2 μm and a particle size of 20 to 40
μm Fe 2 O 3 coarse powder was used. Then, the fine powder: the coarse powder was mixed with a V-type powder mixer in a weight ratio of 30:70 to obtain a raw material aggregate. In addition, Na 2 O ・ S
water glass solution obtained by dissolving iO 2 with distilled water (concentration 3
0 wt%) was prepared and used as a binder solution.
【0015】そして、原粉骨材とバインダー溶液を体積
比で50:50となる様に混合し、これに骨材重量を1
00wt%としたとき、5wt%の割合で分散剤を添加
し十分に攪拌し、スラリー状の塗料を作製した。分散剤
はポリカルボン酸基を有する市販品(サイノプコ株式会
社 SNディスパーサント5040)である。この添加
により、骨材同士つまりFe2 O3 粉末粒子の凝集が防
止されると共に、Fe2 O3 粉末粒子とバインダーとの
濡れ性が向上し、これにより50vol%もの大量の骨
材つまりFe2 O3 粉末を有するスラリー原料の作製が
可能となった。Then, the raw aggregate and the binder solution are mixed in a volume ratio of 50:50, and the aggregate weight is 1: 1.
When the amount was 00 wt%, a dispersant was added at a rate of 5 wt%, and the mixture was sufficiently stirred to prepare a slurry-like coating material. The dispersant is a commercially available product having a polycarboxylic acid group (SNOPCO SN Dispersant 5040). This addition, the agglomeration of the aggregate to each other, that Fe 2 O 3 powder particles can be prevented, Fe 2 O 3 wettability between powder particles and the binder is improved, thereby 50 vol% ones large amount of aggregate, i.e. Fe 2 It has become possible to produce a slurry raw material having O 3 powder.
【0016】(塗布)前記した鋳鉄製テストピースの頂
面に、この塗料を刷毛にてコ−ティングした。コ−ティ
ング後、室温にて乾燥させ、表面の水分が蒸発したのを
確認した後、200℃の乾燥炉にテストピースを投入
し、約2時間乾燥させた。この工程により、バインダー
中の水ガラスは硬化反応を生じ、皮膜は硬化する。乾燥
後、皮膜膜厚を測定したところ、100μmであった。
更に、上記の工程をもう一度繰り返し再び、膜厚を測定
したところ300μmとなっていた為、処理を完了し
た。(Coating) This paint was coated with a brush on the top surface of the cast iron test piece described above. After coating, it was dried at room temperature, and after confirming that water on the surface had evaporated, the test piece was put into a drying oven at 200 ° C. and dried for about 2 hours. By this step, the water glass in the binder undergoes a curing reaction and the film is cured. After drying, the film thickness was measured and found to be 100 μm.
Furthermore, the above process was repeated once more, and the film thickness was measured again, and it was found to be 300 μm, so the treatment was completed.
【0017】(焼成)上記の処理をしたテストピースを
大気炉に投入し、500℃にて5時間、焼成し、以て塗
膜を形成した。この処理は、バインダーの反応を終了さ
せることを目的とするものである。以上の処理により塗
膜は形成される。 (組織観察)試験例1で作製した塗膜は、外観からは剥
離、亀裂等の不具合は認められなかった。また、塗膜を
縦に切断し、電子顕微鏡で断面組織を観察したが、母材
と塗膜との界面部位にも亀裂は認められなかった。(Firing) The test piece treated as described above was placed in an atmospheric furnace and baked at 500 ° C. for 5 hours to form a coating film. This treatment is intended to complete the reaction of the binder. The coating film is formed by the above processing. (Structure Observation) The coating film produced in Test Example 1 was free from defects such as peeling and cracks from the appearance. Further, the coating film was cut vertically and the cross-sectional structure was observed with an electron microscope, but no crack was observed at the interface between the base material and the coating film.
【0018】(塗膜における骨材の体積割合の測定)塗
膜における骨材の占める面積率に基づき、塗膜における
骨材の占める体積割合を求めた。具体的には、画像解析
処理機(ニコレ株式会社、型式ルーゼックスIII)を
用い、骨材部とバインダー部に見かけ上、濃淡差が生じ
ることを利用し、一定面積に占める両者の割合を測定し
た。これをそれぞれの試料について5〜10ケ所測定
し、平均をとった。その結果、塗膜における骨材の体積
割合、つまり、固化状態の塗膜の体積を100vol%
としたとき、Fe2 O3 粉末粒子の割合は65vol%
であった。(Measurement of Volume Ratio of Aggregate in Coating Film) Based on the area ratio of the aggregate in the coating film, the volume ratio of the aggregate in the coating film was obtained. Specifically, an image analysis processor (Nikole Co., Ltd., model Luzex III) was used to measure the ratio of both to a certain area by utilizing the apparent difference in shade between the aggregate and the binder. . Each sample was measured at 5 to 10 points and averaged. As a result, the volume ratio of the aggregate in the coating film, that is, the volume of the coating film in the solidified state is 100 vol%.
, The proportion of Fe 2 O 3 powder particles is 65 vol%
Met.
【0019】〔形態〕本発明の対象としている母材は、
高温での使用に耐え得る金属材料であり、具体的には鋳
鉄、鋼材及びステンレス等の鉄系材料、あるいは、N
i、Coを主成分とするインコネル等の高耐熱金属材料
である。本発明では、前述した様にこれらの金属母材と
塗膜との熱膨張率をマッチングさせるため、熱膨張率が
大きいFe2 O3 等の酸化鉄を主要成分とする骨材を使
用しているものである。しかし、上記金属材料の熱膨張
率はFe2 O3 等の酸化鉄のそれと必ずしも一致するも
のではなく、他材料粉末粒子を塗膜に添加し、母材と塗
膜との熱膨張率のマッチングを図ることがより好ましい
場合もある。以下、マッチングの形態の例について説明
する。[Form] The base material of the present invention is
A metal material that can withstand use at high temperatures, specifically, iron-based materials such as cast iron, steel and stainless steel, or N
It is a high heat resistant metal material such as Inconel containing i and Co as main components. In the present invention, as described above, in order to match the coefficient of thermal expansion of these metal base materials and the coating film, an aggregate containing iron oxide such as Fe 2 O 3 having a large coefficient of thermal expansion as a main component is used. There is something. However, the coefficient of thermal expansion of the above metal material does not always match that of iron oxide such as Fe 2 O 3, and powder particles of another material are added to the coating film to match the coefficient of thermal expansion between the base material and the coating film. In some cases, it may be more preferable to try. Hereinafter, an example of the form of matching will be described.
【0020】即ち、表1は、塗膜の体積を100vol
%としたとき粉末粒子の体積割合が50%の場合におい
て、塗膜の熱膨張率が各種金属母材とマッチングする様
に作製した形態を示す。粉末粒子のこの体積割合では塗
膜中で大部分の粒子が接合してつながっており、粒子の
熱膨張率が実質的に塗膜の熱膨張率であると把握でき
る。ここで、酸化鉄の熱膨張率は、20〜800°Cに
おいて、FeOが13×10-6、Fe2 O3 が13×1
0-6、Fe3 O4 が16.5×10-6であり、このう
ち、最も熱膨張率が大きなものがFe3 O4 である。That is, Table 1 shows the volume of the coating film as 100 vol.
When the volume ratio of the powder particles is 50% when it is defined as%, it shows a mode in which the thermal expansion coefficient of the coating film is matched with various metal base materials. At this volume ratio of the powder particles, most of the particles are joined and connected in the coating film, and it can be understood that the thermal expansion coefficient of the particles is substantially the thermal expansion coefficient of the coating film. Here, the thermal expansion coefficient of iron oxide is 20 × 800 ° C., and FeO is 13 × 10 −6 and Fe 2 O 3 is 13 × 1.
0 -6, Fe 3 O 4 is 16.5 × 10 -6, Among them, the most thermal expansion coefficient is large is Fe 3 O 4.
【0021】[0021]
【表1】 [Table 1]
【0022】表1のNo.Aに示す様に、母材が鋳鉄
(FC20)である場合には、骨材をFe2 O3 100
vol%とすれば、マッチングが図られる。No.Bに
示す様に、母材がニレジスト鋳鉄である場合には、骨材
をFe3 O4 100vol%とすれば、マッチングが図
られる。No.Cに示す様に、母材が熱膨張率の比較的
小さなフェライト系ステンレス鋼(SUS430)であ
る場合には、骨材をFe2 O3 が50vol%、ZrO
2 が50vol%とすれば、マッチングが図られられ
る。或いは、No.Dに示す様に、母材が同じくフェラ
イト系ステンレス鋼(SUS430)である場合には、
骨材をFe2 O3 が63vol%、Al2 O3 が37v
ol%とすれば、マッチングが図られる。No.Eに示
す様に母材がフェライト系ステンレス鋼(SUS43
0)である場合には、骨材をFe3 O4が20vol
%、ZrO2 が80vol%とすれば、マッチングが図
られる。No.Fに示す様に母材がNi系合金(Inc
onel600)である場合には、骨材をFe3 O4 が
83vol%、ZrO2 が17vol%とすれば、マッ
チングが図られる。No. 1 in Table 1 As shown in A, when the base material is cast iron (FC20), the aggregate is made of Fe 2 O 3 100
If it is vol%, matching is achieved. No. As shown in B, when the base material is Ni-resist cast iron, if the aggregate is Fe 3 O 4 100 vol%, matching can be achieved. No. As shown in C, when the base material is ferritic stainless steel (SUS430) having a relatively small coefficient of thermal expansion, the aggregate is made of Fe 2 O 3 at 50 vol% and ZrO.
If 2 is 50 vol%, matching is achieved. Alternatively, No. As shown in D, when the base material is also ferritic stainless steel (SUS430),
63 vol% Fe 2 O 3 and 37 v Al 2 O 3 aggregate
If it is ol%, matching can be achieved. No. As shown in E, the base material is ferritic stainless steel (SUS43
0), Fe 3 O 4 is 20 vol.
% And ZrO 2 is 80 vol%, matching is achieved. No. As shown in F, the base material is a Ni-based alloy (Inc
In the case of oneel600), if Fe 3 O 4 is 83 vol% and ZrO 2 is 17 vol%, matching can be achieved.
【0023】上記したNo.C、No.D、No.Eで
は、母材として熱膨張率の比較的小さなフェライト系ス
テンレス(SUS430)を用いた場合であり、この場
合には、熱膨張率のマッチングのために、ZrO2 (熱
膨張率10×10-6)、Al2 O3 (熱膨張率9.0×
10-6)を用いている。 〔試験例2〕塗膜に占める骨材の体積割合を変化させ、
どのような影響を及ぼすか測定した。測定に用いたセラ
ミックス粉末及びバインダーとしては、試験例1で用い
たものと同様のものを用いた。The above-mentioned No. C, No. D, No. In E, a case where ferritic stainless steel (SUS430) having a relatively small coefficient of thermal expansion is used as a base material, and in this case, in order to match the coefficient of thermal expansion, ZrO 2 (coefficient of thermal expansion 10 × 10 − 6 ), Al 2 O 3 (coefficient of thermal expansion 9.0 ×
10 -6 ) is used. [Test Example 2] By changing the volume ratio of the aggregate in the coating film,
The effect was measured. The same ceramic powder and binder as those used in Test Example 1 were used for the measurement.
【0024】その結果を表2に示す。表2に示す様に、
どのテストピースでも、固化後の塗膜における骨材の体
積割合は、スラリーにおける骨材の体積割合に比べて増
加している。その理由は、バインダー中の水分の蒸発及
び固化によるものである。また、固化前後での骨材の割
合の関係を図1において○印で示す。図1の実線に係る
特性線W1は、スラリー中の水分等の蒸発成分が完全に
蒸発し、塗膜が理想的に収縮した時の関係を示す。図1
においてどの○印も特性線W1を下回っているのは、塗
膜が完全に収縮することはなく、内部に気孔が発生する
ため骨材の割合が低下したものと思われる。The results are shown in Table 2. As shown in Table 2,
In all the test pieces, the volume ratio of the aggregate in the coating film after solidification is higher than the volume ratio of the aggregate in the slurry. The reason is due to evaporation and solidification of water in the binder. Further, the relationship between the proportions of the aggregate before and after the solidification is shown by a circle in FIG. A characteristic line W1 related to the solid line in FIG. 1 shows the relationship when the evaporation component such as water in the slurry is completely evaporated and the coating film is ideally contracted. Figure 1
It is considered that the fact that all of the circles are below the characteristic line W1 in Fig. 6 indicates that the coating film does not completely shrink and pores are generated inside, so that the proportion of the aggregate decreases.
【0025】また、図1における○印に示す様に、固化
後の塗膜において、骨材の割合が約66vol%以上に
上がらない理由は、粒子の圧密化が進んでも粒子間に3
0vol%の空隙が不可避的に出来てしまうためであ
る。骨材の体積割合と塗膜状態との関係を説明する。即
ち、表2から理解できる様に、骨材の体積割合と塗膜状
態との関係を見ると、スラリー中の骨材の体積割合が1
5vol%以下(固化後の塗膜における骨材比が25v
ol%以下)では、塗膜の内部に亀裂が発生している。
これは、この範囲ではバインダーが多いため塗膜の収縮
量が大きくなるためであると考えられる。また、この範
囲では、塗膜に含まれる気孔の気孔径も大きく、使用中
の亀裂発生の起点となる可能性が高い。 固化後の塗膜
における骨材であるFe2 O3 粉末粒子の体積割合が5
0vol%以上になると、電子顕微鏡による観察で、粒
子間接合が発生しており、粒子と粒子とが接している。
この場合、Fe2 O3 粉末粒子の熱膨張率は実質的に塗
膜の熱膨張率とみることができる。Further, as indicated by the mark ◯ in FIG. 1, the reason why the proportion of the aggregate in the coating film after solidification does not rise to about 66 vol% or more is that even if the compaction of the particles progresses, 3
This is because voids of 0 vol% are inevitably formed. The relationship between the volume ratio of the aggregate and the state of the coating film will be described. That is, as can be understood from Table 2, looking at the relationship between the volume ratio of the aggregate and the state of the coating film, the volume ratio of the aggregate in the slurry was 1
5 vol% or less (aggregate ratio in the coating film after solidification is 25v
ol% or less), cracks are generated inside the coating film.
It is considered that this is because, in this range, the amount of binder is large and the shrinkage amount of the coating film is large. Further, in this range, the pore diameter of the pores contained in the coating film is also large, and there is a high possibility that it will be a starting point of crack generation during use. The volume ratio of the aggregate Fe 2 O 3 powder particles in the coating film after solidification was 5
When the content is 0 vol% or more, observation by an electron microscope shows that interparticle bonding has occurred and particles are in contact with each other.
In this case, the thermal expansion coefficient of the Fe 2 O 3 powder particles can be regarded as substantially the thermal expansion coefficient of the coating film.
【0026】しかし、50vol%以下では粒子と粒子
との間にバインダーである水ガラスが存在し、粒子と水
ガラスとの両材料の平均値が塗膜の熱膨張率となってし
まう。そればかりか、両材料の熱膨張率差によって、粒
子とバインダーとの間に亀裂を発生させることもある。
図2は、塗膜を100vol%としたときFe2 O3 粉
末粒子の体積割合が50vol%で形成された塗膜を、
電子顕微鏡で観察した構造を模式的に示すものである。
図2に示す様に、この塗膜では、粒径が比較的大きな粗
粉末粒子10間の空隙部分を、粒径が微小な微粉末粒子
12が埋めているため、粉末粒子の体積割合は高いもの
であり、その間にバインダー14が配置されている。な
お黒色の島状部分は気孔16である。図2から理解でき
る様に、この塗膜では、粒子間接合が発生しており、前
述した様に、Fe2 O3 粉末粒子の熱膨張率は実質的に
塗膜の熱膨張率とみることができる。図4はFe2 O3
粉末粒子の体積割合が40vol%の塗膜の構造を示す
電子顕微鏡写真(×1000)である。However, when the content is 50 vol% or less, water glass as a binder exists between the particles, and the average value of both materials of the particles and water glass becomes the coefficient of thermal expansion of the coating film. In addition, cracks may occur between the particles and the binder due to the difference in coefficient of thermal expansion between the two materials.
FIG. 2 shows a coating film formed with a volume ratio of Fe 2 O 3 powder particles of 50 vol% when the coating film is 100 vol%,
1 schematically shows a structure observed with an electron microscope.
As shown in FIG. 2, in this coating film, the void portions between the coarse powder particles 10 having a relatively large particle diameter are filled with the fine powder particles 12 having a small particle diameter, so that the volume ratio of the powder particles is high. The binder 14 is arranged between them. The black islands are pores 16. As can be understood from FIG. 2, interparticle bonding occurs in this coating film, and as described above, the coefficient of thermal expansion of the Fe 2 O 3 powder particles is considered to be substantially the coefficient of thermal expansion of the coating film. You can Figure 4 shows Fe 2 O 3
It is an electron micrograph (x1000) which shows the structure of the coating film in which the volume ratio of powder particles is 40 vol%.
【0027】以上の結果より、塗膜における骨材の体積
割合は、固化後で少なくとも30vol%以上必要であ
り、より好ましくは50vol%以上必要である。な
お、塗膜における骨材の体積割合の上限は、一般的に
は、スラリー法による圧密度の限界である70vol%
である。From the above results, the volume ratio of the aggregate in the coating film needs to be at least 30 vol% or more after solidification, and more preferably 50 vol% or more. The upper limit of the volume ratio of the aggregate in the coating film is generally 70 vol% which is the limit of the pressure density by the slurry method.
Is.
【0028】[0028]
【表2】 [Table 2]
【0029】〔試験例3〕試験例1と同様な手順で鋳鉄
テストピースに塗膜を形成した。その際、膜厚だけを変
化させたものを作製した。このテストピースの塗膜の性
能を冷熱サイクルによる耐久性試験により調査した。耐
久性試験は、700℃となる様に20〜30秒間バーナ
で塗膜付近を加熱した後、常温域の水中にて冷却するサ
イクルを1サイクルとし、剥離が生じるまでのサイクル
数を測定して行った。その結果を表3に示す。[Test Example 3] A coating film was formed on a cast iron test piece in the same procedure as in Test Example 1. At that time, those having different film thicknesses were prepared. The performance of the coating film of this test piece was investigated by a durability test by a thermal cycle. The durability test was carried out by heating the vicinity of the coating film with a burner for 20 to 30 seconds to 700 ° C. and then cooling it in water in the normal temperature range as one cycle, and measuring the number of cycles until peeling occurred. went. The results are shown in Table 3.
【0030】[0030]
【表3】 [Table 3]
【0031】表3に示す様に、塗膜の膜厚が増加すると
耐久性が劣化する傾向にあることがわかる。表3から理
解できる様に、実施例1で用いたFe2 O3 粉末粒子を
用いた塗膜では、目標とする500サイクルは、500
μmの膜厚まで耐え得ることがわかる。また、表3のN
o.9〜No.11に示す様に、骨材を構成するセラミ
ックス粉末としてZrO2 粉末、Al2 O3 粉末、鋳鉄
粉を用いた膜厚500μmの比較例についても、同様に
試験した。その結果も表3に示す。As shown in Table 3, it can be seen that the durability tends to deteriorate as the film thickness of the coating film increases. As can be understood from Table 3, in the coating film using the Fe 2 O 3 powder particles used in Example 1, the target 500 cycles is 500
It can be seen that it can withstand a film thickness of μm. Also, N in Table 3
o. 9-No. As shown in 11, a comparative example having a film thickness of 500 μm using ZrO 2 powder, Al 2 O 3 powder, and cast iron powder as the ceramic powder constituting the aggregate was similarly tested. The results are also shown in Table 3.
【0032】表3に示す様に、骨材としてFe2 O3 の
粉末粒子を用いた膜厚500μmのNo.4は、上記比
較例に比較して著しく耐久性が向上していることがわか
る。これは、前述したように塗膜の熱膨張率と母材の熱
膨張率とがマッチングしている為と考える。しかし、比
較例である鋳鉄粉を用いたNo.11では、熱膨張率が
母材鋳鉄と同様であるはずなのに、高耐久性を示してい
ない。これは骨材である鋳鉄粉が高温にて酸化して熱膨
張したために塗膜内に亀裂を発生させたことが原因と考
えられる。As shown in Table 3, No. 2 with a film thickness of 500 μm using powder particles of Fe 2 O 3 as an aggregate. It can be seen that in No. 4, the durability is remarkably improved as compared with the comparative example. It is considered that this is because the coefficient of thermal expansion of the coating film matches the coefficient of thermal expansion of the base material as described above. However, No. 1 using cast iron powder which is a comparative example. In No. 11, although the coefficient of thermal expansion should be similar to that of the base material cast iron, it does not show high durability. It is considered that this is because the cast iron powder, which is an aggregate, was oxidized at a high temperature and thermally expanded, thereby causing cracks in the coating film.
【0033】(他の例)上記した試験例1では、骨材重
量を100wt%としたとき、5wt%の割合で分散剤
が添加されているが、これに限らず、適宜増減でき、例
えば5〜10wt%にできる。また分散剤はポリカルボ
ン酸基をもつものが採用されているが、これに限らず、
公知のものを採用でき、例えば、ナフタレンスルホン酸
基をもつものでも良い。上記した試験例では無機バイン
ダーは水ガラスが採用されているが、これに限らず、ケ
イ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム等の
ケイ酸塩、第1リン酸アルミニウム、第1リン酸カリウ
ム、第1リン酸マグネシウム等のリン酸塩、コロイダル
シリカ等を採用しても良い。(Other Example) In Test Example 1 described above, the dispersant is added at a rate of 5 wt% when the weight of the aggregate is 100 wt%, but the present invention is not limited to this, and the amount can be increased or decreased as appropriate, for example, 5 It can be 10 wt%. Further, as the dispersant, those having a polycarboxylic acid group are adopted, but not limited to this,
Known ones can be adopted, for example, those having a naphthalene sulfonic acid group may be used. Although water glass is adopted as the inorganic binder in the above-described test examples, the inorganic binder is not limited to this, and silicates such as sodium silicate, potassium silicate, and lithium silicate, monoaluminum phosphate, and monopotassium phosphate. Alternatively, a phosphate such as primary magnesium phosphate, colloidal silica or the like may be adopted.
【0034】[0034]
【発明の効果】本発明の断熱性を有する塗膜によれば、
金属母材に熱膨張率を近づけ得、耐剥離性を高め得る。According to the coating film having the heat insulating property of the present invention,
The coefficient of thermal expansion can be made close to that of the metal base material, and the peel resistance can be improved.
【図1】スラリー中の粉末粒子含有率と固化後の塗膜に
おける粉末粒子含有率との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the content of powder particles in a slurry and the content of powder particles in a coating film after solidification.
【図2】粉末粒子の体積割合が50vol%の塗膜の組
織の粒子構造を電子顕微鏡で観察した状態を模式的に示
す組織図である。FIG. 2 is a structural diagram schematically showing a state in which a particle structure of a coating film having a volume ratio of powder particles of 50 vol% is observed by an electron microscope.
【図3】従来のベンガラ塗料で形成した塗膜の組織の粒
子構造を電子顕微鏡で観察した組織図である。FIG. 3 is a structural diagram in which a particle structure of a structure of a coating film formed of a conventional red iron oxide paint is observed by an electron microscope.
【図4】粉末粒子の体積割合が50vol%の塗膜の組
織の粒子構造を電子顕微鏡で観察した状態を示す写真図
である。FIG. 4 is a photographic diagram showing a state in which the particle structure of the structure of a coating film in which the volume ratio of powder particles is 50 vol% is observed by an electron microscope.
図中、10は粗粉末粒子、12は微粉末粒子、14はバ
インダー、16は気孔を示す。In the figure, 10 is a coarse powder particle, 12 is a fine powder particle, 14 is a binder, and 16 is a pore.
Claims (1)
くとも1種からなる酸化鉄の粉末粒子を主要成分とする
セラミックス粉末と、残部実質的にバインダーとで構成
された高温域で使用される塗膜であり、 該塗膜の体積を100vol%としたとき、該セラミッ
クス粉末粒子は30vol%以上であることを特徴とす
る断熱性をもつ塗膜。1. Use in a high temperature range composed of a ceramic powder containing iron oxide powder particles consisting of at least one of FeO, Fe 2 O 3 and Fe 3 O 4 as a main component, and the remainder being substantially a binder. A coating film having a heat insulating property, characterized in that the ceramic powder particles are 30 vol% or more when the volume of the coating film is 100 vol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32243892A JP3178628B2 (en) | 1992-11-06 | 1992-11-06 | Insulating coating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32243892A JP3178628B2 (en) | 1992-11-06 | 1992-11-06 | Insulating coating film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06145561A true JPH06145561A (en) | 1994-05-24 |
JP3178628B2 JP3178628B2 (en) | 2001-06-25 |
Family
ID=18143678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32243892A Expired - Fee Related JP3178628B2 (en) | 1992-11-06 | 1992-11-06 | Insulating coating film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3178628B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6060154A (en) * | 1997-09-30 | 2000-05-09 | Sumitomo Metal Mining Co., Ltd. | Coating liquid for selective permeable membrane, selective permeable membrane and selective permeable multilayered membrane |
US6284332B1 (en) | 1997-09-04 | 2001-09-04 | Daimlerchrysler Ag | Exhaust line of an exhaust system equipped with a catalytic converter for an internal combustion engine |
WO2015044742A1 (en) | 2013-09-25 | 2015-04-02 | Toyota Jidosha Kabushiki Kaisha | Seal structure of turbocharger |
JP2016175801A (en) * | 2015-03-20 | 2016-10-06 | 日本碍子株式会社 | Connection body, honeycomb structure, method for producing connection body and coating body |
JP2018059487A (en) * | 2016-10-07 | 2018-04-12 | 日産自動車株式会社 | Member for internal combustion engine having heat shielding film and method of manufacturing the member |
-
1992
- 1992-11-06 JP JP32243892A patent/JP3178628B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284332B1 (en) | 1997-09-04 | 2001-09-04 | Daimlerchrysler Ag | Exhaust line of an exhaust system equipped with a catalytic converter for an internal combustion engine |
US6060154A (en) * | 1997-09-30 | 2000-05-09 | Sumitomo Metal Mining Co., Ltd. | Coating liquid for selective permeable membrane, selective permeable membrane and selective permeable multilayered membrane |
WO2015044742A1 (en) | 2013-09-25 | 2015-04-02 | Toyota Jidosha Kabushiki Kaisha | Seal structure of turbocharger |
JP2016175801A (en) * | 2015-03-20 | 2016-10-06 | 日本碍子株式会社 | Connection body, honeycomb structure, method for producing connection body and coating body |
JP2018059487A (en) * | 2016-10-07 | 2018-04-12 | 日産自動車株式会社 | Member for internal combustion engine having heat shielding film and method of manufacturing the member |
Also Published As
Publication number | Publication date |
---|---|
JP3178628B2 (en) | 2001-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1228370A (en) | Oxidation prohibitive coatings for carbonaceous articles | |
JPH0729857B2 (en) | Ceramic-metal bonded body and manufacturing method thereof | |
US4680239A (en) | Exhaust device having a heat-insulating layer comprising inorganic microballoons and a refractory layer and method of manufacturing same | |
JPH06145561A (en) | Coating film having heat-insulation property | |
JPS6155589B2 (en) | ||
WO2016198917A1 (en) | Refractories for applications in combustion chambers intended for producing energy and/or waste disposal | |
JPH0250994B2 (en) | ||
JP2002274957A (en) | Vessel for firing | |
JP2946975B2 (en) | Ceramic coating with heat insulation | |
JPH02225383A (en) | Bonded ceramics and iron parts and production thereof | |
JP2812019B2 (en) | Carbon fiber / carbon composite | |
JPS6187859A (en) | Formation of sprayed film | |
JP3259646B2 (en) | Continuous siliconizing equipment for steel strip | |
JPS61243164A (en) | Formation of heat resistant coating | |
JP2964858B2 (en) | Cast iron parts with thermal barrier coating | |
JPH075393B2 (en) | Method for manufacturing ceramic / metal bonded body | |
JPH02258983A (en) | Ceramic-metal joined body and production thereof | |
JP3039269B2 (en) | Method of forming thermal insulation film | |
JPS6360806B2 (en) | ||
JPS5943990B2 (en) | Surface treatment method | |
JP3009815B2 (en) | Aluminum titanate-alumina spray material | |
JPH0874068A (en) | Refractory-coated structure | |
JPS5851214A (en) | Exhaust gas system device for internal-combustion engine | |
RU2001369C1 (en) | Melting furnace refractory lining | |
JP2706160B2 (en) | Construction method of ceramic liner for molten metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |